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Abstract. In this paper, we develop and evaluate a hybrid quantum-classical heuristic approach to solving the
Traveling Salesman Problem. This approach uses exhaustive enumeration of the starting paths and optimizes
the remainder of the route using quantum computing. For quantum co-processing, we use either the Variational
Quantum Eigensolver or the Quantum Annealing. Results of evaluation of the approach on several datasets
including TSPLIB and touristic data for Petrozavodsk and Karelia Republic, both in simulation and in hardware,
are presented. Issues of practical applicability are also discussed.
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1. Introduction

Traveling Salesman Problem (TSP) is a challenging combinatorial problem which is NP-hard [1], that
is, the exact optimal solution in general cannot be obtained in polynomial time (w.r.t. the size of
input data). The problem implies a search for the shortest possible (cyclic) route that visits (exactly
once) a set of cities and returns to the starting city. Since the number of feasible routes increases
exponentially with the number of cities [2], it is computationally hard to solve for large TSP instances
using traditional algorithms such as brute force and the Held-Karp algorithm [3] (which, however,
works well on a small scale).
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Despite its difficulty, the TSP has many practical applications in various fields such as logistics [4],
transportation, and network design. Finding efficient solutions to TSP can help industries optimize
delivery routes, reduce costs, and improve overall efficiency. Due to this practical importance, various
heuristic and approximation algorithms were introduced to find suboptimal solutions in a reasonable
time, such as the nearest-neighbor search [5] or k-opt [6] for the Lin-Kernighan algorithm [7]. The
search for effective algorithms continues, and new promising efforts are made in the direction of
novel computing hardware such as quantum computing (QC).

This research is focused on solving the TSP with QC techniques. QC is a promising research field
for solving large-scale problems due to the so-called quantum supremacy. The latter is a theoretical
concept that exploits quantum bit (qubit) properties such as quantum superposition (co-existence of
the qubit in multiple states at once) and entanglement (dependence of several qubits) to outperform
traditional algorithms. Some examples of effective quantum algorithms include the celebrated
Shor algorithm [8] and Deutsch-Josa algorithm [9], the latter being a key example of the so-called
quantum parallelism [10]. Performance of such effective schemes is, however, limited due to the
need of a quantum-classical input-output interface and imperfections of the present QC hardware
such as limited coherence time due to environmental noise, high error rates and a relatively small
number of qubits, those being problems of the so-called Noisy intermediate-scale quantum (NISQ)
computers [11].

One of the natural classes of problems that can be addressed by QC is optimization, and in many
cases the QC techniques can either offer speedup to the classical algorithms, or deliver efficient
heuristics. A detailed description of state-of-the-art quantum optimization (QO) methods, both
from the perspective of complexity and practical applicability, is given in the review paper [2]. Two
important QO techniques are the Variational Quantum Algorithms (VQA) [12, 13] and Quantum
Annealing (QA) implemented on hardware [14]. While the former allows one to use gate and circuit-
based QC hardware (known to be universal i.e. capable of running any algorithm), the latter suits only
for QA machines such as the D-Wave, useful only for a specific problem set. However, both options
can be effectively used to tackle the class of Quadratic Unconstrained Binary Optimization (QUBO)
problems where the cost function is quadratic w.r.t. the binary unknowns.

Within QO, TSP is a prominent example of a problem in which complexity depends on specific
requirements and restrictions (such as the type of state space and the goal), and heuristic QO can
provide meaningful results even if quantum speedups seem unattainable [2]. Thus, many researchers
focus on solving TSP using various heuristic QO algorithms, including QA and VQA. We briefly
summarize these two key approaches to TSP below, and refer the interested reader to a survey [15]
that outlines general logistics and supply chain management problems treated by QC.

In [16], a comparative study of Quantum Approximate Optimization Algorithms (QAOA), a specific
variant of VQA, is performed. Various aspects of the approach, such as sensitivity to the TSP graph,
numerical accuracy and effect of noise, are studied. Performance of QAOA implementation for TSP
with 5 cities is studied in [17]. In [18], comparative study of solution encoding is performed for the
TSP problem to be solved using VQA methods. Results are presented for problem sizes of up to 6
cities. In [19], Variational Quantum Eigensolver (VQE), which is another representative of VQA class,
and QAOA schemes are compared to the approach based on the so-called Grover adaptive search, and
numerical results are presented for TSP with up to 7 cities. The effect of the various configurations
of the parametrized quantum circuits within the VQE approach to TSP is demonstrated in [20], and
numerical results are presented for 4-cities TSP.

