Метод коллокации Чебышева для решения ОДУ второго порядка с использованием матриц интегрирования

Обложка

Цитировать

Полный текст

Аннотация

Реализован метод спектральной коллокации для решения двухточечных краевых задач для дифференциальных уравнений второго порядка, основанный на представлении решения в виде разложения по полиномам Чебышева. Подход позволяет устойчиво вычислять как спектральное представление решения, так и его поточечное представление на любой необходимой сетке в области определения уравнения и дополнительных условий многоточечной задачи. Для эффективного построения СЛАУ, решение которой дает искомые коэффициенты, активно используются матрицы Чебышева спектрального интегрирования. Предложенные алгоритмы обладают высокой точностью для систем линейных алгебраических уравнений средней размерности. Матрица системы остается хорошо обусловленной и с увеличением количества точек коллокации позволяет находить решения со все возрастающей точностью.

Об авторах

К. П. Ловецкий

Российский университет дружбы народов

Email: lovetskiy-kp@rudn.ru
ORCID iD: 0000-0002-3645-1060

Candidate of Sciences in Physics and Mathematics, Associate Professor of Department of Applied Probability and Informatics

ул. Миклухо-Маклая, д. 6, Москва, 117198, Россия

Д. С. Кулябов

Российский университет дружбы народов; Объединённый институт ядерных исследований

Автор, ответственный за переписку.
Email: kulyabov-ds@rudn.ru
ORCID iD: 0000-0002-0877-7063

Professor, Doctor of Sciences in Physics and Mathematics, Professor at the Department of Applied Probability and Informatics of Peoples’ Friendship University of Russia named after Patrice Lumumba (RUDN University); Senior Researcher of Laboratory of Information Technologies, Joint Institute for Nuclear Research

ул. Миклухо-Маклая, д. 6, Москва, 117198, Россия; ул. Жолио-Кюри, д. 6, Дубна, Московская область, 141980, Россия

Л. А. Севастьянов

Российский университет дружбы народов; Объединённый институт ядерных исследований

Email: sevastianov-la@rudn.ru
ORCID iD: 0000-0002-1856-4643

Professor, Doctor of Sciences in Physics and Mathematics, Professor at the Department of Applied Probability and Informatics of Peoples’ Friendship University of Russia named after Patrice Lumumba (RUDN University); Leading Researcher of Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research

ул. Миклухо-Маклая, д. 6, Москва, 117198, Россия; ул. Жолио-Кюри, д. 6, Дубна, Московская область, 141980, Россия

