Numerical modeling of stationary pseudospin waves on a graphene monoatomic films

Cover Page

Cite item

Full Text

Abstract

For the first time, the theoretical model of the spin-electron structure of a singlelayer graphene film was proposed by Wallace. The literature also describes ferromagnetism generated by none of the three common causes: impurities, defects, boundaries. We believe that the source of ferromagnetism is the spontaneous breaking of spin symmetry in a graphene film. The classical field model describing spontaneously broken symmetry is necessarily non-linear. Among non-linear models, the simplest is the well-known 4 model. We believe that, as a first approximation, we can describe with its help all the characteristics of spin waves that interest us, their spectra, and the domain structure of ferromagnetism in graphene. The model admits kink and anti-kink exact solutions and a quasiparticle breather, which we modeled numerically. We use the kink-anti-kink interaction energy obtained numerically to solve the Schrödinger equation, which simulates the quantum dynamics of breathers, which underlies the description of spin waves. The solution of the Schrödinger equation by the Ritz method leads to a generalized problem of eigenvalues and eigenvectors, the solution of which is mainly devoted to this work.

About the authors

Lê Anh Nhật

Peoples’ Friendship University of Russia (RUDN University)

Author for correspondence.
Email: leanhnhat@tuyenquang.edu.vn

PhD student of Department of Applied Probability and Informatics

6, Miklukho-Maklaya St., Moscow 117198, Russian Federation

Konstantin P. Lovetskiy

Peoples’ Friendship University of Russia (RUDN University)

Email: lovetskiy-kp@rudn.ru

Docent, PhD in Physics and Mathematics, Associate Professor at the Department of Applied Probability and Informatics

6, Miklukho-Maklaya St., Moscow 117198, Russian Federation

Leonid A. Sevastianov

Peoples’ Friendship University of Russia (RUDN University); Bogoliubov Laboratory of Theoretical Physics Joint Institute for Nuclear Research

Email: sevastianov-la@rudn.ru

Professor, Doctor of Sciences in Physics and Mathematics, Professor at the Department of Applied Probability and Informatics

6, Miklukho-Maklaya St., Moscow 117198, Russian Federation; 6, Joliot-Curie St., Dubna, Moscow region 141980, Russia

Dmitry S. Kulyabov

Peoples’ Friendship University of Russia (RUDN University); Laboratory of Information Technologies Joint Institute for Nuclear Research

Email: kulyabov-ds@rudn.ru

Docent, Doctor of Sciences in Physics and Mathematics, Professor at the Department of Applied Probability and Informatics

6, Miklukho-Maklaya St., Moscow 117198, Russian Federation; 6, Joliot-Curie St., Dubna, Moscow region 141980, Russian Federation

