О сопряжённых разностных схемах: схема средней точки и схема трапеций

Обложка

Цитировать

Полный текст

Аннотация

В статье исследован вопрос о сохранении квадратичных интегралов на приближённых решениях автономных систем обыкновенных дифференциальных уравненийx˙=f(x), найденных по схеме трапеций. Установлена связь между схемой трапеции и схемой средней точки, которая сохраняет все квадратичные интегралы движения в силу теоремы Купера. Эта связь позволяет рассматривать схему трапеций как двойственную к схеме средней точки и отыскать двойственный аналог для теоремы Купера. Доказано, что на приближённом решении, найденном по симметрической схеме, сохраняется не сам квадратичный интеграл, а более сложное выражение, которое переходит в интеграл в пределе при t0. Результаты проиллюстрированы примерами — линейным и эллиптическим осцилляторами. В обоих случаях в явном виде выписаны выражения, которые сохраняет схема трапеций.

Об авторах

Юй Ин

Университет Кайли

Автор, ответственный за переписку.
Email: 45384377@qq.com

Candidate of Physical and Mathematical Sciences, Assistant Professor of Department of Algebra and Geometry

Kaiyuan Road 3, Кайли, 556011, Китай

М. Д. Малых

Российский университет дружбы народов

Email: malykhmd@pfur.ru

Doctor of Physical and Mathematical Sciences, Assistant Professor of Department of Applied Probability and Informatics

ул. Миклухо-Маклая, д. 6, Москва, 117198, Россия

Список литературы

  1. A. Goriely, “Integrability and nonintegrability of dynamical systems,” in Advanced Series in Nonlinear Dynamics. Singapore; River Edge, NJ: World Scientific, 2001, vol. 19. doi: 10.1142/3846.
  2. D. Greenspan, “Completely conservative, covariant numerical methodology,” Computers & Mathematics with Applications, vol. 29, no. 4, pp. 37-43, 1995. doi: 10.1016/0898-1221(94)00236-E.
  3. D. Greenspan, “Completely conservative, covariant numerical solution of systems of ordinary differential equations with applications,” Rendiconti del Seminario Matematico e Fisico di Milano, vol. 65, pp. 63-87, 1995. doi: 10.1007/BF02925253.
  4. J. C. Simo and M. A. González, “Assessment of Energy-momentum and Symplectic Schemes for Stiff Dynamical Systems,” in American Society of Mechanical Engineers. ASME Winter Annual Meeting, New Orleans, Louisiana, 1993.
  5. E. Graham, G. Jelenić, and M. A. Crisfield, “A note on the equivalence of two recent time-integration schemes for N-body problems,” Communications in Numerical Methods in Engineering, vol. 18, pp. 615-620, 2002. doi: 10.1002/cnm.520.
  6. G. J. Cooper, “Stability of Runge-Kutta methods for trajectory problems,” IMA Journal of Numerical Analysis, vol. 7, pp. 1-13, 1 1987. doi: 10.1093/imanum/7.1.1.
  7. Y. B. Suris, “Hamiltonian methods of Runge-Kutta type and their variational interpretation [Gamil’tonovy metody tipa Runge-Kutty i ikh variatsionnaya traktovka],” Matematicheskoe modelirovaniye, vol. 2, no. 4, pp. 78-87, 1990, in Russian.
  8. J. M. Sanz-Serna, “Symplectic Runge-Kutta schemes for adjoint equations, automatic differentiation, optimal control, and more,” SIAM review, vol. 58, pp. 3-33, 2016. doi: 10.1137/151002769.
  9. E. Hairer, G. Wanner, and C. Lubich, Geometric numerical integration. Structure-preserving algorithms for ordinary differential equations. Berlin Heidelberg New York: Springer, 2000.
  10. V. P. Gerdt, M. D. Malykh, L. A. Sevastianov, and Yu Ying, “On the properties of numerical solutions of dynamical systems obtained using the midpoint method,” Discrete & Continuous Models & Applied Computational Science, vol. 27, no. 3, pp. 242-262, 2019. DOI: 10.22363/ 2658-4670-2019-27-3-242-262.
  11. Y. A. Blinkov and V. P. Gerdt, “On computer algebra aided numerical solution of ODE by finite difference method,” in International Conference Polynomial Computer Algebra’2019; St. Petersburg, April 15-20, 2019, N. N. Vassiliev, Ed., SPb: VVM Publishing, 2019, pp. 29-31.
  12. F. Klein, Vorlesungen über Nicht-Euklidische Geometrie. Springer, 1967. doi: 10.1007/978-3-642-95026-1.
  13. P. F. Byrd and M. D. Friedman, Handbook of Elliptic Integrals for Engineers and Scientists. Springer, 1971. doi: 10.1007/978-3-642- 65138-0.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».