In [21], QA was used to tackle TSP with four smallest problems from TSPLIB including Burmal4
by the D-Wave using Kerberos and LeapHybridSampler solvers, and reasonable solution quality was
reported with relatively less optimal solutions found for bigger size problems. Note, however, that the
solvers used are hybrid (quantum-classical) and remain trade secrets of the D-Wave [21]. In contrast,
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D-Wave’s 5,000-qubit Advantage 1.1 quantum annealer is useful only for solving TSP with 8 or fewer
cities, as reported in [22]. A groundbreaking approach in solving TSP by minimal QC resources was
introduced in [23], where a single-qubit scheme with a careful encoding of TSP using Bloch sphere
was used to obtain solutions with problem size up to 9. We also mention that solving TSP by QA can
be a useful part of a hybrid approach to more general real-time routing problem [24].

In summary, both in the VQA and QA approaches to TSP the size of the problem that is solvable by
QC is rather limited, which is in part explained by the imperfections of the NISQ hardware [25]. In
most cases reported in the literature reviewed above, the size of the TSP solved by the QC hardware is
at most 9 cities. At the same time, hybrid approaches such as the one in [21] are useful for studying
larger problems. This motivates us to develop a hybrid quantum-classical approach to TSP that can
be used both within the QA and VQA frameworks. To do so, we use the QUBO representation of
the TSP. The key ingredients of our approach are the classical enumeration of the beginning of the
route followed by QC counterpart used as the co-processor to optimize the route ending. This novel
combination is the key contribution of the present paper.

Following [25], we use VQE as the VQA class technique, and we use D-Wave in case of the QA. We
demonstrate the capabilities of our approach using TSPLIB example and apply the method to optimize
tours between points of interest (POI) within Karelia Republic and Petrozavodsk city.

The rest of the paper is organized as follows. We give a necessary background on the QC, VQE and
QA, describe the QUBO representation of the TSP in Section 2. The hybrid approach for solving TSP
in QUBO form is proposed and evaluated (using the TSPLIB dataset Burmal4 and a few others) in
Section 3. The paper ends up with a discussion on possible complications with solving TSP in QUBO
form in Section 4.

2. Necessary Background

In this section we briefly review the QC and QO fundamentals, TSP and its QUBO representation. This
information is useful for the development of the hybrid approach. More detailed information on QC
can be found in the celebrated monograph [26], and QO is reviewed in [2]. We also refer the reader to
the book [27] for a more concise view of TSP.

2.1. QCFundamentals
A qubit is a basic information unit in QC. It is a quantum system with two basis states |0) = [ l and
0

1) = [Ol living in a 2-dimensional Hilbert space. Any qubit state |¢) can be in superposition of the
1

basis states, meaning that

[¥) = a0y +B[1) = l;l a,fEC, |af+|B =1

The coefficients a and 8 hold a defined physical significance, as observing a qubit would result in the
state |0) with probability |a|? and |1) with probability |5]|?>. However, a qubit can only be measured
once as the measurement process causes the qubit to collapse to one of the binary states, preserving
that state in subsequent measurements. (Using Dirac notation, |#) is a column, and (3| is a row vector
of appropriate size.)



202 Modeling and Simulation DCME&ACS. 2025, 33 (2), 199-213

To compose multiple independent qubits, the tensor (Kronecker) product ® is typically used.
For example, the product ¥ ® ¢ of two single-qubit states |i) and |¢) results in a qubit pair state
represented as a vector in C#, and in general n qubits can be represented as a vector in C2". Such
a representation can be written as

on
oy = aulid,
i=0

where Zi <on |o;]> = 1 and a; € C. The basis vectors |i) can also be written in the form of binary
representation of i from the set {0, 1}", say, |00), |01), |10) and |11) instead of |0}, ...,|3) for n = 2.
However, algebraically, the size of |¢) and, correspondingly, i) is 2", where we can write

i) = (X0 s Xon), X5 =&y js (1)

with §; ; = 1 for i = jand 0 otherwise (i.e. Kronecker delta function).

