БИОХИМИЯ, ГЕНЕТИКА И МОЛЕКУЛЯРНАЯ БИОЛОГИЯ

BIOCHEMISTRY, GENETICS AND MOLECULAR BIOLOGY

DOI: 10.12731/2658-6649-2025-17-4-1219

УДК 574/577

Научная статья

ОСОБЕННОСТИ СВОБОДНО-РАДИКАЛЬНОГО СТАТУСА ФОЛЛИКУЛЯРНОЙ ЖИДКОСТИ КОБЫЛ В ПРОЦЕССЕ ФОЛЛИКУЛОГЕНЕЗА

В.В. Калашников, Л.Ф. Лебедева, О.В. Баковецкая, А.А. Терехина, Е.В. Солодова, Ю.В. Абаленихина, А.В. Щулькин

Аннотация

Обоснование. Созревание половых клеток – сложный и многоуровневый процесс. Для повышения эффективности вспомогательных репродуктивных технологий у лошадей необходимо детальное исследование механизмов регуляции фолликулогенеза.

Цель. Прижизненное изучение состояния свободно-радикального статуса и уровня транскрипционных факторов, регулирующих антиоксидантную систему защиты, в фолликулярной жидкости (ФЖ) кобыл позднего переходного периода и сезона половой цикличности.

Материалы и методы. Исследование выполнено на кобылах, помесных тяжеловозных, верховых и вятской пород, 6-12 лет в весеннем переходном периоде и периоде нормальной половой цикличности. Были сформированы 4 группы фолликулов: крупные (≥31мм) фолликулы в весенний переходный период, без признаков лютеинизации (группа 1) и с признаками лютеинизации (группа 2); крупные эстральные фолликулы (>35 мм) в овуляторный период без гормональной обработки (группа 3) и с гормональной обработкой (группа 4). Фотометрическими методами в ФЖ определяли – концентрация продуктов перекисного окисления липидов — ТБК-реактивных продуктов и продуктов

окисления белков – карбонильных производных белков; активность антиоксидантных ферментов – супероксиддисмутазы и глутатионпероксидазы и уровня эндогенного антиоксидантна глутатиона. Методом вестер-блот анализировали относительное количество белков Nrf2, HIF-1a, VEGF и NfkB.

Результаты. В фолликулах группы 3 концентрация ТБК-реактивных продуктов и карбонильных производных белков существенно увеличивалась и превышала значения групп 1, 2 и 4. Содержание небелковых SH-групп, достигало максимального уровня в ФЖ в группе 4, превышая показатели 1 и 3 группы. Активность супероксиддисмутазы и глутатионпероксидазы достоверно увеличивались в 4 группе относительно группы 1. Уровень Nrf2 повышался в ФЖ 4 группы, HIF1α – 2 и 3 группах, NfkB и VEGFA – во 2 группе.

Заключение. Рост фолликула и подготовка его к овуляции у циклирующих кобыл в летний период сопровождается развитием окислительного стресса, что приводит к активации редоксчувствительного фактора Nrf2, с последующим повышением активности антиоксидантных ферментов супероксиддисмутазы и глутатионпероксидазы и уровня эндогенного антиоксидантна глутатиона. Для крупных фолликулов с признаками лютеинизации в весенний переходный периода в ФЖ характерно повышение уровня VEGF и NfkB, что может отражать развитие локальной гипоксии и воспаления и обуславливать развитие фолликула по пути лютеинизации без овуляции.

Ключевые слова: кобылы; фолликулогенез; окислительный стресс; Nrf2; HIF-1a; VEGF; NfkB

Для цитирования. Калашников, В. В., Лебедева, Л. Ф., Баковецкая, О. В., Терехина, А. А., Солодова, Е. В., Абаленихина, Ю. В., & Щулькин, А. В. (2025). Особенности свободно-радикального статуса фолликулярной жидкости кобыл в процессе фолликулогенеза. Siberian Journal of Life Sciences and Agriculture, 17(4), 155-181. https://doi.org/10.12731/2658-6649-2025-17-4-1219

Original article

FEATURES OF THE FREE RADICAL STATUS OF THE FOLLICULAR FLUID OF MARES IN THE PROCESS OF FOLLICULOGENESIS

V.V. Kalashnikov, L.F. Lebedev, O.V. Bakovetskaya, A.A. Terekhina, E.V. Solodova, Yu.V. Abalenikhina, A.V. Shchulkin

Abstract

Background. The maturation of germ cells is a complex and multilevel process. To increase the effectiveness of assisted reproductive technologies in

horses, a detailed study of the mechanisms of regulation of folliculogenesis is necessary.

Purpose. A lifetime study of the state of free radical status and the level of transcription factors regulating the antioxidant defense system in the follicular fluid (FF) of mares of the late transition period and the season of sexual cyclicity.

Materials and methods. The study was performed on mares, crossbreeds of heavy-duty, riding and Vyatka breeds, 6-12 years old in the spring transition period and the period of normal sexual cyclicity. 4 follicle groups were formed: large (≥31mm) follicles in the spring transition period, without signs of luteinization (group 1) and with signs of luteinization (group 2); large estrous follicles (>35 mm) in the ovulatory period without hormonal treatment (group 3) and with hormonal treatment (group 4). Photometric methods were used to determine the concentration of lipid peroxidation products − TBK-reactive products and protein oxidation products − carbonyl derivatives of proteins; the activity of antioxidant enzymes − superoxide dismutase and glutathione peroxidase and the level of endogenous antioxidant glutathione. The relative amounts of Nrf2, HIF-1a, VEGF and NFkB proteins were analyzed using the wester blot method.

Results. In the follicles of group 3, the concentration of TBK-reactive products and carbonyl derivatives of proteins increased significantly and exceeded the values of groups 1, 2 and 4. The content of non-protein SH groups reached a maximum level in the SH-group 4, exceeding the indicators of groups 1 and 3. The activity of superoxide dismutase and glutathione peroxidase significantly increased in group 4 relative to group 1. The level of Nrf2 increased in the SH-group 4, HIF1a -2 and 3 groups, NFkB and VEGFA - in group 2.

Conclusion. The growth of the follicle and its preparation for ovulation in cycling mares in the summer is accompanied by the development of oxidative stress, which leads to the activation of the redox-sensitive factor Nrf2, followed by an increase in the activity of antioxidant enzymes superoxide dismutase and glutathione peroxidase and the level of endogenous antioxidant glutathione. For large follicles with signs of luteinization in the spring transition period, an increase in the level of VEGF and NFkB is characteristic in the FF, which may reflect the development of local hypoxia and inflammation and cause the development of the follicle along the path of luteinization without ovulation.

