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Аннотация. На примере одной из самых древних теоретико-числовых задач – задаче Пифагора – 
школьникам можно продемонстрировать связи между различными математическими дисцип-
линами, на первый взгляд, совершенно не связанными друг с другом. Задача Пифагора уста-
навливает связь между теорией чисел, геометрией и математическим анализом. Рассмотрена 
краткая история возникновения задачи Пифагора, приведены арифметический и геометриче-
ский способы ее решения, связь с диофантовыми уравнениями, применение решений задачи 
Пифагора для получения рациональной параметризации конических сечений, а также для вы-
числения интегралов, содержащих иррациональность. 
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ВВЕДЕНИЕ 
 
Актуальность исследования заключа-

ется в том, что пифагоровы тройки име-
ют немалое количество свойств, связы-
вающих их с разными разделами матема-
тики, поэтому исследование этой темы 
помогает осознать взаимосвязь разделов 
математики. Цель исследования заключа-
ется в расширении границ познания 
школьников и в вовлечении их в занятия 
научной деятельностью. Данную цель 
можно выполнить с помощью решения 
таких задач, как поиск и изучение теоре-
тических материалов, применения теории 
на практике и в обобщении полученных 
знаний. В работе используются геомет-
рические, аналитические, алгебраические 
методы исследования. 

 
РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ 
 
Одна из образовательных целей при 

изучении математики состоит в том, что-
бы научить школьников отличать, фор-
мулировать и систематизировать изучен-
ные понятия. Умение устанавливать при-
чинно-следственные связи между двумя 
взаимосвязанными изменяемыми вели-
чинами является очень важным. Всегда 
интересна взаимосвязь различных мате-
матических дисциплин как между собой, 
так и с другими научными дисциплина-
ми. В данном исследовании отражены 
некоторые способы решения задачи Пи-
фагора и ее применение в различных раз-
делах современной математики. 

Для начала необходимо познако-
миться с историей возникновения задачи 
Пифагора, а затем мы перейдем к спосо-
бам решения этой задачи. Изучив данный 
материал, можно будет сделать вывод о 
том, в каких же областях применима 
данная теория. 

История возникновения задачи Пи-
фагора. Задачей Пифагора называют за-
дачу нахождения решений уравнения 

𝑘𝑘2 + 𝑜𝑜2 = 𝑙𝑙2,                                            (1) 
 

где 𝑘𝑘, 𝑜𝑜, 𝑙𝑙 ∈ ℕ. 
Название задачи возникло из-за оче-

видной связи уравнения с геометриче-
ской теоремой Пифагора, которую знает 
каждый школьник среднего или старшего 
звена. 

Уравнение (1) называют диофанто-
вым уравнением. Частные решения урав-
нения (1) известны еще со времен Вави-
лона. Решения уравнения (1) – это так 
называемые «Пифагоровы тройки»: 

 
1) (𝑘𝑘, 𝑜𝑜, 𝑙𝑙) = (3,4,5); 
2) (𝑘𝑘, 𝑜𝑜, 𝑙𝑙) = (8,15,17); 
3) (𝑘𝑘, 𝑜𝑜, 𝑙𝑙) = (36,77,85); 
4) (𝑘𝑘, 𝑜𝑜, 𝑙𝑙) = (44,117,125); 
5) (𝑘𝑘, 𝑜𝑜, 𝑙𝑙) = (120,209,241) и т. д. 
 
Задача Пифагора была известна еще 

древним вавилонянам почти за 2000 лет 
до Пифагора. Вопрос о нахождении всех 
решений уравнения (1) был поставлен и 
решен в школе пифагорейцев. 

Вспомним всеми любимую теорему 
Пифагора. 

Теорема 1. В прямоугольном тре-
угольнике квадрат гипотенузы равен 
сумме квадратов катетов [1]. 

По теореме Пифагора каждому прямо-
угольному треугольнику с целочисленны-
ми сторонами (т.е. 𝑘𝑘, 𝑜𝑜 − катеты, 
а𝑙𝑙 − гипотенуза0T) соответствует некото-
рая пифагорова тройка целых чисел:  
0 < 𝑘𝑘 < 𝑜𝑜 < 𝑙𝑙, и наоборот. 