Note that states of qubits that can be represented as the tensor product are independent. On
the contrast, entanglement allows qubits to interact regardless of their distance, creating a strong
connection between them. When qubits are entangled, they cannot be treated separately and their
states become dependent on each other. The Bell state of a 2-qubit system

_|00) + [11)
) = 2

is an example where the state cannot be broken down into two separate single-qubit states.

2.2. QCModels

There are two widely used models of QC. The universal model (that can represent any computation)
is constructed by using the quantum gates which act on individual qubits and their groups. In QC
hardware, these gates usually operate with single qubits and pairs. Such operations can be interpreted
as matrix multiplications from the left by the unitary matrix U. A matrix U is unitary if its conjugate
(Hermitian) transpose equals its inverse, U* = U~!. Note that such a transformation preserves
matrix norms, and thus keeps the unit sum of probabilities for the qubit states after transpose. Using
quantum gates and qubits, the quantum program is often represented as the so-called quantum
circuit which describes the sequence of gates applied to various qubit lines (acting as variables, e.g.
inputs or outputs of the program). In such a model, input is transformed into output by a sequence
of gates in a discrete way.

Another universal model is the so-called adiabatic QC (AQC). On the contrast to the circuit model,
in AQC the transformation of the qubit state to the desired solution of the problem is performed
continuously, by slow change in the parameters of the system Hamiltonian H(¢) at time ¢ (in AQC
hardware it can be implemented, say, by a slowly changing magnetic field). Due to a slow change, the
qubits remain in the so-called ground state (i.e. state with minimal energy) which corresponds to the
system Hamiltonian H(¢). Thus, to obtain the desired solution, problem is encoded in a Hamiltonian
Hp whose minimal energy state is the desired solution, and the transformation is organized by
a scheme

H(t) = (1 —s(t))H; + s(t)Hp, t € [0, 7], (2)

where s : [0,7] — [0, 1] is a smooth monotone function such that s(0) = 0 and s(r) = 1, H; is some
initial Hamiltonian which is easy to construct, and 7 is the final time of computation. It can be noted
that the solution of a problem in AQC is obtained in finite time 7 irregardless of the properties of Hp.
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2.3. VQA and VQE

VQA is a class of algorithms that adopt hybrid quantum-classical approach to obtain quantum
advantage on the NISQ devices [12]. This set is universal in a sense that arbitrary quantum circuit can
be represented by an appropriate VQA problem [28]. The approach is based on defining a cost function
C(6) which encodes the problem and estimating C(6) by QC, whereas classically optimizing 6, to find
0* = argmin, C(6) (encoding the solution). Dependence on 6 is parametrized by the so-called ansatz
operator U(6), a specific quantum operator which is then optimized iteratively.

A specific version of VQA is VQE aimed at finding the ground state energy of quantum systems [29].
This makes it particularly valuable in quantum chemistry [30], materials science [31], and chemical
engineering [32]. The algorithm is based on AQC approach [33] and the variational principle.
According to the latter, for any system represented by the Hamiltonian H and the quantum state |¢),
the expectation value (|H|) (corresponding to the expected energy value of the system) is equal to or

greater than the ground state energy of the system [34]. Itis interesting to illustrate, why (|H|¢) is the
2"

- i=0
use the so-called Hermitian decomposition [35] to obtain H = 3. ' 4; [i) (i|, where ; are eigenvalues
corresponding to eigenvectors |i) and (i| (these correspond to energy states of the appropriate basis
states). Note that due to (1), the basis |0), ..., |2") is orthonormal. Then, recalling that (x|y) is the

complex scalar product that requires complex conjugate to be used on the first argument, observe

expected value of the energy that is obtained after measurement. Indeed, take |¢) = >); «; i) and

21’1

2"
WIHY) = D 4@l ) = 3 Lo o @)
i=0 i=0

Recalling that af o;; = |a;|? is the probability of measuring the basis state [i), it is clear from (3) that
the value observed corresponds to the average energy of the system.

Since in VQE the value 1 depends on the parameter vector 6, after measuring the average energy
C(0) = (Y(O)| H|p(O)), the value 6 is iteratively modified so as to minimize C(6) and, accordingly,
minimize the energy of the ground state of the system [12, 29]. To achieve this, VQE uses QC to
initialize quantum register 1, apply anzatz to get (6) = U(6)y,, then apply H and measure C(6),
and optimize the circuit’s parameter 6 variationally (using classical optimizer) by repeating these
steps accordingly.

