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1. Introduction

A lot of living organisms use siliceous construc-
tions for building of important elements of their bodies. 
The most known are diatom algae (>20% of primary 
oxygen and organic carbon production (Treguer et al., 
1995), siliceous sponges (water filterers and a source 
of biological active compounds), rise and horsetail. For 
many decades scientists try to answer question: how 
these organisms build highly ordered constructions 
from silica at ambient temperatures? This question is 
intriguing and important because:

•	 biosilica shows a great number of sophisticated 
constructions which are species specific (Fig. 1);

•	 biosilica properties are closer rather to amorphous 
quartz than to silica gel from aqueous medium 
(Grachev et al., 2008);

•	 living organisms synthesize siliceous constructions 
at ambient conditions, without high temperatures 
and aggressive chemicals;

•	 understanding of molecular mechanisms of bio-
silicification gives not only valuable information 
of these organisms but also provides new knowl-
edge in silicon and organic chemistry including 
approaches to new materials.

Siliceous particles and constructions are color-
less and transparent which complicates their study with 
optical methods. These objects are electron dense and 

so are visible with transmittance electron microscopy 
but this method requires complex sampling and is not 
applicable for living specimens. Staining with vital flu-
orescent dyes is a powerful approach in biology which 
becomes more actual in last decades with dissemination 
of confocal microscopes. Rhodamines where the first 
dyes applied to staining growing cultures of diatoms 
(Li et al., 1989). These substances were accumulated in 
growing siliceous valves and girdle bands but the ma-
ture elements of siliceous frustules were colorless. The 
such behavior of rhodamines is explained with forma-
tion of silica in Silica Deposition Vesicles (SDVs) of di-
atoms. These intracellular organelles are close to lyso-
somes and their content is acidic (pH = 5.5) (Vrieling 
et al., 1999) which stimulate accumulation of amines 
in these vesicles. Application of rhodamines allowed to 
obtain interesting data on diatom physiology (Safonova 
et al., 2007) and to synthesize new fluorescent mate-
rials by biotechnological approach (Kucki and Fuhr-
mann-Lieker, 2012). Unfortunately, rhodamines are 
not the convenient instrument because of low gap be-
tween staining and toxic concentrations. On the other 
hand, quantum yield of rhodamines in aqueous medi-
um is high (>70% (Arbeloa et al., 1988) which results 
in high fluorescence from the cultivation medium.

A set of new dyes for vital staining of silicify-
ing organisms was elaborated and this mini-review de-
scribes compounds based on 7-nitro-2,1,3-benzoxadi-
azole (NBD) fluorophore and more specific dyes which 
change fluorescent spectrum after incorporation into 
silica (PDMPO and coumarin derivatives).
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2. NBD based dyes for vital staining

The first NBD derivative for staining the grow-
ing siliceous frustules of diatoms was HCK-123 (Fig. 2) 
(Desclés et al., 2008). This dye contains a basic sub-
stituent which provides incorporation of the dye into 
acidic SDVs. NBD moiety is often applied for labeling of 
amine containing compounds (proteins, carbohydrates 
and etc.) with the use of 4-chloro-7-nitrobenzo-2-oxa-
1,3-diazole (Cl-NBD). This reagent is relatively cheap 
and readily reacts with primary and secondary amines.

Frustules of the diatom algae contain an inter-
esting type of polyamines, so called long-chain poly-
amines (LCPAs). These compounds consist of amine 
groups separated by trimethylene fragments, with the 
first segment frequently containing four methylene 
groups (Kröger et al., 2000). Some amine groups are 
methylated, the LCPAs chains contain from several to 

>20 nitrogen atoms. These substances are available in 
very limited amounts from the natural sources which 
complicates study of their properties and role in bio-
silicification. We have elaborated (Annenkov et al., 
2006; 2009) a stepwise approach to synthesis of LCPAs, 
including individual compounds with 2-7 nitrogen at-
oms and oligomeric mixture containing polyamines 
with >20 nitrogen atoms.

The reaction of NBD-Cl with short polyamines 
(2-3 nitrogens) resulted in new dyes NBD-N2 and 
NBD-N3 (Fig. 2) (Annenkov et al., 2010). NBD-N3 as 
well as HCK-123 stains acidic organelles of eukaryotic 
cells but NBD-N2 is more selective and penetrates into 
growing siliceous structures only. This selectivity is 
explainable with shorter basic chain of NBD-N2 (one 
amine nitrogen only). NBD-N2 was successfully ap-
plied in study of initial stages of the diatom valve bio-
synthesis (Annenkov et al., 2013) and spiculogenesis 

Fig. 2. Structures of NBD based dyes: HCK-123, NBD-N2 and NBD-N3.