Отсюда следует, что задача Пифагора 
имеет прозрачный геометрический смысл 
(рис. 1). 

Арифметический способ решения 
задачи Пифагора. Очевидно то, что 
тройка чисел (𝑛𝑛 ∙ 𝑘𝑘,𝑛𝑛 ∙ 𝑜𝑜, 𝑛𝑛 ∙ 𝑙𝑙) – пифаго-
рова, если: 

1. 𝑛𝑛 ∈ ℤ > 0, 

2. (𝑘𝑘, 𝑜𝑜, 𝑙𝑙) – пифагорова тройка. 
Для решения задачи (1) достаточно 

перечислить примитивные тройки. 
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Рис. 1. Геометрический смысл задачи Пифа-
гора 
Fig. 1. The geometric meaning of the Pythago-
rean problem 

 
 
Определение 1. Примитивная трой-

ка – пифагорова тройка (𝑘𝑘, 𝑜𝑜, 𝑙𝑙), для ко-
торой не существует числа 𝑛𝑛 ∈ ℤ > 1, 
являющегося делителем каждого из чи-
сел 𝑘𝑘, 𝑜𝑜, 𝑙𝑙  [2]. 

Легко доказать следующее утвержде-
ние: 

Теорема 2. Пусть существуют числа 
p, d ∈ ℕ,  такие что 

1. НОД (𝑝𝑝,𝑑𝑑) = 1,  
2. 𝑝𝑝 > 𝑑𝑑, 
3. 𝑝𝑝,𝑑𝑑0T – разной четности. 
Тогда тройка чисел  
 

(𝑘𝑘, 𝑜𝑜, 𝑙𝑙) = (𝑝𝑝2 − 𝑑𝑑2, 2 ∙ 𝑝𝑝 ∙ 𝑑𝑑,𝑝𝑝2 + 𝑑𝑑2)    (2) 
 
является примитивной пифагоровой 
тройкой [3]. 

■ Действительно, 𝑘𝑘2 + 𝑜𝑜2 =
(𝑝𝑝2 − 𝑑𝑑2)2 + (2 ∙ 𝑝𝑝 ∙ 𝑑𝑑)2 = 𝑝𝑝4 − 2 ∙ 𝑝𝑝2 ∙
𝑑𝑑2 + +𝑑𝑑4 + 4 ∙ 𝑝𝑝2 ∙ 𝑑𝑑2 = 𝑝𝑝4 + 2 ∙ 𝑝𝑝2 ∙ 𝑑𝑑2 +
𝑑𝑑4 = (𝑝𝑝2 + 𝑑𝑑2)2 = 𝑙𝑙2  

Отсюда (𝑝𝑝2 − 𝑑𝑑2, 2 ∙ 𝑝𝑝 ∙ 𝑑𝑑,𝑝𝑝2 + 𝑑𝑑2) – 
пифагорова тройка. 

Общий множитель чисел 𝑘𝑘, 𝑜𝑜, 𝑙𝑙 – об-
щий множитель чисел 𝑙𝑙 + 𝑘𝑘 = 2𝑝𝑝2 и 
𝑙𝑙 − 𝑘𝑘 = 2𝑑𝑑2, но НОД(𝑝𝑝,𝑑𝑑) = 1. Поэтому 
тройка (𝑝𝑝2 − 𝑑𝑑2, 2 ∙ 𝑝𝑝 ∙ 𝑑𝑑,𝑝𝑝2 + 𝑑𝑑2)  – при-
митивная пифагорова тройка. ■ 

Данный способ решения задачи Пи-
фагора всегда дает примитивную тройку. 

Поэтому все пифагоровы тройки мы мо-
жем получить способом, описанным в 
доказательстве Теоремы 2, используя 
формулу (2). 

В настоящее время примитивные пи-
фагоровы тройки используются в крип-
тографии в качестве случайных последо-
вательностей и для генерации ключей. 