2.4. QA

A particular case of AQC, which is not universal, but rather useful in QO, is QA. Historically the QA
term was also used to denote heuristic optimization method [36] (which is somewhat similar to the so-
called simulated annealing). To be analyzed by QA, the (optimization) problem needs to be encoded by
a Hamiltonian Hp in such a way that the ground state (with minimal energy) of a system characterized
by Hp corresponds to the desired solution. Then the solution is obtained using the sufficiently slow
evolution of the ground state from the one encoded by initial Hamiltonian Hj following (2). The
initial Hamiltonian Hj is selected in such a way that the ground state is relatively straightforward, say,
when all qubits are in a superposition state |+) = % [0) + \/% |1). Hardware implementations such as

the D-Wave machine in the majority of cases require Hp to represent quadratic model, that is, to have
the Ising form or QUBO form. In the former case,

n
Hp = Z hiazi + Z-Iijazigzj5 4
i=1

i>j
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i 1 0]. . . . . .
where 0,' = l l is the so-called Pauli-Z matrix acting on qubiti = 1, ..., n, Jj; = J;; is the so-called
0 -1

coupling strength of the coupled qubits i and j and h; is the so-called qubit bias (on-site energy)
acting on qubit i. The matrix o, has eigenvalues {—1, 1} and thus, using QA, the Ising cost function is
minimized [37]: .

EQ =) hizi + ) Jjziz; ®)

i=1 i>j

where € {—1,1}". In D-Wave systems, h; € [—2,2] and Jij € [-1,1] (these ranges, however, can be
extended by autoscaling). When running the optimization problem on a QA machine, the topology of
possible coupling between qubits needs to be taken care of, which can be done automatically by the
so-called minor embedding. This process, however, may dramatically upscale the problem in terms
of the number of physical qubits required.

In summary, the optimization problem is encoded by the vector (h,...,h,) and the matrix
[1:,j1l;, jeqa,...,n}> and the solution needs to be decoded from the vector Z € {—1,1}" that minimizes the
Ising cost &(Z) given in (5).

An equivalent representation of the problem is in QUBO format, where the solution is encoded by
a binary vector. In such a case, QUBO objective function has the following form:

EX®) =XTQxX =) Qux; + Y, Qijxi;, (©)
i=1

i>j

where X € {0,1}". Therefore, the optimal solution in QUBO format is argmin, &(x), where X is a binary
vector encoding the solution, and Q is a symmetric matrix of real values encoding the problem.

2.5. TSP and its QUBO Representation

There are many ways to define the problem in TSP class, depending on the restrictions imposed, goals
to optimize and properties of the travel costs. In simpler case, the cost of travel from cityi = 1, ... ,nto
Jj=1,...,nis symmetric, i.e. equals the cost from j to i, and these constitute a matrix M = ||M;}||; j<n,
where M;; = M;;. Then it is straightforward to define the cost of a tour with the help of a binary matrix
X = |IX;jll;,j<n, Where X;; = 1 if i-th city is traversed at j-th place. As such, the cost of travel can be
given as

n-1

n
k=1i=1

n n n
Z M; i X Xjk+1) + Z Z M; i Xin X1 (7)
j=1

i=1j=1

Unrolling the matrix X columnwise into a column vector X = (X, ..., X,n) by a transformation

xn(k—1)+i = Aijk> Lk=1,..,n, (8)
and defining
01 0 0
0 0 1 0

Q=J®M,whereJ=]: : : - ],
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it is easy to see that (7) can be transformed into the form (6), and the matrix Q has almost block-upper
diagonal form.

At the same time, in order to solve the QUBO representation of TSP, it is not enough just to encode
the cost function, but we also need to guarantee that X (and hence its vector representation X) encodes
a feasible solution. To do so, one-hot type restrictions are imposed on columns and rows of X, that is,

n n
2Xij =2 Xij=1,
i=1 j=1

foralli, j =1,...,n. To embed these restrictions into the cost function, quadratic terms are introduced
into cost function with (appropriately large) Lagrange coefficients Ly;, L,;, i = 1,...,n. That is, the
cost of violating feasibility of the solution (which is zero for a feasible X) is given as

n n 2 n n 2
> Ly (1 —ZXU) + D Ly (1 - ZX”-) .
j=1 i=1 i=1 j=1

Taking for simplicity L;; = L,; = L as in traveling_salesperson_qubo function of D-Wave
networkx.algorithms package, noting that the constant Z;L=1 L+ 2?21 L,; = 2nL can be omitted
from the optimization function, recalling that (due to binary nature of the unknowns) Xlzj = X;;and
using the transformation (8), after some straightforward algebra, the constraints can be given in
QUBO form as

xXT(=2LI 4+ 2L(U - D)X,

where T is the identity matrix and U is the matrix of ones. Finally, this gives the QUBO representation
of TSP in the form (6) as follows,

Sc'T(J®M+2L(ﬁ—f)—2Lf)55_> min,

where, recall, M is the given matrix of distances. Note that at implementation phase, care must be
taken, since some QA frameworks may require Q to be upper-triangular.