Keywords: mares; folliculogenesis; oxidative stress; Nrf2; HIF-1a; VEGF; NfkB

For citation. Kalashnikov, V. V., Lebedev, L. F., Bakovetskaya, O. V., Terekhina, A. A., Solodova, E. V., Abalenikhina, Yu. V., & Shchulkin, A. V. (2025). Features

of the free radical status of the follicular fluid of mares in the process of folliculogenesis. Siberian Journal of Life Sciences and Agriculture, 17(4), 155-181. https://doi.org/10.12731/2658-6649-2025-17-4-1219

Введение

В последние годы результаты применения вспомогательных репродуктивных технологий у различных видов млекопитающих значительно улучшились, однако их эффективность у лошадей остается низкой. Возможная причина данной тенденции может заключаться в особенностях физиологии размножения кобыл, таких как: сезонность размножения (физиологический сезон размножения или овуляторный сезон кобылы длится в северном полушарии с ранней весны до позднего лета), продолжительный эструс (охота), длительный период плодоношения (11 месяцев), сравнительно позднее наступление половой зрелости (в 1,5-2 года), а также в отсутствии детальной информации о физиологических механизмах, контролирующих развитие фолликулов, созревание ооцитов и последующее оплодотворение [17]. Нормальный половой цикл у кобыл длится в среднем 21-23 дня, из них, 5-7 дней приходится на охоту (эструс), которая завершается овуляцией, и 15-17 дней - на диэструс (половой покой). В сезон размножения в половом цикле у кобыл из фолликулярной волны в яичнике выделяется и доходит до овуляции один, редко два лидирующих фолликула, подавляющих рост конкурентных, менее крупных фолликулов. В зимние месяцы (декабрь-февраль) репродуктивная система кобыл погружается в «спячку» - анэструс, когда растущие фолликулы и желтые тела в яичниках отсутствуют, а матка бледная, сухая и расслабленная. Между этими двумя сезонными фазами есть два переходных периода – весенний и осенний. По мере удлинения светового дня весной в яичниках пробуждается фолликулярная активность. Однако 1-2 первые фолликулярные волны, как правило, не заканчиваются овуляцией. Растущие фолликулы либо претерпевают атрезию, либо лютеинизируются, превращаясь в желтые тела без овуляции. То есть яйцеклетки из таких фолликулов не выходят, и оплодотворение невозможно. Предугадать судьбу созревающих фолликулов в яичниках кобыл в весенний переходный период невозможно, поэтому часто труды репродуктолога оказываются без результата, и приходится в следующем цикле ждать овуляцию, чтобы плодотворно осеменить кобылу. Осенью наличие крупных лютеинизированных фолликулов в яичниках кобыл («осенние») свидетельствует об угасании половой активности и приближении фазы анэструса [4].

Созревание половых клеток — сложный и многоуровневый процесс, регуляция которого зависит от гонадотропных и стероидных гомонов, различных факторов роста, цитокинов, а также содержания необходимых метаболитов [19].

У млекопитающих оогенез происходит в фолликулах яичников, ооцит созревает в окружении фолликулярной жидкости. Фолликулярная жидкость (ФЖ) — это сложная внеклеточная жидкость, которая является производной плазмы крови и секретов, синтезируемых в стенке фолликула. Она поддерживает взаимосвязь развивающейся яйцеклетки с клетками кумулюса, гранулезы и теки. Поэтому по уровню различных веществ в ФЖ можно косвенно судить об условиях созревания ооцита, его качестве, фертильности и возможных нарушениях фолликулогенеза [7; 9].

С другой стороны актуальной проблемой современной эмбриологии является подбор оптимальной среды для созревания ооцитов лошадей in vitro. Среди всех незрелых ооцитов, получаемых методом прижизненной аспирации из фолликулов (Ovum PickUp - OPU) и используемых для оплодотворения методом интрацитоплазматической инъекции сперматозоида в яйцеклетку (ICSI), в лучшем случае примерно 10% дают успешную беременность и выжеребку [10]. В то же время, когда созревшие in vivo ооциты лошадей переносятся в яйцеводы живых кобыл для получения потомства, вероятность беременности возрастает до 75% [14]. В связи с этим, актуально исследование состава ФЖ, обуславливающего те или иные исходы развития фолликула.

Свободно-радикальные процессы имеют универсальный характер, участвуют в механизме запрограммированной гибели клеток, синтезе простагландинов и лейкотриенов, обмене катехоламинов и стероидных гормонов, передвижении электронов в цепи дыхательных ферментов, обеспечении защиты от патологического деления клеток, регуляции проницаемости и транспорта веществ через мембраны [13; 20]. Для обеспечения защиты клеток от воздействия свободных радикалов и продуктов их повреждения эволюционно выработалась система антиоксидантной защиты. В норме поддерживается баланс между образованием активных форм кислорода (АФК) и их нейтрализацией антиоксидантной системой [1; 24].

В ряде исследований было показано, что в процессе фолликулогенеза, а также при его нарушении может активироваться продукция свободных радикалов [19; 24]. Нарушение окислительно-восстановительного гомеостаза может оказывать влияние на эндометрий, фолликулярный аппарат яичников и фаллопиевы трубы, процессы овуляции, лютеинизации и сте-

роидогенез [1]. Эти процессы у лошадей малоизучены, данные по анализу ФЖ ограничены и получены в основном, от животных посмертно [7].

Для максимальной эффективности вспомогательных репродуктивных технологий необходима точная система оценки качества и жизнеспособности формирующихся фолликулов в яичниках, а также знание факторов, которые определяют путь развития фолликула (овуляция, атрезия, лютеинизация без овуляции). Поэтому актуальной задачей является поиск биомаркеров, которые позволили бы прижизненно оценивать состояние фолликулов и репродуктивный потенциал особи.

Целью настоящего исследования было прижизненное изучение состояния свободно-радикального статуса и уровня транскрипционных факторов, регулирующих антиоксидантную систему защиты, в фолликулярной жидкости кобыл позднего переходного периода и сезона половой цикличности.

Экспериментальная часть

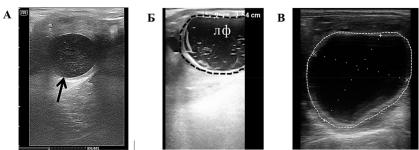
Исследование выполнено на 6 кобылах помесных тяжеловозных, верховых и вятской пород, в возрасте от 6 до 12 лет и было одобрено биоэтической комиссией созданной при ФГБНУ ВНИИ коневодства (Протокол №8-23 от 28.11.2023 г.)

Все кобылы принадлежали экспериментальной конюшне ФГБНУ ВНИИ коневодства. Содержание и кормление животных соответствовало принятым зоотехническим и ветеринарным нормам.

Эксперименты по пунктированию ФЖ проводили в двух сезонах половой активности кобыл, соответствующих весеннему переходному периоду (П) с ановуляторными циклами, и овуляторной фазе (О) с нормальной половой цикличностью и овуляцией. На основе ультразвукового исследования яичников определяли количество и размер фолликулов, выбирая для опытов крупные фолликулы (≥31 и ≥35мм в диаметре для (П) и (О) периодов, соответственно) с учетом эхоструктуры внутрифолликулярной жидкости. В весенний переходный период крупные фолликулы с гомогенно-черной экоструктурой считали потенциально способными как дойти до овуляции, так и лютеинизироваться (группа 1). Первыми признаками лютеинизации считали появление эхогенных вкраплений в полости фолликула (группа 2). В овуляторный период крупные фолликулы пунктировали в фазе активного эструса, ближе к овуляции с опорой на сопутствующие физиологические признаки (наличие отека матки, форма и консистенция зрелого фолликула) (группа 3). Отдельной группе кобыл в активном половом сезоне применяли гормональную стимуляцию овуляции в виде внутримышечной инъекции 50 мкг препарата «Сурфагон» (аналог гонадотропного рилизинг гормона (ГнРГ), ЗАО Мосагроген, Москва), и проводили пункцию фолликулов через 24 часа после инъекции, то есть в предовуляторной фазе (группа 4).

Перед процедурой OPU (англ. Ovum PickUp; прижизненное извлечение ооцитов из яичников кобыл) проводили седацию животных детомидина гидрохлоридом (препарат «Домоседан», Zoetis-Pfizer, США) в дозе 0.2-0.5 мг внутривенно, добавляя препарат по мере необходимости в несколько приемов в течение всей процедуры. После первой инъекции домоседана кобылам делали эпидуральную анестезию 2% лидокаином (5-7 мл). За 15 минут до начала процедуры вводили флюнексинмеглумин («Norbrook Laboratories Limited», Великобритания) (300-500 мг) и антибиотик ветбицин-3 (ОАО «Синтез», Россия) (10 000-15 000 ЕД на 1 кг массы животного).