Геометрический способ решения за-
дачи Пифагора. Дадим геометрическую 
интерпретацию решений уравнения (1), 
используя метод координат. 

Пусть (𝑘𝑘, 𝑜𝑜, 𝑙𝑙) – примитивная тройка, 
удовлетворяющая уравнению (1). Тогда 
все остальные решения уравнения (1) по-
лучим путем умножения на ∀ 𝑛𝑛 ∈ ℕ, то 
есть будут тройки вида (𝑛𝑛 ∙ 𝑘𝑘,𝑛𝑛 ∙ 𝑜𝑜,𝑛𝑛 ∙ 𝑙𝑙). 

Разделив на 𝑙𝑙2 обе части равенства (1), 
получим 

 

�𝑘𝑘
𝑙𝑙
�

2
+ �𝑜𝑜

𝑙𝑙
�

2
= 1.                                       (3) 

 
Равенство (3) задает на плоскости пе-

ременных 𝑘𝑘
𝑙𝑙

, 𝑜𝑜
𝑙𝑙
∈ ℚ, где 𝑘𝑘, 𝑜𝑜, 𝑙𝑙 ∈ ℤ+ урав-

нение окружности  ω (O, 1)0T: 𝑥𝑥2 + 𝑦𝑦2 = 1. 
Следовательно, всем примитивным 

решениям (𝑘𝑘, 𝑜𝑜, 𝑙𝑙) уравнения (1) соответ-
ствует точка �𝑘𝑘

𝑙𝑙
; 𝑜𝑜
𝑙𝑙
� 0T с рациональными ко-

ординатами, лежащая на окружности 
ω (O, 1)0T. 

Определение 2. Точку с рациональ-
ными координатами называют рацио-
нальной точкой [4]. 

Верно и обратное: 
Координаты любой рациональной 

точки (𝑥𝑥;𝑦𝑦) = �𝑛𝑛1
𝑚𝑚1

; 𝑛𝑛2
𝑚𝑚2
�, лежащей на ок-

ружности ω, с центром в точке О(0,0) ра-
диуса 1, определяют примитивную пифа-
горову тройку. 

Таким образом, установлено взаимно 
однозначное соответствие между рацио-
нальными точками, лежащими на окруж-
ности ω, и примитивными пифагоровыми 
тройками. 
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Отсюда вытекает геометрический 
способ получения примитивных пифаго-
ровых троек: для этого достаточно найти 
все рациональные точки, лежащие на ок-
ружности ω, заданной уравнением 
𝑥𝑥2 + 𝑦𝑦2 = 1. 

Установим связь между геометриче-
ским и арифметическим способами ре-
шения задачи Пифагора. 

Проведем всевозможные прямые че-
рез точку 𝐴𝐴1(−1; 0) ∈ ω  (рис. 2). Если 
какая-то прямая 𝑝𝑝, проходящая через 
точку 𝐴𝐴1, не является касательной к ок-
ружности, то она пересечет эту окруж-
ность еще в одной точке 𝐴𝐴2(𝑥𝑥2;𝑦𝑦2) (то 
есть 𝐴𝐴2 = ω ∩ 𝑝𝑝). Тогда семейство таких 
прямых задается уравнением 𝑦𝑦 = 𝑛𝑛 ∙
(𝑥𝑥 + 1), где 𝑛𝑛 – угловой коэффициент 
прямой, принадлежащей семейству. Та-
ким образом, координаты точки 𝐴𝐴2 удов-
летворяют системе уравнений 

 

�
𝑦𝑦 = 𝑛𝑛 ∙ (𝑥𝑥 + 1),
𝑥𝑥2 + 𝑦𝑦2 = 1.

�                                      (4) 

 
Решим систему (4) относительно 𝑦𝑦, 𝑥𝑥. 

Подставив первое уравнение во второе, 
получим 𝑥𝑥2 + 𝑛𝑛2 ∙ (𝑥𝑥 + 1)2 = 1. Откуда 
после упрощения получим уравнение от-
носительно 𝑥𝑥. 

 

(1 + 𝑛𝑛2) ∙ 𝑥𝑥2 + 2𝑛𝑛2 ∙ 𝑥𝑥 + 𝑛𝑛2 − 1 = 0. 
 