С. В. Сергеев

Российский университет дружбы народов

Email: 1142220124@rudn.ru
ORCID iD: 0009-0004-1159-4745

PhD student of Department of Applied Probability and Informatics

ул. Миклухо-Маклая, д. 6, Москва, 117198, Россия

Список литературы

  1. V. A. Soifer, Diffraction computer optics [Difraktsionnaya komp’yuternaya optika]. M.: FIZMATLIT, 2007, in Russian.
  2. A. A. Egorov and L. A. Sevastianov, “Structure of modes of a smoothly irregular integrated-optical four-layer three-dimensional waveguide,” Quantum Electronics, vol. 39, no. 6, pp. 566-574, Jun. 2009. DOI: 10. 1070/QE2009v039n06ABEH013966.
  3. A. L. Sevastianov, “Asymptotic method for constructing a model of adiabatic guided modes of smoothly irregular integrated optical waveguides,” Discrete and Continuous Models and Applied Computational Science, vol. 28, no. 3, pp. 252-273, 2020. doi: 10.22363/2658-4670-2020-28-3-252-273.
  4. A. L. Sevastianov, “Single-mode propagation of adiabatic guided modes in smoothly irregular integral optical waveguides,” Discrete and Continuous Models and Applied Computational Science, vol. 28, no. 4, pp. 361-377, 2020. doi: 10.22363/2658-4670-2020-28-4-361-377.
  5. L. Greengard, “Spectral integration and two-point boundary value problems,” SIAM Journal on Numerical Analysis, vol. 28, no. 4, pp. 1071-1080, 1991. doi: 10.1137/0728057.
  6. A. Amiraslani, R. M. Corless, and M. Gunasingam, “Differentiation matrices for univariate polynomials,” Numerical Algorithms, vol. 83, no. 1, pp. 1-31, 2020. doi: 10.1007/s11075-019-00668-z.
  7. J. P. Boyd, Chebyshev and Fourier spectral methods, second. Dover Books on Mathematics, 2013.
  8. J. C. Mason and D. C. Handscomb, Chebyshev polynomials. New York: Chapman and Hall/CRC Press, 2002. doi: 10.1201/9781420036114.
  9. S. E. El-gendi, “Chebyshev solution of differential, integral and integrodifferential equations,” The Computer Journal, vol. 12, no. 3, pp. 282-287, Aug. 1969. doi: 10.1093/comjnl/12.3.282.
  10. L. N. Trefethen, “Is Gauss quadrature better than Clenshaw-Curtis?” SIAM Review, vol. 50, no. 1, pp. 67-87, 2008. doi: 10.1137/060659831.
  11. L. A. Sevastianov, K. P. Lovetskiy, and D. S. Kulyabov, “A new approach to the formation of systems of linear algebraic equations for solving ordinary differential equations by the collocation method [Novyy podkhod k formirovaniyu sistem lineynykh algebraicheskikh uravneniy dlya resheniya obyknovennykh differentsial’nykh uravneniy metodom kollokatsiy],” Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, vol. 23, no. 1, pp. 36-47, 2023, in Russian. doi: 10.18500/1816-9791-2023-23-1-36-47.
  12. N. Egidi and P. Maponi, “A spectral method for the solution of boundary value problems,” Applied Mathematics and Computation, vol. 409, p. 125 812, 2021. doi: 10.1016/j.amc.2020.125812.
  13. H. B. Keller, Numerical methods for two-point boundary value problems. Boston: Ginn-Blaisdell, 1968.
  14. D. Gottlieb and S. A. Orszag, Numerical analysis of spectral methods. Philadelphia, PA: Society for Industrial and Applied Mathematics, 1977.
  15. J. F. Epperson, An introduction to numerical methods and analysis, second. John Wiley & Sons, Inc, 2013.
  16. X. Zhang and J. P. Boyd, Asymptotic coefficients and errors for Chebyshev polynomial approximations with weak endpoint singularities: effects of different bases, 2022. doi: 10.48550/arXiv.2103.11841.
  17. J. P. Boyd and D. H. Gally, “Numerical experiments on the accuracy of the Chebyshev-Frobenius companion matrix method for finding the zeros of a truncated series of Chebyshev polynomials,” Journal of Computational and Applied Mathematics, vol. 205, no. 1, pp. 281-295, 2007. doi: 10.1016/j.cam.2006.05.006.
  18. B. Fornberg, A practical guide to pseudospectral methods. New York: Cambridge University Press, 1996.
  19. F. Rezaei, M. Hadizadeh, R. Corless, and A. Amiraslani, “Structural analysis of matrix integration operators in polynomial bases,” Banach Journal of Mathematical Analysis, vol. 16, no. 1, p. 5, 2022. DOI: 10. 1007/s43037-021-00156-4.
  20. L. C. Young, “Orthogonal collocation revisited,” Computer methods in Applied Mechanics and Engineering, vol. 345, pp. 1033-1076, 2019. doi: 10.1016/j.cma.2018.10.019.
  21. S. Olver and A. Townsend, “A fast and well-conditioned spectral method,” SIAM Review, vol. 55, no. 3, pp. 462-489, 2013. doi: 10.1137/120865458.
  22. M. Planitz et al., Numerical recipes: the art of scientific computing, 3rd Edition. New York: Cambridge University Press, 2007.
  23. L. A. Sevastianov, K. P. Lovetskiy, and D. S. Kulyabov, “Multistage collocation pseudo-spectral method for the solution of the first order linear ODE,” in 2022 VIII International Conference on Information Technology and Nanotechnology (ITNT), 2022, pp. 1-6. doi: 10.1109/ITNT55410.2022.9848731.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».