ФЖ из яичников кобыл извлекали методом трансвагинальной аспирации под ультразвуковым контролем (OPU) с помощью вакуумного насоса СООК Medical K-MAR-5200 (WILLIAM A. COOK AUSTRALIA PTY. LTD.) и модифицированного эндовагинального зонда с микроконвексным датчиком в комплектации к ультразвуковому сканеру EXAGO («ЕСМ», Франция). Через направляющую, встроенную в зонд, вставляли двухпросветную иглу калибра 12G, длиной 65 см в полость фолликула и отсасывали ФЖ. Иглы, проводящие системы и приемные сосуды меняли для каждого фолликула.


Таким образом, были сформированы 4 группы фолликулов:

- *1 группа* крупные (≥31мм) фолликулы в весенний переходный период, без признаков лютеинизации (П);
- 2 группа крупные (≥31мм) фолликулы в весенний переходный с признаками лютеинизации (Пл);
- *3 группа* крупные эстральные фолликулы (>35 мм) в овуляторный период без гормональной обработки (Оэ);
- 4 группа крупные эстральные фолликулы (>35 мм) в овуляторный период после гормональной обработки (Ог).

Всем кобылам выполняли ультразвуковое исследование с помощью УЗИ-сканера Honda HS 2000 (Япония) с ректальным ветеринарным датчиком HLV375M.

Одни и те же кобылы были задействованы в опытах в двух половых сезонах (переходном и овуляторном), от одной и той же кобылы была получена ФЖ из фолликулов разных групп. Итого, для изучения выраженности окислительного стресса в каждую группу вошло по 4 образца ФЖ

из разных фолликулов (n=4 в каждой группе), для оценки уровня транскрипционных факторов по 3 образца (n=3 в каждой группе).

Рис. 1. Результаты ультразвукового исследования: А – фолликул в начальной стадии лютенизации; Б – лютенизирующийся фолликул; В – крупный фолликул.

Полученную ФЖ центрифугировали 20 минут при 3000 об/мин, аликвотили в 1,5 мл пробирки типа эппендорф, замораживали при -25°С и хранили до выполнения анализа. Свободно-радикальный статус оценивали по следующим показателям: концентрации продуктов реагирующих с тиобарбитуровой кислотой (ТБК-реактивные продукты), карбонильных производных белков, небелковых SH-групп, активности антиоксидантных ферментов глутатионпероксидазы и супероксиддисмутазы.

Концентрацию ТБК-реактивных продуктов анализировали с помощью коммерческого набора («Агат», Россия). Метод основан на способности продуктов ПОЛ образовывать с тиобарбитуровой кислотой (ТБК) окрашенный комплекс, экстрагируемый бутанолом [18]. Результаты выражали в нмоль/мг белка.

Концентрацию карбонильных производных белков оценивали с помощью коммерческого набора — ProteinCarbonyl Content Assay Kit («SigmaAldrich», США) по реакции взаимодействия с 2,4-динитрофенилгидразином с образованием 2,4-динитрофенилгидразонов, которые регистрируют при длине волны 375 нм [27]. Концентрацию карбонильных производных белков выражали в нмоль/мг белка.

Уровень белковых и небелковых серосодержащих соединений оценивали по методу Эллмана. Уровень GSH определяли по реакции восстановления дисульфида 5,5-дитиобис(2-нитробензоата) («Serva», Германия) с образованием эквивалентного количества окрашенных жёлтых анионов 2-нитро-5-тиобензоата, имеющих максимум поглощения при 412 нм [8]. Для определения содержания низкомолекулярных SH-групп пробу пред-

варительно смешивали с охлажденной 5% трихлоруксусной кислотой («Химмед», Россия), инкубировали на льду 15 мин, затем центрифугировали при 11000 g (СМ-50, «Еррепdorf», Германия) 5 мин при 4°С. Полученный супернатант нейтрализовали с помощью 1% NaOH и использовали для определения низкомолекулярных SH-групп по реакции с DTNB. Концентрацию SH-групп выражали в мкмоль/мг белка.

Активность глутатионпероксидазы анализировали по уменьшению оптической плотности $HAД\Phi H_2$ в сопряженных реакциях нейтрализации гидроперекиси трет-бутил под действием глутатионпероксидазы и восстановленного глутатиона с последующим его восстановлением под действием глутатионредуктазы и $HA\Phi H_2$ [3], и выражали в нмоль $HAД\Phi H/$ мин/белка.

Активность супероксиддисмутазы (СОД) анализировали по степени торможении реакции окисления кверцетина, фиксируемое по изменению оптической плотности реакционной смеси при длине волны λ =406 нм [2]. Полученные данные выражали в УЕ/мл.

Результаты биохимических анализов пересчитывали на количество белка, которое анализировали методом Бредфорда (PierceCoomassiePlus (Bradford) AssayKit, «ThermoFisher», США) [6].

Анализ уровня транскрипционных факторов в ФЖ методом вестерн-блот.

Для анализа 20 мкг белков подвергали электрофорезу с использованием TGX Stain-Free FastCastAcrylamide Kit («Bio-Rad») в буферной системе Laemmli («BioRad»). Перед загрузкой образцы обрабатывали в соответствии с протоколом Bio-Rad. Их смешивали с буфером для образцов Laemmli («Bio-Rad»), содержащем 2,5% 2-меркаптоэтанола («Bio-Rad») в соотношении 1:3, инкубировали 5 мин при температуре 70°С. Условия электрофореза - 100 В, 90 мин.

Перенос белков с геля на мембрану осуществлялся полусухим методом с помощью TransBlotTurbo («BioRad», США). Белки на мембране блокировали 1% раствором EveryBlotBlockingBuffer (Bio-Rad, США), содержащим 0,1% Tween в течение 30 мин при комнатной температуре.

Для анализа транскрипционных факторов использовали следующие первичные кроличьи поликлональные антитела в разведении 1:500:

Nrf2 – транскрипционный фактор, регулирующий антиоксидантный ответ клеток (AF0639 Nrf2 Antibody, Affinity, Китай);

HIF-1α – фактор индуцируемый гипоксией, субъединица 1α (AF1009 HIF1AAntibody, Affinity, Китай);

NFkB p65 – транскрипционный фактор, участвующий в воспалении и антиоксидантном ответе (AF5006 NF-kB p65 Antibody, Affinity, Китай), антитела против мономера p65;

VEGFA – фактор роста эндотелия сосудов (AF5131 VEGFA Antibody, Affinity, Китай), антитела против всех изоформ.

Визуализацию первичных антител осуществляли с использованием вторичных козлиных антител (Goatanti-RabbitIgG (H+L) Cross-AdsorbedSecondaryAntibody, HRP, «Invitrogen», США) в разведении 1:4000 и инкубацией в течение 1 ч при комнатной температуре.

Хемилюминесценцию фиксировали с помощью ChemiDocXRS+ («Bio-Rad», США). Интенсивность полученных полос (бэндов) анализировали денситометрически с помощью программного обеспечения ImageLab (Bio-Rad, США).

Молекулярная масса анализируемых белков была подтверждена путем сравнения с маркерами молекулярной массы (Precision plusproteinstandards Dual Color, Bio-Rad, США).

Содержание белков оценивали относительно глицеральдегид-3-фосфатдегидрогеназы (GAPDH, англ.: glyceraldehyde 3-phosphate dehydrogenase, первичные антитела GAPDH Loading Control MonoclonalAntibody (GA1R), DyLight 68 («Invitrogen», США), разведение 1:1000, вторичные кроличьи антитела - Rabbit-anti-Mouse IgG (H+L) SecondaryAntibody, HRP (Invitrogen, США), разведение 1:4000).

