Prediction of malnutrition in patients with cancer using machine learning: a review
- 作者: Kukosh M.Y.1,2, Obukhova O.A.3
-
隶属关系:
- Peoples’ Friendship University of Russia
- A.F. Tsyb Medical Radiological Research Center — branch of the National Medical Research Radiological Center
- National Medical Research Center of Oncology named after N.N. Blokhin
- 期: 卷 6, 编号 2 (2025)
- 页面: 79-87
- 栏目: Reviews
- URL: https://journal-vniispk.ru/2658-4433/article/view/357339
- DOI: https://doi.org/10.17816/clinutr686579
- EDN: https://elibrary.ru/DFBYCE
- ID: 357339
如何引用文章
全文:
详细
Malnutrition substantially affects the outcomes of antitumor therapy in patients with cancer. Nutritional support is often prescribed subjectively, which may lead to errors in determining the need for artificial nutrition, route of administration, and composition of nutritional therapy. While machine learning and artificial intelligence are increasingly being incorporated into clinical practice, their application in nutritional support remains rather limited. Here, we conducted a review to highlight the current state of this issue.
We analyzed publications indexed in MEDLINE, Web of Science, and the Scientific Electronic Library (eLibrary) from 2021 to 2024 addressing the use of artificial intelligence — namely, machine learning algorithms — for early identification of protein–energy deficiency and prediction of its development in patients with cancer. The findings indicate that predictive models based on artificial intelligence, as well as models for identifying protein–energy deficiency, can be integrated into clinical decision support systems. This approach enables timely diagnosis and correction of nutritional deficiencies and helps reduce the subjectivity and limitations inherent to the conventional empirical approach to prescribing nutritional support. The review also discusses common errors encountered in the implementation of nutritional support in patients with cancer, and outlines opportunities for mitigating them through machine learning.
The analysis shows that despite considerable prospects, the use of machine learning and artificial intelligence for identifying nutritional deficiencies and delivering nutritional support in real clinical practice remains rather limited.
作者简介
Mariya Kukosh
Peoples’ Friendship University of Russia; A.F. Tsyb Medical Radiological Research Center — branch of the National Medical Research Radiological Center
Email: manja70@inbox.ru
ORCID iD: 0000-0001-6481-1724
SPIN 代码: 9093-8296
MD, Cand. Sci. (Medicine)
俄罗斯联邦, Moscow; ObninskOlga Obukhova
National Medical Research Center of Oncology named after N.N. Blokhin
编辑信件的主要联系方式.
Email: obukhova0404@yandex.ru
ORCID iD: 0000-0003-0197-7721
SPIN 代码: 6876-7701
MD, Cand. Sci. (Medicine)
俄罗斯联邦, Moscow参考
- Stafford IS, Kellermann M, Mossotto E, et al. A systematic review of the application so far artificial intelligence and machine learning in autoimmune diseases. NPJ Digit Med. 2020;3:30. doi: 10.1038/s41746-020-0229-3 EDN: AYJNYL
- Dinh A, Miertschin S, Young A, Mohanty SD. A data-driven approach to predicting diabetes and cardiovascular disease with machine learning. BMC Med Inform Decis Mak. 2019;19:211. doi: 10.1186/s12911-019-0918-5 EDN: ZBLPDC
- Cho YR, Kang M. Interpretable machine learning in bioinformatics. Methods. 2020;179:1-2. doi: 10.1016/j.ymeth.2020.05.024 EDN: GPVDWK
- Collin C, Wade DT, Davies S, Horne V. The Barthel ADL Index: are liability study. Int Disabil Stud. 1988;10:61-63. doi: 10.3109/09638288809164103
- Mor V, Laliberte L, Morris JN, Wiemann M. The karnofsky performance status scale. An examination of its reliability and validity in a research setting. Cancer. 1984;53(9):2002-7. doi: 10.1002/1097-0142(19840501)53:9< 2002::aid-cncr2820530933> 3.0.co;2-w
- Giantonio BJ, Forastiere AA, Comis RL. Eastern Cooperative Oncology Group. The role of the Eastern Cooperative Oncology Group in establishing standards of cancer care: over 50 years of progress through clinical research. Semin Oncol. 2008;35(5):494-506. doi: 10.1053/j.seminoncol.2008.07.004