Fig. 1. Scanning electron microscopy images of diatom siliceous valves (A – Aulacoseira baikalensis (K. Meyer) Simonsen 
1979; B – Stephanodiscus meyeri Genkal & Popovskaya; C and D – Ulnaria ferefusiformis M. Kulikovskiy & H. Lange-Bertalot);  
E-G  – sponge spicules of Lubomirskia baicalensis (Pallas, 1773). Scale bar represents 50 (E), 10 (A, C and F), 5 (G) and 2 (B, D) µm.
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in sponge L. baicalensis (Annenkov and Danilovtseva, 
2016). Fluorescent and confocal microscopy allowed 
to visualize primary submicrometer silicon-containing 
particles formed during capture of silicic acid with dia-
toms and growing spicules starting from single sponge 
cell (Fig. 3).

NBD-N2 and NBD-N3 penetrates into siliceous 
frustules of diatoms and sponge spicules (Fig. 4-6). The 
dyes are deeply buried in the biogenic silica and retain 
fluorescent activity after treatment with strong acids 
and oxidizing agents during cleaning of organic sub-
stances. The stained valves and spicules are suitable for 
study with confocal microscopy (Fig. 6) which allows 
to obtain additional information about internal struc-
ture of the material without real slicing.

Fig. 3. Initial stages of sponge spicule (A-F, L. baicalensis) and diatom valve (G and H, U. ferefusiformis) growth visualized by 
cultivation in the presence on NBD-N2 dye. The main stages of spiculogenesis in L. baicalensis are: silicon accumulation in sclero-
cyte (A, top); formation of organic filament and protrusion of the new spicule from the cell (A, bottom and B); further elongation 
of the filament, sclerocyte capture silicic acid and organic substances from the extracellular space which allows further growth of 
the spicule (C); new sclerocytes merge with the growing spicule (D and E) and a mature spicules (F) are obtained. Submicrometer 
siliceous particles are formed in the diatom cytoplasm after 30-60 s after silicon addition to silicon free cultural medium (G) and 
after 10-15 min new siliceous valve is visible (H). Scale bar represents: 20 (F) and 10 (A-E, G and F) µm.

Fig. 4. Fluorescent images of diatom siliceous valves after cultivation in the presence of NBD-N2 dye. A-D - natural samples 
obtained from Lake Baikal (Russia), E - siliceous valve of U. ferefusiformis. Diatoms were cultivated for 3 days in the presence of 
0.5 μM NBD-N2 and the biomass was treated with H2SO4/H2O2 (1:1) mixture. Scale bar represents 10 µm.

Fig. 5. Fluorescent images of diatom siliceous valves and 
sponge spicules after cultivation in the presence of NBD-N2 
dye. A - L. baicalensis, B - Baikalospongia bacillifera (Dybowsky, 
1880), C - Swartschewskia papyracea (Dybowsky, 1880) and D 
- Baikalospongia intermedia (Dybowsky, 1880). Sponges were 
cultivated for a month in the presence of 0.5 μM NBD-N2 and 
the biomass was treated with bleach. Fluorescence allows to 
distinguish spicules grown during the experiment from old 
spicules. Scale bar represents 50 µm.
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The vital fluorescent staining is especially valu-
able in the case of sponges. These multicellular inverte-
brates have a skeleton from needle-like spicules which 
are fastened with organic compounds. Sponge cells and 
a lot of symbionts live inside this skeleton. The spicule 
shape and peculiarities of the spicule growth (spicu-
logenesis) are important for the sponge classification 
and as a marker of sponge growth and health in var-
ious experiments. Our works (Annenkov et al., 2014; 
2016) give new powerful tool for study of the siliceous 
sponges. The siliceous spicules are colorless and trans-
parent which decrease efficiency of light microscopy in 
their study but fluorescent spicules are a good object 
for confocal microscopy (Fig. 6). Staining with NBD-N2 
dye allowed us to see growing spicules from the single 
silicon-enriched cells (Fig. 3) (Annenkov et al., 2016). 
This study was done with the whole sponges or sponge 
cultures (primmorphs) without isolation of the growing 
spicules because the fluorescent staining allows to ob-
serve these objects surrounded by other cells and ma-
ture spicules.

Study of the sponge physiology and influence of 
various ecological conditions on the sponges requires 
methods of the spiculogenisis control. This is not an 

ordinary task because any sponge and primmorph con-
tain old spicules and how to distinguish between old 
spicules and new ones, formed during experiment? The 
vital staining with the fluorescent nontoxic dye is the 
easy and accurate method to do this (Fig. 5).