Если 𝑥𝑥 удовлетворяет этому уравне-

нию, то 𝑥𝑥 является абсциссой точки пе-
ресечения прямой 𝑦𝑦 = 𝑛𝑛 ∙ (𝑥𝑥 + 1) с ок-
ружностью ω, то есть либо 𝑥𝑥 = 𝑥𝑥1 = −1, 
либо 𝑥𝑥 = 𝑥𝑥2. По теореме Виета имеем: 

 
𝑥𝑥1 + 𝑥𝑥2 = − 2𝑛𝑛2

1+𝑛𝑛2 .                                     (5) 
 
Из (5) при 𝑥𝑥1 = −1 находим 
 

𝑥𝑥2 = 1 − 2𝑛𝑛2

1+𝑛𝑛2 = 1−𝑛𝑛2

1+𝑛𝑛2. 
 
Так как точка 𝐴𝐴2 лежит на прямой 

𝑦𝑦 = 𝑛𝑛 ∙ (𝑥𝑥 + 1), то при 𝑥𝑥2 = 1−𝑛𝑛2

1+𝑛𝑛2 получа-

ем 𝑦𝑦2 = 𝑛𝑛 ∙ �1−𝑛𝑛2

1+𝑛𝑛2 + 1� = 2𝑛𝑛
1+𝑛𝑛2. Следова-

тельно, координаты точки 𝐴𝐴2, лежащей на 
окружности ω, зависят от параметра 𝑛𝑛: 

 
𝐴𝐴2 �

1−𝑛𝑛2

1+𝑛𝑛2 ; 2𝑛𝑛
1+𝑛𝑛2�.                                        (6) 

 
Верно и обратное: 
Каждой точке (𝑥𝑥;𝑦𝑦), лежащей на ок-

ружности ω и не совпадающей с точкой 
𝐴𝐴1, соответствует только одно значение 
параметра 𝑛𝑛: 

 

 
 

Рис. 2. Нахождение связи геометрического и алгебраического решения задачи (1) 
Fig. 2. Finding the connection between geometric and algebraic solutions of the problem (1) 
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 𝑛𝑛 = 𝑦𝑦
𝑥𝑥+1

 .                                                (7) 
 
Стоит отметить, что при 𝑛𝑛 ∈ ℚ точка 

𝐴𝐴2, определяемая формулой (6), имеет 
рациональные координаты. Таким обра-
зом, между точками прямой и окружно-
сти устанавливается взаимно однознач-
ное соответствие (исключение составляет 
точка 𝐴𝐴1). 

Перебирая все рациональные значе-
ния 𝑛𝑛 ∈ (−∞; +∞), мы переберем все 
точки с рациональными координатами на 
окружности ω (исключение – точка 𝐴𝐴1) и 
так найдем все примитивные решения 
задачи Пифагора. 

Пусть 𝑛𝑛 = 𝑝𝑝
𝑑𝑑

,𝑑𝑑 > 0,  НОД (𝑝𝑝;𝑑𝑑) = 1. 
Тогда 

 
(𝑥𝑥2;𝑦𝑦2) = �𝑑𝑑

2−𝑝𝑝2

𝑝𝑝2+𝑑𝑑2 ; 2𝑝𝑝𝑑𝑑
𝑝𝑝2+𝑑𝑑2�.                        (8) 

 
Формула (8) равносильна формуле 

(2). Чтобы получить такой же результат, 
как при работе с формулой (2), нужно 
поработать с четностью. 

Использование пифагоровых троек, 
позволяющих задать координаты точек 
на чертеже в целых числах и обыкновен-
ных дробях, целесообразно в техниче-
ском черчении. 

Рациональная параметризация ко-
нических сечений. Пусть задан квадрат-
ный многочлен 𝑎𝑎𝑥𝑥2 + 𝑏𝑏𝑏𝑏 + 𝑐𝑐 = 0. Этим 

уравнением задается линия второго по-
рядка 𝛾𝛾(𝑥𝑥;𝑦𝑦) на плоскости. В зависимо-
сти от коэффициентов такой линией мо-
жет быть гипербола, парабола или эл-
липс. Покажем, что методы решения за-
дачи Пифагора позволяют найти рацио-
нальную параметризацию линий второго 
порядка на плоскости. 