- Sytov AV, Obukhova OA, Matveeva SO, et al. Oncologists’ awareness of the ERAS protocols and RUSSCO guidelines key provisions on nutritional support in patients with cancer. Clinical nutrition and metabolism. 2024;5(3):114-121. doi: 10.17816/clinutr677829 EDN: OTCZVA
- Singer P, Blaser AR, Berger MM, et al. ESPEN practical and partially revised guideline: Clinical nutrition in the intensive care unit. Clin Nutr. 2023;42(9):1671-1689. doi: 10.1016/j.clnu.2023.07.011 EDN: TQSVZO
- Singer P. How to prescribe parenteral nutrition the safest way: case by case or using machine learning? J Intensive Med. 2022;2(2):67-68. doi: 10.1016/j.jointm.2022.03.002 EDN: HSSIYU
- Berger MM, Reintam Blaser A, Raphaeli O, Singer P. Early feeding in critical care - where are we now? Crit Care Clin. 2025;41(2):213-231. doi: 10.1016/j.ccc.2024.09.002 EDN: GYWWHF
- Kondrup J, Allison SP, Elia M, et al. ESPEN guidelines for nutrition screening 2002. Clin Nutr. 2003.22(4):415-421. doi: 10.1016/S0261-5614(03)00098-0
- Sytov AV, Zuzov SA, Kukosh MYu, et al. Nutritional support. RUSSCO practical recommendations, part 2. Malignant tumors 2024;14(3s2):163-173. doi: 10.18027/2224-5057-2024-14-3s2-2-08
- Balstad TR, Bye A, Jenssen CR, et al. Patient interpretation of the patient-generated subjective global assessment (PG-SGA) short form. Patient Prefer Adherence. 2019;13:1391-1400. doi: 10.2147/PPA.S204188
- Contreras-Bolivar V, Sanchez-Torralvo FJ, Ruiz-Vico M, et al. GLIM criteria using hand grip strength adequately predict six-month mortality in cancer inpatients. Nutrients. 2019;11(9):2043. doi: 10.3390/nu11092043
- Yin L, Lin X, Liu J, et al. Classification tree-based machine learning to visualize and validate a decision tool for identifying malnutrition in cancer patients. JPEN. 2021;45:1736-48. doi: 10.1002/jpen.2070 EDN: WPQVBH
- Cederholm T, Jensen GL, Correia MITD, et al. GLIM criteria for the diagnosis of malnutrition: A consensus report from the global clinical nutrition community. Clin Nutr. 2018;38(1):1-9. doi: 10.1016/j.clnu.2018.08.002
- Dai T, Wu D, Tang J, et al. Construction and validation of a predictive model for the risk of three-month-postoperative malnutrition in patients with gastric cancer: a retrospective case-control study. J Gastrointest Oncol. 2023;4:128-45. doi: 10.21037/jgo-22-1307 EDN: LEUNDC
- Yin L, Lin X, Li N, et al. Evaluation of the global leadership initiative on malnutrition criteria using different muscle mass indices for diagnosing malnutrition and predicting survival in lung cancer patients. JPEN. 2021;45(3):607-617. doi: 10.1002/jpen.1873 EDN: RMSZOB
- Yin L, Liu J, Lin X, et al. Development and validation of a rapid-decision pathway to diagnose malnutrition in patients with lung cancer. Nutrition. 2021;84:111102. doi: 10.1016/j.nut.2020.111102 EDN: IJIRFV
- Tang J, Wong G, Naffouje S, et al. A novel nomogram for early identification and intervention in colorectal сancer patients at risk for malnutrition. Am Surg. 2023;89:1485-96. doi: 10.1177/00031348211058620 EDN: HSEAHL
- Yu W, Xu H, Chen F, et al. Development and validation of a radiomics-based nomogram for the prediction of postoperative malnutrition in stage IB1-IIA2 cervical carcinoma. Front. Nutr. 2023;10:1113588. doi: 10.3389/fnut.2023.1113588 EDN: IWPPUI
- Zhang X, Zhao W, Du Y, et al. A simple assessment model based on phase angle for malnutrition and prognosis in hospitalized cancer patients. Clin Nutr. 2022;41:1320-1327. doi: 10.1016/j.clnu.2022.04.018 EDN: MHFQCS
- Duan R, Lic Q, Yuand Q, et al. Predictive model for assessing malnutrition in elderly hospitalized cancer patients: а machine learning approach. Geriatr Nurs. 2024;58:388-398. doi: 10.1016/j.gerinurse.2024.06.012 EDN: DMQLPD
- Martin L, Senesse P, Gioulbasanis I, et al. Diagnostic criteria for the classification of cancer-associated weight loss. J Clin Oncol. 2015;33(1):90-99. doi: 10.1200/JCO.2014.56.1894
- Manning AM, Casper KA, Peter KS, et al. Can predictive modeling identify head and neck oncology patients at risk for readmission? Otolaryngology (Rochester, Minn.). 2018;159:669-674. doi: 10.1177/0194599818775938