3. Proposed Approach and its Evaluation

In this section we present a hybrid quantum-classical approach to tackle the TSP problem in QUBO
form, both by using QA and VQE techniques. Results of numerical experiments both on the input file
from the well-known TSPLIB data source and two small-scale problems related to touristic POI in
Karelia Republic are presented.

3.1. Hybrid Approach in Solving TSP in QUBO Form

A representation of the TSP as QUBO problem, as can be seen from the results presented in Section 2,
is useful both for the classical (gate-based) QC and for QA. Indeed, solving QUBO problem by VQE
may be done by imposing restrictions on the problem Hamiltonian (3) so as to describe interactions
only up to pairs of qubits, in a similar way like the Ising form (4) does.

Based on this similarity, it seems fruitful to state the TSP in QUBO form and use either QA or VQE
to obtain the (approximate) solution of the optimization problem. This, however, comes at a price of
a dramatic increase of the state space and decrease in “density” of feasible solutions. We elaborate
more on this in Section 4. To mitigate this effect, we propose the following two-stage hybrid scheme.
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At the first stage, we define the size ng < n of the subproblem that is to be solved by QC in QUBO
form. Fixing the first city (say, city 1) of the tour, the initial path of n — 1 — n, cities is enumerated
exhaustively. For each such path x € {2,...,n}"*"17" (having unique cities), we define a submatrix

M, = |IMjjlli,je,... npx-

At the second stage, the solution of a TSP problem with a set of remaining cities {2, ..., n}\x with the
costs defined by M, is obtained by QC. The solution y is then concatenated with the beginning x,
and the overall price of the cycle (x, ) is calculated. The result is then obtained after exhaustive
enumeration over x is complete. We note that this heuristic is partially inspired by the celebrated
Karp’s partitioning algorithm, see [38] on the detailed probabilistic analysis of the accuracy of the
latter. Note that, due to the nature of QC, the result of the second stage may be suboptimal.

To implement this solution, we used Qiskit and DWave frameworks for classical QC and QA,
respectively. In both cases, at the second stage, the TSP was solved in QUBO form. In the former
case, using qiskit_optimization.applications library, TSP in QUBO form was augmented
with the so-called TwoLocal ansatz, whereas Simultaneous Perturbation Stochstic Approximation
SPSA optimzier from qiskit_algorithms.optimizers library was used to optimize the ansatz.
Sampling of VQE was done with the help of Samp1ingVQE function from qiskit_algorithmslibrary
using the standard Sampler from qiskit.primitives. In the latter case, the result of the second
stage was obtained by traveling_salesperson function from dwave_networkx.algorithms
library using SimulatedAnnealingSampler or DWaveSampler from dwave.samplers library.

3.2. Experimental Evaluation

In order to validate the proposed approach, a number of numerical experiments were conducted.
Those included solving TSP on a few examples; in all cases, the problem had a symmetric distance
matrix, and the distances were geographical. The first dataset is Burmal4 from the TSPLIB, which is
a standard set of benchmarks and algorithms related to TSP. Two more datasets included distances
between POIs for Petrozavodsk city (walking distance) and Karelia Republic (driving/linear distance).

For the experiments in simulation mode, we used Linux-based machine (AMD Ryzen 9 7900X, 16
Gb memory) and Linux-based nodes of the high-performance computing cluster of Karelian Research
Center (two Intel Xeon Silver 4215R, 128 Gb memory). Both machines were running Python 3.12, the
following versions of libraries were used: dwave_networkx 0.8.15, dwave-samplers 1.4.0,
giskit 1.2.0, gqiskit-algorithms 0.3.0, qiskit-optimization 0.6.1. A small set of
experiments was also performed using the trial cloud access to the D-Wave machine.