Определение 3. Рациональной пара-
метризацией кривой 𝛾𝛾 называется выра-
жение координат точки на этой кривой с 
помощью рациональных функций от од-
ного параметра 𝑛𝑛. 

Пусть фиксированная точка 
𝑃𝑃1(𝑥𝑥1;𝑦𝑦1) лежит на кривой 𝛾𝛾(𝑥𝑥;𝑦𝑦). Через 
точку 𝑃𝑃1 проведем прямую с угловым ко-
эффициентом 𝑛𝑛 (рис. 3). Найдем коорди-
наты точки пересечения 𝛾𝛾 и прямой. Ко-
ординаты искомых точек удовлетворяют 
системе уравнений  

 

�   𝑎𝑎𝑥𝑥2 + 𝑏𝑏𝑏𝑏 + 𝑐𝑐 = 0  
𝑦𝑦 − 𝑦𝑦1 = 𝑛𝑛 ∙ (𝑥𝑥 − 𝑥𝑥1).

�                             (9) 

 
Решая систему (9) относительно 

𝑦𝑦 и 𝑥𝑥, находим координаты точки 𝑃𝑃2 
 

𝑃𝑃2(𝑥𝑥2;𝑦𝑦2) = �
𝐴𝐴(𝑛𝑛)
𝐵𝐵(𝑛𝑛) ;

𝐶𝐶(𝑛𝑛)
𝐵𝐵(𝑛𝑛)� ,  

 
где 𝐴𝐴(𝑛𝑛),𝐵𝐵(𝑛𝑛),𝐶𝐶(𝑛𝑛) − многочлены, сте-
пени не выше второй, зависящие от ра-
циональной параметризации 𝑛𝑛 линии  𝛾𝛾.  
 

 
Рис. 3. Коническое сечение 
Fig. 3. Conic section 
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Формула (9), как и формула (8), по-
зволяет находить рациональные точки на 
𝛾𝛾. Чтобы получить такой же результат, 
как в (2), нужно поработать с четностью. 

Рациональная параметризация кривых 
широко используется в алгебраической 
геометрии и коммутативной алгебре. 

Пример 1. Найдите рациональную 
параметризацию гиперболы. 

 
𝑦𝑦2𝑥𝑥2 + 5𝑥𝑥 − 9. 

 
Решение 

1) Возьмем кривую 𝛾𝛾(𝑥𝑥;𝑦𝑦) =
𝑦𝑦2−(𝑥𝑥2 + 5𝑥𝑥 − 9); 

2) Отметим на ней т. 𝑃𝑃1(−9; 0) ∈
𝛾𝛾:𝑦𝑦(𝑥𝑥) = √𝑥𝑥2 + 5𝑥𝑥 − 9; 

3) Рассмотрим прямые  
𝑦𝑦 = 𝑛𝑛 ∙ (𝑥𝑥 + 9); 

4) Найдем вторую точку пересечения 
прямой 𝑦𝑦 = 𝑛𝑛 ∙ (𝑥𝑥 + 9) и кривой 𝛾𝛾, 
используя формулу (9). 

5) Координаты искомой точки 
удовлетворяют системе 

 

�
𝑦𝑦 = 𝑛𝑛 ∙ (𝑥𝑥 + 9),
𝑦𝑦2 = 𝑥𝑥2 + 5𝑥𝑥 − 9.

�                                (10) 

 
Решим систему (10) относительно 

𝑦𝑦, 𝑥𝑥. Подставив первое уравнение во вто-
рое, получим 𝑛𝑛2 ∙ (𝑥𝑥 + 9)2 = 𝑥𝑥2 + 5𝑥𝑥 − 9, 
а если перегруппировать относительно 𝑥𝑥, 
то (𝑛𝑛2 − 1) ∙ 𝑥𝑥2 + (18𝑛𝑛2 − 5) ∙ 𝑥𝑥 +
81𝑛𝑛2 + 9 = 0. 