Анализ результатов производили с помощью программы GraphPadPrism-Version 9.5.0. Для оценки статистической значимости различий использовали дисперсионный анализ ANOVA, попарные сравнения оценивали по критерию Тьюки. Статистически значимыми считали различия при p<0.05.

Результаты исследования

Содержание продуктов перекисного окисления липидов — ТБК-реактивных продуктов находилось на одном уровне в ФЖ в группах 1 (П), 2 (Пл) и 4 (Ог). В фолликулах группы 3 (Оэ) концентрация ТБК-реактивных продуктов существенно увеличивалась и превышала значения других групп — 1 группы на 205,0% (p<0,01), 2 группу на 215,2% (p<0,01), 4 группу на 159,5% (p<0,01) (табл.).

Аналогичная картина наблюдалась и при оценке содержание продуктов окисления белков – их карбонильных производных. Данный показатель находился на одном уровне у животных $1(\Pi)$, $2(\Pi \pi)$ и 4(Or) групп, и достоверно увеличивался в 3 группе (O3) – на 71,3% (p<0,001), 59,3%

(p<0,001) и 45,8% (p<0,01) превышая показатели 1, 2 и 4 групп соответственно (табл.).

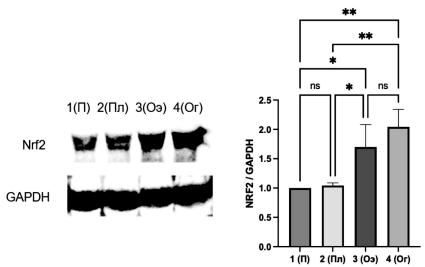
Концентрация белковых SH-групп в ФЖ изучаемых групп животных статистически значимо между собой не различалась (табл.).

В то же время содержание небелковых SH-групп, основным представителем которых является глутатион, достигало максимального уровня в ФЖ в группы (Ог), превышая показатели 3 группы (Оэ) на 58,3% (р<0,05).

Минимальная активность СОД и глутатионпероксидазы отмечалась в Φ Ж 3 группы (Оэ) (статистически значимо значения не отличаясь от показателей в 1 (П) и 2 (Пл) группах) и достоверно увеличивались в 4 группе (Ог) на 52,3% (р<0,05) и 28,6% (р<0,05) соответственно (табл.).

 $\it Tаблица.$ Свободно-радикальный статус фолликулярной жидкости кобыл в процессе фолликулогенеза (среднее $\pm SD$).

	Группы			
Показатель	1 группа –	2 группа –	3 группа –	4 группа –
	П (n=4)	Пл (n=4)	Оэ (n=4)	Ог (n=4)
Концентрация ТБК-реактивных продуктов, нмоль/мг белка	0,23±	0,22±	0,70±	0,27±
	0,04**	0,01**	0,25	0,08**
Концентрация карбонильных производных белков, нмоль/мг белка	1,00±	1,07±	1,71±	1,17±
	0,08***	0,07***	0,30	0,05**
Концентрация белковых SH-групп, мкмоль/мг белка	8,97±	9,56±	8,53±	10,98±
	2,47	1,24	2,78	0,84
Концентрация небелковые SH-групп, мкмоль/мг белка	1,58±	1,54±	1,32±	2,09±
	0,37	0,32	0,25	0,30*
Активность супероксид- дисмутазы, УЕ/мл	3,61± 0,65	3,11± 0,81	2,66± 0,44	4,05± 0,55*
Активность глутатионпероксидаза, нмоль НАДФН/мин/	35,17±	35,31±	30,11±	38,72±
белка	3,95	3,48	3,37	3,48*


Примечание:

При проведении вестерн-блот анализа сравнение изучаемых показателей осуществляли со значениями уровня транскрипционных факторов в ФЖ 1 группы (П).

^{*} $^-$ p<0,05; ** - p<0,01; *** - p<0,001 – статистически значимые различия с по-казателями 3 группы (Оэ)

Максимальный уровень транскрипционного фактора Nrf2 отмечался в ФЖ 4 группы (Ог), который превосходил показатели ФЖ 1 (П) и 2 (Пл) групп на 104,3% (p<001) и на 96,1% достоверно не отличался от значений $3(O_{2})$ группы (рис. 2).

Относительное количество Nrf2 в ФЖ 3 группы (Оэ) также превосходило показатели 1 (П) и 2 (Пл) групп на 70,0% (p<0,05) и 63,1% (p<0,05) соответственно.

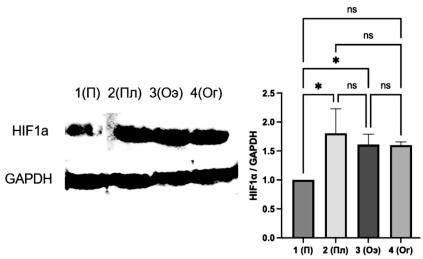
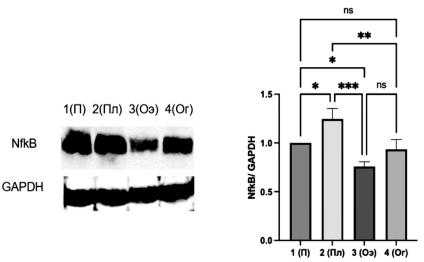


Рис. 2. Относительное количество Nrf2 в фолликулярной жидкости кобыл *Примечание:* * - p<0,05, ** - p<0,01 – статистически значимые отличия; ns – нет статистически значимых различий по сравнению с соответствующей группой сравнения.


Уровень HIF1 α в ФЖ по сравнению с 1 группой (П) повышал во 2 (Пл) и 3 (Оэ) группах на 80,4% (p<0,05) и 61,0% (p<0,05) соответственно и достоверно не изменялся в 4 группе (Ог) (рис. 3).

Уровень транскрипционного фактора NfkB в фолликулярной жидкости кобыл был на одном уровне в группах $1(\Pi)$ и 4 (Or), в группе 2 (Π л) превышал значения 1 группы на 24,6% (p<0,05), а в группе 3 (Oэ) был их меньше на 24,2% (p<0,05) (рис. 4).

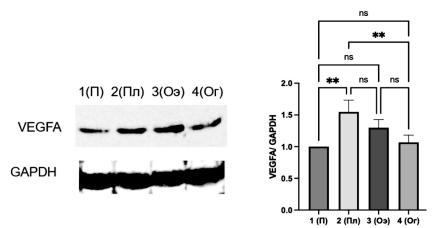

Уровень транскрипционного фактора VEGFA в ФЖ кобыл был на одном уровне в группах $1(\Pi)$, $3(O_9)$ и $4(O_7)$, и повышался во 2 группе (Пл), превышая значения 1 группы на 54,7% (p<0,01).

Рис. 3. Относительное количество HIF1a в фолликулярной жидкости кобыл. *Примечание*: * - p<0,05 статистически значимые отличия и ns — нет статистически значимых различий по сравнению с соответствующей группой.

Рис. 4. Относительное количество NfkB в фолликулярной жидкости кобыл Примечание: * - p<0,05, ** - p<0,01, *** - p<0,01 – статистически значимые отличия, ns – нет статистически значимых различий по сравнению с соответствующей группой.

Рис. 5. Относительное количество VEGFA в фолликулярной жидкости кобыл Примечание: ** - p<0,01 — статистически значимые отличия и ns — нет статистически значимых различий по сравнению с соответствующей группой.

Обсуждение результатов

Фолликулогенез у кобыл включает в себя следующие этапы: фолликулярный покой, активация, рост, ремоделирование ткани стромы яичника антральными фолликулами, миграция преовуляторных фолликулов к овуляционной ямке, овуляция, лютеинизация и атрезия. В целом, вышеупомянутые события могут привести к гетерогенной и широко варьирующей популяции фолликулов, как между особями, так и в яичниках одной кобылы [15].