The first set of benchmarks was used to determine computational capabilities in simulation mode.
During these experiments, a problem of size 8 was solved using Petrozavodsk dataset. 8 POIs located
within Petrozavodsk city were: "Molecule”, "Soldier, Woman and Child” and “Fishers” fountains, Sister-
cities gallery, Karelian State Philarmony, Peter the Great monument, Alexander Nevsky Cathedral
and National Museum. The walking distances in the dataset were acquired through public maps API.

For the VQE-based solver on Petrozavodsk dataset, the size of QC subproblem for the second stage
was set to ng = 4 due to the fact that Samp1lingVQE function required over 1 TB memory for n, = 6,
occasionally n, = 5 also produced memory overflow, whereas the TSP problem for 3 cities (for n, = 3)
is trivial. The VQE approach reached the globally optimal solution with length 8985 (steps). For QA
approach, larger size of QC subproblem can be used (in simulation mode). However, due to heuristic
nature of the result, in order to increase the sample set (and hence the quality) n, = 4 was used for
QA approach as well. The solution returned for QA after several runs had suboptimal length of 9155.
It is important to note that the runtime for QA is dramatically shorter than for VQE (minutes vs. days),
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Figure 1. Solutions for the TSP on the Petrozavodsk dataset by the two heuristic approaches with ng = 4,
dotted line: VQE (tour length 8985 steps), solid line: QA (9155 steps)

which, as we can see, compromises the quality. The best solutions for both approaches obtained in
simulation mode are depicted in Figure 1.

The second set of benchmarks was based on the Burmal4 dataset. For the VQE approach (with
ng = 4), the overall computation time was around 65 hours, whereas for QA in simulation mode it took
only several minutes (with n, = 8) to derive an approximate solution. Both approaches performed
reasonably well, with the best solution for VQE having tour length 3499 and the best tour for QA in
simulation mode having length 3795, compared to the best known result of length 3323 [39]. The best
solutions for VQE and QA in simulation mode are depicted in Figure 2.

Running the algorithm on the Burmal4 dataset on D-Wave with quantum engines required n, <7
to obtain feasible solutions. Indeed, due to a limited computational time, only 3717 solutions (for the
case ng = 7) were derived, and out of those only 140 were feasible, whereas for n, = 8 we did not find
any feasible solution out of 935. QA on quantum machine performed slightly worse with tour length
4641. We elaborate more on the reasons for this suboptimality in Section 4.

Due to a reasonable quality of the solutions obtained at higher speed, we used QA approach in
simulation mode with n, = 4 to solve the TSP for Karelia dataset, where the following 10 natural and
cultural POIs were listed: Martsial'nye Vody (Marcial Waters resort), Ruskeala mountain park, Kizhi
island, Kiwatsch waterfall, Sortavala city, Syamozero lake, Valaam monastery, Petrozavodsk city, Old
Ladoga, and Karelian Zoo. After five runs, the globally optimal solution of length 1676 (kilometers)
was obtained, which is depicted in Figure 3. A larger dataset of 18 POIs in Petrozavodsk (including
8 earlier used) was processed by QA approach in simulation mode with ng = 12. The runtime was
around 4 hours, and the route including 47488 steps is depicted in Figure 4.

4. Conclusion and Discussion

In this paper we presented a hybrid quantum-classical approach for solving TSP in QUBO form using
the VQE and QA as the quantum counterpart, and exhaustive enumeration of the starting path for the
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Figure 2. Solutions for the TSP on the Burmal4 dataset by the two heuristic approaches,
dotted line: VQE (nq = 4, tour length 3499 km), solid line: QA (nq =8, 3795 km)
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Figure 3. Solutions for the TSP on the Karelia dataset (10 POIs) by the QA approach with ng = 4, tour length 1676 km

classical counterpart. The approach performed reasonably well for both QC techniques, although in
simulation mode the quality of solutions obtained by VQE was better than those obtained with QA, at
a price of dramatically higher computing time.

As for the QA run at the D-Wave machine, there were several problems that allowed us to find

feasible solutions only for subproblem size (solved at quantum machine) n, < 7. Moreover, for ng = 10
using the MinorEmbedding, the cloud was not able to find a quantum engine to run the problem
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Figure 4. Solutions for the TSP on the Petrozavodsk dataset (18 POIs) by the QA approach with ng = 12, tour length 47488 steps

with. There are several reasons for that. Firstly, as reported in [22], out of m physical qubits only
around y/m logical are available, thus resulting in about 73 logical qubits for the D-Wave computing
unit having around 5000 physical qubits. Secondly, due to the one-hot encoding (8), a problem of
size n requires at least n? logical qubits. This essentially means that TSP of size n requires around
n* physical qubits which explains the limitation n, < 8 for our case, see also the discussion on the
embedding capabilities in [40].