Если 𝑥𝑥 удовлетворяет последнему 
уравнению, то 𝑥𝑥 является абсциссой точ-
ки пересечения прямой 𝑦𝑦 = 𝑛𝑛 ∙ (𝑥𝑥 + 9) с 
кривой 𝛾𝛾, то есть либо 𝑥𝑥 = 𝑥𝑥1 = −9, либо 
𝑥𝑥 = 𝑥𝑥2. Из теоремы Виета следует, что  

 
𝑥𝑥1 + 𝑥𝑥2 = − 18𝑛𝑛2−5

𝑛𝑛2−1
 .                               (11) 

 
При  
 

𝑥𝑥1 = −9
(11)
��� 𝑥𝑥2 = 9 − 18𝑛𝑛2−5

𝑛𝑛2−1
= 4+9𝑛𝑛2

1−𝑛𝑛2 .  
 

Так как точка 𝐴𝐴2 удовлетворяет урав-
нению 𝑦𝑦 = 𝑛𝑛 ∙ (𝑥𝑥 + 9), то при 𝑥𝑥2 = 4+9𝑛𝑛2

1−𝑛𝑛2  

получаем 𝑦𝑦2 = 𝑛𝑛 ∙ �4+9𝑛𝑛2

1−𝑛𝑛2 + 9� = 13𝑛𝑛
1−𝑛𝑛2, то 

есть точка 𝑃𝑃2 имеет координаты 
 

𝑃𝑃2(𝑥𝑥2;𝑦𝑦2) = �4+9𝑛𝑛2

1−𝑛𝑛2 ; 13𝑛𝑛
1−𝑛𝑛2�. 

 
Задача Пифагора имеет также и дру-

гие применения. В частности, ее можно 
использовать для вычисления интегра-
лов, нахождения экстремумов функций, а 
также решения тригонометрических за-
дач. 

Пример 2. Вычислить интеграл 
 

𝐼𝐼 = �
𝑑𝑑𝑑𝑑

√𝑥𝑥2 + 3𝑥𝑥 − 4
= �

𝑑𝑑𝑑𝑑
𝑦𝑦(𝑥𝑥). 

 
Решение 

1) Возьмем кривую 𝛾𝛾(𝑥𝑥;𝑦𝑦) =
𝑦𝑦2−(𝑥𝑥2 + 3𝑥𝑥 − 4); 

2) Отметим на ней т. 𝑃𝑃1(−4; 0) ∈
𝛾𝛾:𝑦𝑦(𝑥𝑥) = √𝑥𝑥2 + 3𝑥𝑥 − 4; 

3) Рассмотрим прямые  
𝑦𝑦 = 𝑛𝑛 ∙ (𝑥𝑥 + 4); 

4) Найдем вторую точку пересечения 
прямой 𝑦𝑦 = 𝑛𝑛 ∙ (𝑥𝑥 + 4) и кривой 𝛾𝛾, 
используя формулу (9). 

5) Координаты искомой точки 
удовлетворяют системе 

 

�
𝑦𝑦 = 𝑛𝑛 ∙ (𝑥𝑥 + 4),
𝑦𝑦2 = 𝑥𝑥2 + 3𝑥𝑥 − 4.

�                                (12) 

 
Решим систему (12) относительно 

𝑦𝑦, 𝑥𝑥. Подставив первое уравнение во вто-
рое, получим 𝑛𝑛2 ∙ (𝑥𝑥 + 4)2 = 𝑥𝑥2 + 3𝑥𝑥 − 4, 
а если перегруппировать относительно 𝑥𝑥, 
то (𝑛𝑛2 − 1) ∙ 𝑥𝑥2 + (8𝑛𝑛2 − 3) ∙ 𝑥𝑥 + 16𝑛𝑛2 + 4 =
0. 