Особенностью физиологии размножения кобыл является то, что в зимний период они находятся в состоянии анэструса, весной начинается переходный период, а летом устанавливается регулярный эстральный цикл.

На протяжении среднего и позднего переходного периода происходит образование и развитие нескольких фолликулярных волн с 10-12 дневными промежутками [26]. При этом концентрация эстрадиола на протяжении большей части всего переходного периода в периферической плазме остаётся низкой и поднимается всего за несколько дней до первой овуляции в году. Это связано с недостаточным количеством стероидобразующих ферментов в ткани фолликулов первой и второй волны. Хотя, в переходный период фолликулы и достигают 30 мм в диаметре, растут они значительно медленнее овуляторных и являются менее васкуляризированными. Уровень лютеинизирующего гормона остаётся низким на протяжении боль-

шей части переходного периода. Таким образом, развитие фолликулов происходит в среде, богатой фолликулостимулирующим гормоно, но бедной лютеинизирующим. Это приводит к повторному развитию крупных ановуляторных стероидогенно некомпетентных фолликулов и обуславливает длительные беспорядочные периоды проявления охоты [25].

В рамках настоящего исследования прижизненно анализировалось состояние свободно-радикального статуса и уровня транскрипционных факторов, регулирующих антиоксидантную систему защиты, в ФЖ кобыл весеннего переходного периода и сезона полноценной (с овуляцией) половой цикличности.

Созревание фолликула и подготовка его к овуляции у циклирующих кобыл в активный половой период сопровождалось развитием окислительного стресса, о чем свидетельствует повышение содержания продуктов перекисного окисления липидов – ТБК-реактивных продуктов и продуктов окисления белков – карбонильных производных белков увеличивалось в ФЖ. При этом активность антиоксидантных ферментов супероксиддисмутазы и глутатионпероксидазы находились на минимальном уровне, по сравнению с показателями ФЖ кобыл, находящихся в других периодах половой цикличности. Данные изменения могут носить физиологическое значение и направлены на повреждение оболочки и дальнейший выход ооцита из фолликула во время овуляции.

Гормональная обработка кобыл (стимуляция овуляции) сопровождалась снижением выраженности окислительного стресса, что проявлялось снижением уровня ТБК-реактивных продуктов и карбонильных производных белков и повышением активности антиоксидантных ферментов. При этом увеличивался уровень редокс-чувствительного транскрипционного фактора Nrf2 (относительное количество начинало увеличиваться уже в овуляторный период).

Nrf2 — редокс-чувствительный транскрипционный фактор, который реагирует на изменение соотношения восстановленных и окисленных SHгрупп в белках. Его экспрессия повышается при развитии ОС и направлена на защиту клетки от воздействия свободных радикалов за счет повышения экспрессии ферментов антиоксидантной защиты, шаперонов, а также ферментов репарации/утилизации поврежденных макромолекул [5]. В условиях нормы данный транскрипционный фактор находится в комплексе с белком-репрессором Keap1, который, с одной стороны, способствует убиквитированию и протеосомальной деградации Nrf2, а с другой — предотвращает его проникновение из цитоплазмы в ядро. После активации комплекс

Keap1-Nrf2 диссоциирует, и Nrf2 транслоцируется в ядро, где связывается с элементом антиоксидантного ответа (англ.: antioxidant-response elements, ARE) и активирует транскрипцию защитных ферментов [16].

Таким образом, полученные данные свидетельствуют о том, что подготовка к овуляции фолликула у циклирующих кобыл в активном половом периоде сопровождается развитием окислительного стресса, что вызывает активацию редокс-чувствиельного фактора Nrf2, с последующим повышением активности атиоксидантных ферментов СОД и глутатионпероксидазы и уровня эндогенного антиоксидантна глутатиона, что подавляет окислительный стресс в предовуляторный период.

У кобыл в переходный (весенний) период в крупных фолликулах (группа 1Π) и фолликулах с признаками лютеинизации (группа $2(\Pi\pi)$ изучаемые показатели выраженности окислительного стресса и состояния антиоксидантной системы достоверно не изменялись и находились на низких уровнях.

В то же время в ФЖ фолликулов весеннего переходного периода (весна) с признаками лютеинизации (группа 2Π л) отмечалось повышение уровня транскрипционных факторов HIF1a, VEGFA и NfkB. Уровень HIF1a повышался также в ФЖ эстральных фолликулов в нормальном цикле (группа $3(O_3)$), в то время как увеличение VEGFA и NfkB было специфично только для фолликулов с признаками лютеинизации (группа 2Π л).

HIF1 — является одним из основных транскрипционных факторов, участвующих в формировании резистентности клеток к недостатку кислорода. Он состоит из двух субъединиц — HIF-1 α и HIF-1 β . β -субъединица экспрессируется постоянно, α же субъединица регулируется кислородом. При нормальной концентрации кислорода происходит разрушение молекулы HIF-1 α . При гипоксии белковая молекула HIF-1 α остается стабильной и накапливается. Субъединицы HIF-1 α и HIF-1 β объединяются. Образовавшийся в результате этого транскрипционный белок HIF-1 в ядре клетки связывается с особыми последовательностями ДНК в генах, экспрессия которых индуцируется гипоксией.

Известно, что увеличение уровня HIF-1 приводит к повышению экспрессии генов, которые обеспечивают адаптацию клетки к гипоксии и стимулируют эритропоэз (гены эритропоэтина), ангиогенез (ген фактора роста эндотелия сосудов VEGF), ферменты гликолиза (ген альдолазы, лактатдегидрогеназы, фосфофруктокиназы, пируваткиназы и пр.) [22].

Развитие фолликулов сопровождается ремоделированием сосудистой системы, пролиферацией и дифференцировкой клеток, образованием про-

света фолликула, так что локальное микроокружение, в котором развивается ооцит является гипоксическим [19]. Из-за бессосудистой структуры фолликула яичника пролиферация гранулезных клеток и развитие фолликула происходят в условиях гипоксии [23].

Выявленные максимальные уровни HIF-1 α были обнаружены в крупных лютеинезирующихся фолликулах (группа 2Пл), то есть как раз в тех условиях, когда клетки максимально подвержены гипоксии.

В эукариотических клетках NF-kB является важным фактором ядерной транскрипции, который регулирует экспрессию многих цитокинов, включая провоспалительные цитокины, и может активироваться при развитии окислительного стресса [12].

В норме NF-kB связан с его ингибирующим белком IkB и секвестрирован в цитоплазме. После активации киназа IkB (IKK) фосфорилирует IkB, что в дальнейшем вызывает его деградацию, опосредованную протеасомами. После чего NF-kB транспортируется в ядро из цитоплазмы [11]. В ядре NF-kB связывается со специфической последовательностью нуклеотидов, активируя соответствующие промоторы и индуцируя экспрессию воспалительных цитокинов, включая ИЛ-1, ИЛ-6, ЦОГ-2 и ФНО-1а [21]. Эти факты позволяют предположить, что NF-kB играет важную роль в регуляции воспаления.

Выявленное селективное увеличение NfkB в ФЖ лютеинизирующихся фолликулов может свидетельствовать о том, что развитие воспаления запускает процесс лютеинизации в неовулирующих фолликулах на фоне развития окислительного стресса.