Another problem comes from QUBO encoding (8) is the density of the feasible solutions. It is shown
in [18] that such density decreases dramatically for TSP QUBO with increasing size. Indeed, this can
be intuitively explained by the fact that the set of n>-component binary vectors has 2" elements,
whereas the set of feasible solutions for TSP problem contains only n! (for simplicity, we do not take
into account symmetries and fixed starting city). Asymptotic analysis using the celebrated Stirling’s
formula shows that the ratio of the feasible solutions to the state space of QUBO problem vanishes
for large n,

N, n
n! ~ 2zn(n/e) ~ ehtlogn—n+0.5logn—n*log2

-0, n-—- oo
on2 en?log2 ’

It is rather simple to check that even for the case n = 6 the frequency of feasible solution is of
order 1073, see also [18]. This explains the low density of feasible solutions that was evidenced when
running QA experiments on hardware with n, = 7, see Section 3.2.

One of the perspective approaches to overcome this “curse of dimensionality” is to find a different
encoding for the TSP. In particular, permutation encoding may be promising [18] for the QO
approaches that do not rely on Hamiltonian. Other approach is introduced in [23] by converting
the TSP problem into a classical Brachistochrone problem and using the single-qubit scheme with
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rotations. Other techniques such as Grover adaptive search can also be adopted [19]. However, all
those possibilities need careful exploration that seems promising for future research.
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UccnepoBaHue KBAaHTOBO-K/1aCCUYECKOMN 3BPUCTUKMN AnA
3afja¥dn KOMMUBosxXepa

M. A. Makaposa®:2, C. B. ®epopos?, A. B. Tutosal, A. A. Xomny?, A. C. Pymanues’-?

! MNeTpo3aBoACKMIA rocyapCcTBEHHbIN YHUBEPCUTET, Np. fleHuHa, a. 33, MeTpo3aBopack, 185910, Poccuiickas
depepauns

2 WNHCTUTYT NpuKNagHbix MaTemMaTuyeckux nccnegosanuin KapHL, PAH, yn. MylwkuHckas, 11, MeTpo3aBoacK,
185910, Pocculickas degepauus

AHHoTaums. B cTaTbe paspabaTeiBaeTCs U OLIEHUBAeTCs TMOPUAHBIN KBAHTOBO-KIACCUIeCKUI 9BPUCTUIECKU
TIO/IXO/] K PellIeHMIO 33/layil KOMMUBOSDKepa. DTOT IOJX0/, UCIIOIb3yeT NCYePIIbIBAONINI ITepebop HadyalbHbIX
[yTel 1 ONTUMHU3UPYET OCTABIIYIOCS YaCTh MapLIPyTa C IOMOLIbIO0 KBAHTOBBIX BEIYUCIEHUH. [lyist 06paboT-
KU Ha KBAaHTOBOI MallliHe UCII0Ib3yeTCs I100 BapHUaIlOHHbIN KBAHTOBBIH COOCTBEHHEBIH pelaTessb, J1ubo
KBAaHTOBBII OTKUT. [Ipe/icTaBIeHbI Pe3y/IbTATHI OIleHKH IIPEe/IIOKEHHOT0 IT0AX0/a Ha HECKOJIBKUX Habopax
JaHHBIX, BKIodas TSPLIB u Typuctudeckue ganHele 41 [leTposaBozcka 1 Pecybauku Kapenus, kak B pe-
»KMMe UMUTAIUH, TaK 1 Ha COOTBETCTBYIOIIEN KBAHTOBOM MarHe. O6CyKJal0TCs BOIIPOCH MTPAKTUIECKOM
IIPUMEHHMOCTH.

KniouyeBble cnoBa: ruOpH/HAA KBAHTOBO-KIACCHYECKas 3BPUCTHKA, 33/la4a KOMMUBOSKEPA, BAPHAIIIOHHBIN
KBaHTOBBIN COOCTBEHHBIN pellaTelb, KBAHTOBBIN OTIKUT