Если 𝑥𝑥 удовлетворяет последнему 
уравнению, то 𝑥𝑥 является абсциссой точ-
ки пересечения прямой 𝑦𝑦 = 𝑛𝑛 ∙ (𝑥𝑥 + 4) с 
кривой 𝛾𝛾, т. е. либо 𝑥𝑥 = 𝑥𝑥1 = −4, либо 
𝑥𝑥 = 𝑥𝑥2. Из теоремы Виета следует, что  
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𝑥𝑥1 + 𝑥𝑥2 = − 8𝑛𝑛2−3
𝑛𝑛2−1

 .                                (13) 
 
При 𝑥𝑥1 = −4 из формулы (13) имеем 
 

𝑥𝑥2 = 4 − 8𝑛𝑛2−3
𝑛𝑛2−1

= 1+4𝑛𝑛2

1−𝑛𝑛2 . 
 
Так как точка 𝐴𝐴2 удовлетворяет урав-

нению 𝑦𝑦 = 𝑛𝑛 ∙ (𝑥𝑥 + 4), то при 𝑥𝑥2 = 1+4𝑛𝑛2

1−𝑛𝑛2  

получаем 𝑦𝑦2 = 𝑛𝑛 ∙ �1+4𝑛𝑛2

1−𝑛𝑛2 + 4� = 5𝑛𝑛
1−𝑛𝑛2, то 

есть точка 𝑃𝑃2 имеет координаты 
 

𝑃𝑃2(𝑥𝑥2;𝑦𝑦2) = �1+4𝑛𝑛2

1−𝑛𝑛2 ; 5𝑛𝑛
1−𝑛𝑛2�; 

 
6) 𝑥𝑥 = 𝑥𝑥2. Тогда 
 

𝑑𝑑𝑑𝑑 = �1+4𝑛𝑛2

1−𝑛𝑛2 �
′
𝑑𝑑𝑑𝑑 =

8𝑛𝑛�1−𝑛𝑛2�+2𝑛𝑛�1+4𝑛𝑛2�
(1−𝑛𝑛2)2 𝑑𝑑𝑑𝑑 = 10𝑛𝑛

(1−𝑛𝑛2)2 𝑑𝑑𝑑𝑑; 

𝑦𝑦 = 𝑦𝑦2 ⟹ 𝐼𝐼 = �

10𝑛𝑛
(1−𝑛𝑛2)2 𝑑𝑑𝑑𝑑

5𝑛𝑛
1−𝑛𝑛2

= 

�
2𝑑𝑑𝑑𝑑

1 − 𝑛𝑛2 = 𝑙𝑙𝑙𝑙 �
1 + 𝑛𝑛
1 − 𝑛𝑛

� + 𝐶𝐶. 

 
Сделаем в этом равенстве обратную 

замену: 
 

𝑛𝑛 =
𝑦𝑦

𝑥𝑥 + 4
=
√𝑥𝑥2 + 3𝑥𝑥 − 4

𝑥𝑥 + 4
. 

 
Тогда окончательно получим 
 

𝐼𝐼 = 𝑙𝑙𝑙𝑙 �
𝑥𝑥 + 4 + √𝑥𝑥2 + 3𝑥𝑥 − 4
𝑥𝑥 + 4 − √𝑥𝑥2 + 3𝑥𝑥 − 4

� + 𝐶𝐶. 

 
Метод, с помощью которого был вы-

числен интеграл 𝐼𝐼, позволяет вычислять и 
другие интегралы, содержащие иррацио-
нальность. 

 
 
 

Пример 3. Найдите наименьшее зна-
чение функции 

 
𝑓𝑓(𝑥𝑥,𝑦𝑦, 𝑧𝑧) = �𝑥𝑥2 + 1 + �𝑦𝑦2 + 4 
+�𝑧𝑧2 + 9, 

 
если числа 𝑥𝑥,𝑦𝑦, 𝑧𝑧 положительны и 
𝑥𝑥 + 𝑦𝑦 + 𝑧𝑧 = 8. 