Заключение

В ходе прижизненного исследования было установлено, что рост фолликула и подготовка его к овуляции у циклирующих кобыл в летний период сопровождается развитием окислительного стресса, о чем свидетельствует повышение содержания продуктов перекисного окисления липидов — ТБК-реактивных продуктов и продуктов окисления белков — карбонильных производных белков в ФЖ. Данные изменения приводят к активации редокс-чувствиельного фактора Nrf2, с последующим повышением активности атиоксидантных ферментов супероксиддисмутазы и глутатионпероксидазы и уровня эндогенного антиоксидантна глутатиона, что подавляет окислительный стресс в период овуляции.

Для крупных фолликулов с признаками лютеинизации в весенний переходный периода в ФЖ характерно повышение уровня VEGF и NfkB, что

может отражать развитие локальной гипоксии и воспаления и обуславливать развитие фолликула по пути лютеинизации без овуляции.

Результаты проведенных исследований имеют ценность с точки зрения теоретического обоснования выбора ФЖ для использования в циклах вспомогательных репродуктивных технологий в качестве добавки к средам и изучения биологических основ фолликулогенеза и овуляции в прогностических целях.

Информация о спонсорстве. Работа выполнена при поддержке Российского научного фонда (проект № 23-16-00226).

Сокращения:

АФК – активные формы кислорода;

СОД – супероксиддисмутаза;

ТБК – тиобарбитуровая кислота;

ФЖ – фолликулярная жидкость

Список литературы

- 1. Березина, Д. А., Кудрявцева, Е. В., & Гаврилов, И. В. (2023). Роль окислительного стресса в женской репродуктивной системе: обзор литературы. Пермский медицинский журнал, 4, 62–72. https://doi.org/10.17816/pmj40462-72. EDN: https://elibrary.ru/CUJHQS
- 2. Костюк, В. А., Потапович, А. И., & Ковалева, Ж. В. (1990). Простой и чувствительный метод определения активности супероксиддисмутазы, основанный на реакции окисления кверцитина. Вопросы медицинской химии, 36, 88–91. EDN: https://elibrary.ru/SCXIZD
- 3. Ланкин, В. 3., & Гуревич, С. М. (1976). Ингибирование переокисления липидов и детоксикация липоперекисей защитными ферментативными системами (супероксиддисмутаза, глутатион-пероксидаза, глутатион-редуктаза) при экспериментальном злокачественном росте. Доклады Академии наук СССР, 226, 705–708.
- 4. Лебедева, Л. Ф. (2012). Физиологическая и ультразвуковая характеристика нормального эстрального цикла кобыл. Коневодство и конный спорт, 1, 16–18. EDN: https://elibrary.ru/OXNIUV
- 5. Ляхович, В. В., Вавилин, В. А., Зенков, Н. К., & Меньщикова, Е. Б. (2006). Активная защита при окислительном стрессе. Антиоксидант-респонсивный элемент. Биохимия, 71, 1183–1198. EDN: https://elibrary.ru/HVAEEX

- Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.
- Collins, A., Palmer, E., Bézard, J., Burke, J., Duchamp, G., & Buckley, T. (1997). A comparison of the biochemical composition of equine follicular fluid and serum at four different stages of the follicular cycle. Equine Veterinary Journal Supplement, 25, 12–16.
- Ellman, G. L. (1959). Tissue sulfhydryl groups. Archives of Biochemistry and Biophysics, 82, 70–77.
- Fu, X., Shi, L., Liu, P., Jiao, Y., Guo, S., Chen, Q., Zheng, Q., Chen, X., & Wang, Y. (2023). Expression and clinical significance of HIF-1α in follicular fluid and granulosa cells in infertile PCOS patients. Reproductive Sciences, 30, 2263–2274. https://doi.org/10.1007/s43032-022-01135-2. EDN: https://elibrary.ru/ELENTM
- Galli, C., Duchi, R., Colleoni, S., Lagutina, I., & Lazzari, G. (2014). Ovum pick up, intracytoplasmic sperm injection and somatic cell nuclear transfer in cattle, buffalo and horses: from the research laboratory to clinical practice. Theriogenology, 81, 138–151.
- Gloire, G., & Piette, J. (2009). Redox regulation of nuclear post-translational modifications during NF-kappaB activation. Antioxidants & Redox Signaling, 11, 2209–2222.
- Gomard, T., Michaud, H. A., Tempé, D., Thiolon, K., & Pelegrin, M., Piechaczyk, M. (2010). An NF-kappaB-dependent role for JunB in the induction of proinflammatory cytokines in LPS-activated bone marrow-derived dendritic cells. PLOS ONE, 8, e9585.
- Hajam, Y. A., Rani, R., Ganie, S. Y., Sheikh, T. A., Javaid, D., Qadri, S. S., Pramodh, S., Alsulimani, A., Alkhanani, M. F., Harakeh, S., Hussain, A., Haque, S., & Reshi, M. S. (2022). Oxidative stress in human pathology and aging: molecular mechanisms and perspectives. Cells, 11, 552. https://doi.org/10.3390/ cells11030552. EDN: https://elibrary.ru/CJVEAV
- 14. Hinrichs, K. (2 prepared to be used in a sentence2018). Assisted reproductive techniques in mares. Reproduction in Domestic Animals, 53, 4–13.
- Hyde, K. A., Aguiar, F. L. N., Alves, B. G., Alves, K. A., Gastal, G. D. A., Gastal, M. O., & Gastal, E. L. (2022). Preantral follicle population and distribution in the horse ovary. Reproduction and Fertility, 3, 90–102. https://doi.org/10.1530/raf-21-0100. EDN: https://elibrary.ru/XKLDII
- Kang, K. A., & Hyun, J. W. (2017). Oxidative stress, Nrf2, and epigenetic modification contribute to anticancer drug resistance. Toxicological Research, 33, 1–5.

- Luciano, A. M., Goudet, G., Perazzoli, F., Lahuec, C., & Gérard, N. (2006).
 Glutathione content and glutathione peroxidase expression in in vivo and in vitro matured equine oocytes. Molecular Reproduction and Development, 73, 658–666.
- Mihara, M., Uchiyama, M., & Fukazawa, K. (1980). Thiobarbituric acid value on fresh homogenate of rat as a parameter of lipid peroxidation in aging, CCL intoxication and vitamin E deficiency. Biochemical Medicine, 23, 302–311.
- Mohammed, A. A., Al-Suwaiegh, S., & Al-Shaheen, T. (2019). Effects of follicular fluid components on oocyte maturation and embryo development in vivo and in vitro. Advances in Animal and Veterinary Sciences, 7, 346–355.
- Murakami, K., Kotani, Y., Nakai, H., & Matsumura, N. (2020). Endometriosis associated ovarian cancer: the origin and targeted therapy. Cancers (Basel), 12(6), 1676.
- 21. Park, J. Y., Chung, T. W., Jeong, Y. J., Kwak, C. H., Ha, S. H., Kwon, K. M., Abekura, F., Cho, S. H., Lee, Y. C., Ha, K. T., Magae, J., Chang, Y. C., & Kim, C. H. (2017). Ascofuranone inhibits lipopolysaccharide-induced inflammatory response via NF-kappaB and AP-1, p-ERK, TNF-α, IL-6 and IL-1β in RAW 264.7 macrophages. PLOS ONE, 12, e0171322.
- Semenza, G. L. (2009). Regulation of oxygen homeostasis by hypoxia-inducible factor 1. Physiology (Bethesda), 24, 97–106. https://doi.org/10.1152/ physiol.00045.2008. EDN: https://elibrary.ru/TBLBWG
- 23. Tang, Z., Xu, R., Zhang, Z., Shi, C., Zhang, Y., Yang, H., Lin, Q., Liu, Y., Lin, F., Geng, B., & Wang, Z. (2021). HIF-1α protects granulosa cells from hypoxia-induced apoptosis during follicular development by inducing autophagy. Frontiers in Cell and Developmental Biology, 9, 1–12. https://doi.org/10.3389/fcell.2021.631016. EDN: https://elibrary.ru/QXOZWG
- 24. Tatemoto, H., Muto, N., Sunagawa, I., Shinjo, A., & Nakada, T. (2004). Protection of porcine oocytes against cell damage caused by oxidative stress during in vitro maturation: role of superoxide dismutase activity in porcine follicular fluid. Biology of Reproduction, 71, 1150–1157.
- 25. Tucker, K. E., Cleaver, B. D., & Sharp, D. C. (1993). Does resumption of follicular estradiol synthesis during vernal transition in mares involve a shift in steroidogenic pathways? Journal of Biological Reproduction, 1, 519.
- 26. Watson, E. D., Thomassen, R., Steele, M., Heald, M., Leask, R., Groome, N. P., & Riley, S. C. (2002). Concentrations of inhibin, progesterone and oestradiol in fluid from dominant and subordinate follicles from mares during spring transition and the breeding season. Journal of Animal Reproduction Science, 74, 55–67.