References

  1. J. Červenka, M. I. Katsnelson, and C. F. Flipse, “Room-temperature ferromagnetism in graphite driven by two-dimensional networks of pointdefects,” Nature Physics, vol. 5, no. 11, pp. 840-844, 2009. doi: 10.1038/nphys1399.
  2. Y. Wang, Y. Hoang, Y. Song, X. Zhang, Y. Ma, J. Liang, and Y. Chen, “Room-temperature ferromagnetism of graphene,” Nano Letters, vol. 9, no. 1, pp. 220-224, 2009. doi: 10.1021/nl802810g.
  3. P. Esquinazi, A. Setzer, R. Höhne, C. Semmelhack, Y. Kopelevich, D. Spemann, T. Butz, B. Kohlstrunk, and M. Lösche, “Ferromagnetism in oriented graphite samples,” Physical Review B Condensed Matter and Materials Physics, vol. 66, no. 2, pp. 1-10, 2002. DOI: 10.1103/ PhysRevB.66.024429. arXiv: 0203153 [cond-mat].
  4. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature, vol. 438, no. 7065, pp. 197-200, Nov. 2005. doi: 10.1038/nature04233.
  5. Y. Zhang, Y.-W. Tan, H. L. Stormer, and P. Kim, “Experimental observation of the quantum Hall effect and Berry’s phase in graphene,” Nature, vol. 438, no. 7065, pp. 201-204, Nov. 2005. DOI: 10. 1038 / nature04235.
  6. N. M. R. Peres, F. Guinea, and A. H. Castro Neto, “Coulomb interactions and ferromagnetism in pure and doped graphene,” Physical Review B, vol. 72, no. 17, p. 174 406, Nov. 2005. doi: 10.1103/PhysRevB.72. 174406. arXiv: 0507061 [cond-mat].
  7. N. M. R. Peres, F. Guinea, and A. H. Castro Neto, “Electronic properties of disordered two-dimensional carbon,” Physical Review B, vol. 73, no. 12, p. 125 411, Mar. 2006. DOI: 10. 1103 / PhysRevB. 73. 125411. arXiv: 0512091 [cond-mat].
  8. D. D. Grachev, Y. P. Rybakov, L. A. Sevastianov, and E. F. Sheka, “Ferromagnetism in graphene and fulleren nanostructures. Theory, modeling, experiment,” Bulletin of PFUR. Series “Mathematics. Information Sciences. Physics”, no. 1, pp. 20-27, 2010.
  9. D. D. Grachev and L. A. Sevastyanov, “The Quantum Field Model of the Ferromagnetism in Graphene Films,” Nanostructures, Mathematical Physics and Modelling., vol. 4, pp. 5-15, 2011.
  10. Y. P. Rybakov, M. Iskandar, and A. Ahmed, “Magnetic Excitations of Graphene in 8-Spinor Realization of Chiral Model,” RUDN Journal of Mathematics, Information Sciences and Physics, vol. 25, no. 3, pp. 266- 275, 2017. doi: 10.22363/2312-9735-2017-25-3-266-275.
  11. Y. P. Rybakov, “Spin Excitations in Chiral Model of Graphene,” Solid State Phenomena, vol. 233-234, pp. 16-19, Jul. 2015. doi: 10.4028/www. scientific.net/SSP.233-234.16.
  12. Y. P. Rybakov, “On Chiral Model of Graphene,” Solid State Phenomena, vol. 190, pp. 59-62, Jun. 2012. doi: 10.4028/ href='www.scientific.net/' target='_blank'>www.scientific.net/ SSP.190.59.
  13. D. V. Kolesnikov and V. A. Osipov, “The continuum gauge field-theory model for low-energy electronic states of icosahedral fullerenes,” The European Physical Journal B, vol. 49, no. 4, pp. 465-470, Feb. 2006. doi: 10.1140/epjb/e2006-00087-y. arXiv: 0510636 [cond-mat].
  14. H. Watanabe and H. Murayama, “Unified Description of Non-Relativistic Nambu-Goldstone bosons,” Physical Review Letters, vol. 108, p. 25 160, 2012. doi: 10.1103/PhysRevLett.108.251602.
  15. D. S. Kulyabov, K. P. Lovetskiy, and L. A. Nhat, “Simple Model of Nonlinear Spin Waves in Graphene Structures,” RUDN Journal of Mathematics, Information Sciences and Physics, vol. 26, no. 3, pp. 244-251, 2018. doi: 10.22363/2312-9735-2018-26-3-244-251.
  16. L. A. Nhat, K. P. Lovetskiy, and D. S. Kulyabov, “A new algorithm used the Chebyshev pseudospectral method to solve the nonlinear secondorder Lienard differential equations,” Journal of Physics: Conference Series, vol. 1368, pp. 042036.1-8, Nov. 2019. DOI: 10. 1088 / 1742 6596/1368/4/042036.
  17. J. F. Cariñena, M. F. Rañada, and M. Santander, “One-dimensional model of a quantum nonlinear harmonic oscillator,” Reports on Mathematical Physics, vol. 54, no. 2, pp. 285-293, Oct. 2004. doi: 10.1016/S00344877(04)80020-X. arXiv: 0501106 [hep-th].

Supplementary files

Supplementary Files
Action
1. JATS XML