Решение 
Эту задачу решим, используя теоре-

му Пифагора. Изобразим ломаную 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴, 
где каждое звено 𝐴𝐴𝐴𝐴,𝐵𝐵𝐵𝐵,𝐶𝐶𝐶𝐶 является ги-
потенузой прямоугольного треугольника 
(рис. 4) с катетами длины 𝑥𝑥  и  1, 𝑦𝑦  и  2, 
 𝑧𝑧  и  3 соответственно. Легко видеть, что 
длина этой ломаной 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 не меньше 
𝐴𝐴𝐴𝐴. При этом длина одного из катетов 
прямоугольного треугольника с гипоте-
нузой 𝐴𝐴𝐴𝐴 по условию задачи 𝑥𝑥 + 𝑦𝑦 + 𝑧𝑧 =
8, а длина другого катета 1 + 2 + 3 = 6. 
Следовательно, 𝐴𝐴𝐴𝐴 = 10. 

Минимум суммы 𝑓𝑓(𝑥𝑥,𝑦𝑦, 𝑧𝑧) =
√𝑥𝑥2 + 1 + �𝑦𝑦2 + 4 + √𝑧𝑧2 + 9 достигает-
ся только тогда, когда ломаная 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 
совпадет с отрезком 𝐴𝐴𝐴𝐴. Поэтому 
𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚 (𝑥𝑥,𝑦𝑦, 𝑧𝑧) = 10. 

 

 
 

Рис. 4. Применение теоремы Пифагора для 
ломанной 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 
Fig. 4. Application of the Pythagorean theorem 
for the polyline ABCD 
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Рис. 5. Тангенс острого угла в прямоуголь-
ном треугольнике 
Fig. 5. Tangent of an acute angle in a right tri-
angle 

 
 
Пример 4. Вычислить 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎2 +

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎3 + 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎1. 
Решение 

Используем определение тангенса 
острого угла в прямоугольном треуголь-
нике (рис. 5): ∆𝐴𝐴𝐴𝐴𝐴𝐴:𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎3 =
∡𝐴𝐴𝐴𝐴𝐴𝐴,𝐴𝐴𝐴𝐴 = 3,𝑀𝑀𝑀𝑀 = 1,𝐴𝐴𝐴𝐴 =
√10; ∆𝐵𝐵𝐵𝐵𝐵𝐵:𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎2 = ∡𝐵𝐵𝐵𝐵𝐵𝐵,𝐶𝐶𝐶𝐶 =
1,𝐵𝐵𝐵𝐵 = 2,𝐵𝐵𝐵𝐵 = √5. 

 

Тогда 𝐵𝐵𝐵𝐵 = √22 + 12 = √5 = 𝐵𝐵𝐵𝐵. 
Поэтому по теореме, обратной теореме 
Пифагора, имеем, что ∆𝐴𝐴𝐴𝐴𝐴𝐴 − прямо-
угольный равнобедренный треугольник с 
прямым углом в вершине 𝐵𝐵: 

 
𝐴𝐴𝐴𝐴2 = 𝐴𝐴𝐴𝐴2 + 𝐵𝐵𝐵𝐵2 = 5 + 5 = 10. 

 
Поэтому ∡𝐴𝐴𝐴𝐴𝐴𝐴 = 90°, ∡𝐵𝐵𝐵𝐵𝐵𝐵 =

∡𝐵𝐵𝐵𝐵𝐵𝐵 = 45° = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎1. Таким образом, 
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎2 + 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎3 + 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎1 = ∡𝐵𝐵𝐵𝐵𝐵𝐵 +
∡𝐴𝐴𝐴𝐴𝐴𝐴 + ∡𝐵𝐵𝐵𝐵𝐵𝐵 = ∡𝑀𝑀𝑀𝑀𝑀𝑀 = 180°. 

 
ЗАКЛЮЧЕНИЕ 

 
В работе показано, что одним и тем 

же методом можно решать диофантовы 
уравнения, тригонометрические и экс-
тремальные задачи, а также задачи ин-
тегрирования функций, получить рацио-
нальную параметризацию кривых второ-
го порядка на плоскости, то есть решать 
задачи, относящиеся к совершенно раз-
ным разделам математики. 

Данную тему можно предлагать 
школьникам на таком элективном пред-
мете, как проектная деятельность. 
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