3. Fluorescent derivatives of long chain 
polyamines

Study of NBD-Cl interaction with LCPAs (more 
than 4 nitrogen atoms) resulted in unexpected reaction 
of NBD-Cl with tertiary nitrogen atoms giving rise to 
NBD derivatives and unsaturated compounds (Annen-
kov et al., 2015). A set of new dyes containing rela-
tively long polyamine substituents (≥3 nitrogen at-
oms) was prepared in this work (Fig. 7, Annenkov et 
al., 2018). The longer polyamine chain in these dyes 
increase activity in association with silica due to coor-
dination with surface silanol groups. This property of 
the new dyes is useful in fluorescent staining of diatom 
frustules, siliceous spicules and silica containing nat-
ural sediments (Fig. 8). In the latter case the siliceous 
particles become easy distinguishable from non-stained 
terrigeneous admixtures.

Fig. 6. Confocal microscopy 3D images of diatom siliceous valves and sponge spicules after cultivation in the presence of 
NBD-N2 dye. A - siliceous valve of U. ferefusiformis, B and C - siliceous valve of diatom Aulacoseira sp., D and E - siliceous spicules 
of L. baicalensis sponge. Scale bar represents 10 (A-C) and 20 (D and E) µm.

Fig. 7. Structures of fluorescent dyes based on long chain polyamines.
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4. Dyes with variable fluorescent properties

As discussed above, NBD based dyes stain acidic 
cell vesicles and SDV due to specific structure of the 
substituent at fluorophore group. The next generation 
of fluorescent dyes for vital staining of siliceous struc-
tures in living cells changes fluorescent spectrum under 
association with silica. The first representative of these 
dyes is 2-(4-pyridyl)-5-((4-(2-dimethylaminoethylami-
nocarbamoyl)methoxy)-phenyl)oxazole (PDMPO, Fig. 
9) (Shimizu et al., 2001; Parambath et al., 2016). Flu-
orescence of PDMPO depends on pH and the emission 
spectrum changes under association with silanol groups 
or involving into acidic vesicles. This behavior is useful 
in study of silicifying organisms as well as in study of 
silicification reactions in vitro.

Recently we have synthesized a new coumarin 
based fluorescent dye Q-N2 (Fig. 9) which contain 
amine group in the substituent (Annenkov et al., 2019). 
In contrast to PDMPO, fluorescence spectrum of this 
dye in aqueous medium does not depend on pH value. 
Aggregation of Q-N2 with silica or entrapping into si-
liceous materials results in enhancing of blue fluores-
cence and appearance of green emission. These effects 
were studied with fluorescence microscopy and they 
are easy visible with a routine epifluorescence micro-
scope: fluorescence color changes from blue to cyan 
under excitation at 350-360 nm and green fluorescence 
appears under excitation at 470 nm (Fig. 10).

Fig. 9. Structure of Q-N2 and PDMPO dyes.

Fig. 8. Siliceous materials stained with fluorescent dyes based on long chain polyamines. A - L. baicalensis spicules, B-D - 
Baikalean sediment. Scale bar represents 100 (A), 20 (B and C) and 10 (D) µm.

Fig. 10. Change of Q-N2 emission spectrum in the pres-
ence of 100 mM silicic acid during condensation at pH 7 (top 
spectrum - excitation at 365 nm, bottom spectrum - exci-
tation at 470 nm), the data show faster growth of the fluores-
cence intensity in green area. The microscopy images show 
cells of Aulacoseira sp. after cultivation in the presence of 0.5 
μM Q-N2, top - light image, middle - excitation at 370 nm, 
bottom - excitation at 470 nm. Scale bar represents 10 μm.
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The absence of pH-depending changes of the 
Q-N2 fluorescence allows to attribute the strong cyan 
(green) fluorescence to siliceous structures. The other 
advantage of Q-N2 is the excitation maximum below 
400 nm, far from excitation of chloroplasts. In combi-
nation with high quantum yield (11% comparing with 
<1% for NBD derivatives) this decreases damaging 
effect on living cells during microscopy investigation. 
Q-N2 shows inhibitory effect on the diatom growth in 
10 µM concentration (20-30% inhibition) which is 20 
times higher its staining concentration. Q-N2 stains 
growing siliceous structures in diatoms and sponges 
(Fig. 11) and video monitoring of the silicon capture 
allowed us to find formation of condensed oligosilicates 
in several seconds after silicon capture with the diatom 
cell (Annenkov et al., 2019). This observation confirm 
hypothesis about silicon assimilation by diatoms in the 
form of partially condensed silicic acid.
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