 Weber, D., Davies, M. J., & Grune, T. (2015). Determination of protein carbonyls in plasma, cell extracts, tissue homogenates, isolated proteins: focus on sample preparation and derivatization conditions. Redox Biology, 5, 367–380. https:// doi.org/10.1016/j.redox.2015.06.005. EDN: https://elibrary.ru/UOUOQP

References

- Berezina, D. A., Kudryavtseva, E. V., & Gavrilov, I. V. (2023). The role of oxidative stress in the female reproductive system: a literature review. Perm Medical Journal, 4, 62–72. https://doi.org/10.17816/pmj40462-72. EDN: https://elibrary.ru/CUJHQS
- Kostyuk, V. A., Potapovich, A. I., & Kovaleva, Zh. V. (1990). A simple and sensitive method for determining superoxide dismutase activity based on the oxidation reaction of quercetin. Questions of Medical Chemistry, 36, 88–91. EDN: https://elibrary.ru/SCXIZD
- Lankin, V. Z., & Gurevich, S. M. (1976). Inhibition of lipid peroxidation and detoxification of lipid peroxides by protective enzymatic systems (superoxide dismutase, glutathione peroxidase, glutathione reductase) in experimental malignant growth. Reports of the Academy of Sciences of the USSR, 226, 705–708.
- Lebedeva, L. F. (2012). Physiological and ultrasound characteristics of the normal estrous cycle in mares. Horse Breeding and Equestrian Sports, 1, 16–18. EDN: https://elibrary.ru/OXNIUV
- Lyakhovich, V. V., Vavilin, V. A., Zenkov, N. K., & Menshchikova, E. B. (2006). Active defense under oxidative stress. Antioxidant response element. Biochemistry, 71, 1183–1198. EDN: https://elibrary.ru/HVAEEX
- Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.
- Collins, A., Palmer, E., Bézard, J., Burke, J., Duchamp, G., & Buckley, T. (1997). A comparison of the biochemical composition of equine follicular fluid and serum at four different stages of the follicular cycle. Equine Veterinary Journal Supplement, 25, 12–16.
- 8. Ellman, G. L. (1959). Tissue sulfhydryl groups. Archives of Biochemistry and Biophysics, 82, 70–77.
- Fu, X., Shi, L., Liu, P., Jiao, Y., Guo, S., Chen, Q., Zheng, Q., Chen, X., & Wang, Y. (2023). Expression and clinical significance of HIF-1α in follicular fluid and granulosa cells in infertile PCOS patients. Reproductive Sciences, 30, 2263–2274. https://doi.org/10.1007/s43032-022-01135-2. EDN: https://elibrary.ru/ELENTM

- Galli, C., Duchi, R., Colleoni, S., Lagutina, I., & Lazzari, G. (2014). Ovum pick up, intracytoplasmic sperm injection and somatic cell nuclear transfer in cattle, buffalo and horses: from the research laboratory to clinical practice. Theriogenology, 81, 138–151.
- Gloire, G., & Piette, J. (2009). Redox regulation of nuclear post-translational modifications during NF-kappaB activation. Antioxidants & Redox Signaling, 11, 2209–2222.
- Gomard, T., Michaud, H. A., Tempé, D., Thiolon, K., & Pelegrin, M., Piechaczyk, M. (2010). An NF-kappaB-dependent role for JunB in the induction of proinflammatory cytokines in LPS-activated bone marrow-derived dendritic cells. PLOS ONE, 8, e9585.
- Hajam, Y. A., Rani, R., Ganie, S. Y., Sheikh, T. A., Javaid, D., Qadri, S. S., Pramodh, S., Alsulimani, A., Alkhanani, M. F., Harakeh, S., Hussain, A., Haque, S., & Reshi, M. S. (2022). Oxidative stress in human pathology and aging: molecular mechanisms and perspectives. Cells, 11, 552. https://doi.org/10.3390/cells11030552. EDN: https://elibrary.ru/CJVEAV
- 14. Hinrichs, K. (2 prepared to be used in a sentence 2018). Assisted reproductive techniques in mares. Reproduction in Domestic Animals, 53, 4–13.
- Hyde, K. A., Aguiar, F. L. N., Alves, B. G., Alves, K. A., Gastal, G. D. A., Gastal, M. O., & Gastal, E. L. (2022). Preantral follicle population and distribution in the horse ovary. Reproduction and Fertility, 3, 90–102. https://doi. org/10.1530/raf-21-0100. EDN: https://elibrary.ru/XKLDII
- Kang, K. A., & Hyun, J. W. (2017). Oxidative stress, Nrf2, and epigenetic modification contribute to anticancer drug resistance. Toxicological Research, 33, 1–5.
- Luciano, A. M., Goudet, G., Perazzoli, F., Lahuec, C., & Gérard, N. (2006).
 Glutathione content and glutathione peroxidase expression in in vivo and in vitro matured equine oocytes. Molecular Reproduction and Development, 73, 658–666.
- Mihara, M., Uchiyama, M., & Fukazawa, K. (1980). Thiobarbituric acid value on fresh homogenate of rat as a parameter of lipid peroxidation in aging, CCL intoxication and vitamin E deficiency. Biochemical Medicine, 23, 302–311.
- Mohammed, A. A., Al-Suwaiegh, S., & Al-Shaheen, T. (2019). Effects of follicular fluid components on oocyte maturation and embryo development in vivo and in vitro. Advances in Animal and Veterinary Sciences, 7, 346–355.
- 20. Murakami, K., Kotani, Y., Nakai, H., & Matsumura, N. (2020). Endometriosis associated ovarian cancer: the origin and targeted therapy. Cancers (Basel), 12(6), 1676.

- 21. Park, J. Y., Chung, T. W., Jeong, Y. J., Kwak, C. H., Ha, S. H., Kwon, K. M., Abekura, F., Cho, S. H., Lee, Y. C., Ha, K. T., Magae, J., Chang, Y. C., & Kim, C. H. (2017). Ascofuranone inhibits lipopolysaccharide-induced inflammatory response via NF-kappaB and AP-1, p-ERK, TNF-α, IL-6 and IL-1β in RAW 264.7 macrophages. PLOS ONE, 12, e0171322.
- Semenza, G. L. (2009). Regulation of oxygen homeostasis by hypoxia-inducible factor 1. Physiology (Bethesda), 24, 97–106. https://doi.org/10.1152/physiol.00045.2008. EDN: https://elibrary.ru/TBLBWG
- 23. Tang, Z., Xu, R., Zhang, Z., Shi, C., Zhang, Y., Yang, H., Lin, Q., Liu, Y., Lin, F., Geng, B., & Wang, Z. (2021). HIF-1α protects granulosa cells from hypoxia-induced apoptosis during follicular development by inducing autophagy. Frontiers in Cell and Developmental Biology, 9, 1–12. https://doi.org/10.3389/fcell.2021.631016. EDN: https://elibrary.ru/QXOZWG
- 24. Tatemoto, H., Muto, N., Sunagawa, I., Shinjo, A., & Nakada, T. (2004). Protection of porcine oocytes against cell damage caused by oxidative stress during in vitro maturation: role of superoxide dismutase activity in porcine follicular fluid. Biology of Reproduction, 71, 1150–1157.
- Tucker, K. E., Cleaver, B. D., & Sharp, D. C. (1993). Does resumption of follicular estradiol synthesis during vernal transition in mares involve a shift in steroidogenic pathways? Journal of Biological Reproduction, 1, 519.
- Watson, E. D., Thomassen, R., Steele, M., Heald, M., Leask, R., Groome, N. P., & Riley, S. C. (2002). Concentrations of inhibin, progesterone and oestradiol in fluid from dominant and subordinate follicles from mares during spring transition and the breeding season. Journal of Animal Reproduction Science, 74, 55–67.
- Weber, D., Davies, M. J., & Grune, T. (2015). Determination of protein carbonyls in plasma, cell extracts, tissue homogenates, isolated proteins: focus on sample preparation and derivatization conditions. Redox Biology, 5, 367–380. https://doi.org/10.1016/j.redox.2015.06.005. EDN: https://elibrary.ru/UOUOQP

ВКЛАД АВТОРОВ

Калашников В.В.: разработка концепции научной работы, написание статьи. **Лебедева Л.Ф.:** сбор материала, гинекологический осмотр животных, написание статьи.

Солодова Е.В.: сбор материала, гинекологический осмотр животных, проведение УЗИ-исследования.

Баковецкая О.В.: сбор и анализ данных, проведение литературного обзора. **Терехина А.А.:** проведение биохимической пробоподготовки, анализ данных.

- **Абаленихина Ю.В.:** проведение биохимических исследований, анализ данных, оформление статьи.
- **Щулькин А.В.:** проведение вестерн-блот анализа, статистическая обработка полученных результатов, написание статьи.

AUTHOR CONTRIBUTIONS

- **Valery V. Kalashnikov:** development of the concept of scientific work, writing an article.
- **Lyudmila F. Lebedeva:** collecting material, gynecological examination of animals, writing an article.
- **Elena V. Solodova:** collection of material, gynecological examination of animals, ultrasound examination. Bakovetskaya O.V.: data collection and analysis, conducting a literary review.
- Anna A. Terekhina: conducting biochemical sample preparation, data analysis.
 Yulia V. Abalenikhina: conducting biochemical research, data analysis, article design.
- **Alexey V. Shchulkin:** conducting Western blot analysis, statistical processing of the results obtained, writing an article.

ДАННЫЕ ОБ АВТОРАХ

- Калашников Валерий Васильевич, академик РАН, д-р с.-х. наук, профессор ФГБНУ «ВНИИ коневодства им. академика В.В. Калашникова» ул. Ученых, 500, п. Дивово, Глебковское С.П., Рязанская область, 391105, Российская Федерация Vniik08@mail.ru
- **Лебедева Людмила Федоровна,** д-р с.-х. наук, доцент, зав. лабораторией физиологии

ФГБНУ «ВНИИ коневодства им. академика В.В. Калашникова» ул. Ученых, 500, п. Дивово, Глебковское С.П., Рязанская область, 391105, Российская Федерация Lebedeva-L18@yandex.ru

Баковецкая Ольга Викторовна, д-р биол. наук, профессор, зав. кафедрой биологии

ФГБОУ ВО РязГМУ Минздрава России

ул. Высоковольтная, 9, г. Рязань, 390026, Российская Федерация bakov.olga@mail.ru

Терехина Анна Александровна, канд. биол. наук, доцент кафедры биологии

ФГБОУ ВО РязГМУ Минздрава России

ул. Высоковольтная, 9, г. Рязань, 390026, Российская Федерация terexina.ania1986@yandex.ru

Солодова Елена Владимировна, канд. биол. наук, старший научный сотрудник

ФГБНУ «ВНИИ коневодства им. академика В.В. Калашникова» ул. Ученых, 500, п. Дивово, Глебковское С.П., Рязанская область, 391105, Российская Федерация l.solodowa2012@yandex.ru

Абаленихина Юлия Владимировна, д-р мед. наук, доцент, профессор кафедры биологической химии, ведущий научный сотрудник ФГБОУ ВО РязГМУ Минздрава России ул. Высоковольтная, 9, г. Рязань, 390026, Российская Федерация abalenihina88@mail.ru

Щулькин Алексей Владимирович, д-р мед. наук, доцент, профессор кафедры фармакологии, ведущий научный сотрудник ФГБОУ ВО РязГМУ Минздрава России ул. Высоковольтная, 9, г. Рязань, 390026, Российская Федерация alekseyshulkin@rambler.ru

DATA ABOUT THE AUTHORS

Valery V. Kalashnikov, Academician of the Russian Academy of Sciences, MD (Agricultural Sciences), Professor

All-Russian Research Institute of Horse Breeding

Divovo village, Rybnovsky district, Ryazan region, 391105, Russian Federation

Vniik08@mail.ru SPIN-code: 2240-0492

ORCID: https://orcid.org/0000-0001-9845-1691

Lyudmila F. Lebedeva, MD (Agricultural Sciences), Associate Professor, Head of the Physiology Laboratory

All-Russian Research Institute of Horse Breeding

Divovo village, Rybnovsky district, Ryazan region, 391105, Russian Federation

Lebedeva-L18@yandex.ru SPIN-code: 6183-5929

ORCID: https://orcid.org/0000-0001-6960-5233

Olga V. Bakovetskaya, MD (Biol. Sciences), Professor, Head of the Department of Biology

Ryazan State Medical University

9, Vysokovoltnaya Str., Ryazan, 390026, Russian Federation

bakov.olga@mail.ru SPIN-code: 1780-5469

ORCID: https://orcid.org/0000-0002-8102-4463

Anna A. Terekhina, Ph.D. in Biology, Associate Professor, Department of Biology

Ryazan State Medical University

9, Vysokovoltnaya Str., Ryazan, 390026, Russian Federation terexina.ania1986@yandex.ru

SPIN-code: 5234-8631

ORCID: https://orcid.org/0000-0002-4824-5918

Elena V. Solodova, Ph.D. in Biology, Senior Researcher

All-Russian Research Institute of Horse Breeding

Divovo village, Rybnovsky district, Ryazan region, 391105, Russian Federation

l.solodowa2012@yandex.ru

ORCID: https://orcid.org/0000-0003-3495-3478

Yulia V. Abalenikhina, MD, PhD, Associate Professor, Professor in the Department of Biological Chemistry, Leading Researcher

Ryazan State Medical University

9, Vysokovoltnaya Str., Ryazan, 390026, Russian Federation abalenihina88@mail.ru

SPIN-code: 4496-9027

ORCID: https://orcid.org/0000-0003-0427-0967

Aleksey V. Shchulkin, MD, PhD, Associate Professor, Professor in the Department of Pharmacology, Leading Researcher

Ryazan State Medical University

9, Vysokovoltnaya Str., Ryazan, 390026, Russian Federation alekseyshulkin@rambler.ru

SPIN-code: 2754-1702

ORCID: https://orcid.org/0000-0003-1688-0017

Поступила 13.11.2024 После рецензирования 20.12.2024 Принята 10.01.2025 Received 13.11.2024 Revised 20.12.2024 Accepted 10.01.2025