Effect of zinc and copper ions on the morphogenesis of Robinia pseudoacacia L. in vitro culture
- Authors: Zholobova O.O.1, Tereschenko T.V.1
-
Affiliations:
- Federal State Budgetary Institution “Federal Scientific Center of Agroecology, Complex Melioration and Protective Afforestation of the Russian Academy of Sciences”
- Issue: Vol 17, No 4 (2025)
- Pages: 26-44
- Section: Plant Physiology and Biochemistry
- Published: 31.10.2025
- URL: https://journal-vniispk.ru/2658-6649/article/view/351915
- DOI: https://doi.org/10.12731/2658-6649-2025-17-4-1212
- ID: 351915
Cite item
Full Text
Abstract
Background. Modification of the composition and concentration of microelements in the nutrient medium makes it possible to qualitatively assess the effect of metal ions on the morphogenic potential of plants in vitro.
Purpose. To study the effect of various zinc and copper concentrations in the culture medium on the morphogenic activity of Robinia pseudoacacia seedlings and regenerated plants to optimize the technology of microclonal propagation.
Materials and methods. The study was conducted at the Biotechnology Laboratory of the Federal Scientific Center of Agroecology of the Russian Academy of Sciences using R. pseudoacacia seed material and microshoots. The Murashige and Skoog protocol without the addition of phytohormones was used as the main nutrient medium. The following ranges of zinc and copper salt concentrations were used in the experiment: ZnSO4×7H2O (from 1.875 to 30 mg/l) and CuSO4×5H2O (from 3.75 to 60 mg/l). The shoot length, number of internodes and leaves, length of formed roots, and color of the leaf blade were estimated. Statistical data processing was performed using the Statistica 12 software package (StatSoft, USA).
Results. The morphogenic role of zinc and copper ions in the culture medium during microclonal propagation of Robinia pseudoacacia was determined. For R. pseudoacacia seedlings and microshoots, a stimulating effect was exerted by a zinc sulfate concentration of 15 mg/l. Zn ions in the concentration range from 1.875 to 15 mg/l generally showed a stimulating effect on the processes of hemorrhizogenesis. The addition of copper ions in the studied range was manifested in a gradual inhibition of the morphogenic potential of both seedlings and cultivated microshoots of R. pseudoacacia. High concentrations of copper sulfate of 30 and 60 mg/l were sublethal for R. pseudoacacia microshoots.
Conclusion. The obtained results show that the studied concentrations of zinc ions can be used as effective stimulators of R. pseudoacacia morphogenesis in vitro culture.
Keywords
About the authors
Olga O. Zholobova
Federal State Budgetary Institution “Federal Scientific Center of Agroecology, Complex Melioration and Protective Afforestation of the Russian Academy of Sciences”
Email: zholobova-o@vfanc.ru
ORCID iD: 0000-0002-1594-4181
SPIN-code: 7730-9448
Scopus Author ID: 58168717100
ResearcherId: AAO-3716-2021
Candidate of Biological Sciences, Leading Researcher – Head of the Biotechnology Laboratory
Russian Federation, 97, Universitetskiy Prospekt, Volgograd, 400062, Russian Federation
Tatiana V. Tereschenko
Federal State Budgetary Institution “Federal Scientific Center of Agroecology, Complex Melioration and Protective Afforestation of the Russian Academy of Sciences”
Author for correspondence.
Email: tereschenko@vfanc.ru
ORCID iD: 0000-0001-9116-6062
ResearcherId: AAO-4937-2021
Junior Researcher of the Biotechnology Laboratory
Russian Federation, 97, Universitetskiy Prospekt, Volgograd, 400062, Russian Federation
References
- Baboshko, O. I., & Tanyukevich, V. V. (2015). Productivity and ameliorative role of forest belts with Robinia pseudoacacia L. in the steppe zone (108 pp.). Novocherkassk: Novocherkassk State Amelioration Academy.
- Barsukova, E. N., Klykov, A. G., Fisenko, P. V., Borovaya, S. A., & Chaikina, E. L. (2020). Application of biotechnology methods in buckwheat breeding in the Far East. Bulletin of the Far Eastern Branch of the Russian Academy of Sciences, 4, 58–66. https://doi.org/10.37102/08697698.2020.212.4.010. EDN: https://elibrary.ru/WDMMAU
- Barsukova, E. N., Klykov, A. G., & Chaikina, E. L. (2023). Breeding evaluation of buckwheat cultivars (Fagopyrum esculentum Moench) obtained using copper and zinc ions. Agrarian Science, 9, 84–89. https://doi.org/10.32634/0869-8155-2023-374-9-84-89. EDN: https://elibrary.ru/BDEVXM
- Borovaya, S. A., Barsukova, E. N., & Klykov, A. G. (2022). Effect of selective media with heavy metals on the growth and development of Fagopyrum esculentum Moench in vitro. Bulletin of KrasSAU, 7, 95–101. https://doi.org/10.36718/1819-4036-2022-7-95-101. EDN: https://elibrary.ru/GSBMOF
- Borovaya, S. A., Klykov, A. G., & Barsukova, E. N. (2023). Effect of zinc toxicity and mineral starvation on the growth and development of common buckwheat in in vitro culture. Proceedings on Applied Botany, Genetics and Breeding, 184(2), 9–18. https://doi.org/10.30901/2227-8834-2023-2-9-18. EDN: https://elibrary.ru/OXMCGJ
- Drozdova, I. V., AlekseevaPopova, N. V., Belyaeva, A. I., & Kalimova, I. B. (2014). Effect of copper, nickel, and cadmium on the growth and some physiological parameters of Pinus sylvestris and Picea abies (Pinaceae) seedlings. Plant Resources, 50(4), 554–566. EDN: https://elibrary.ru/STDJWN
- Ermoshin, A. A., Orlova, M. V., Neugodnikova, E. A., Grigorieva, E. I., Teptina, A. Yu., & Kiseleva, I. S. (2020). Growth of clover and bugloss in vitro in a medium with high content of heavy metals. Ecobiotech, 3(2), 253–260. https://doi.org/10.31163/2618-964X-2020-3-2-253-260. EDN: https://elibrary.ru/QVFBTY
- Zemlyanukhina, O. A., Kalaev, V. N., Voronina, V. S., & Yeprintsev, A. T. (2017). Biochemical adaptation of Weigela florida «Variegata» Bunge A. DC. microclones to salt and copperinduced stresses. Siberian Journal of Forest Science, 6, 89–101. https://doi.org/10.15372/SJFS20170607. EDN: https://elibrary.ru/YMADDU
- Minaychev, V. V., Sigolaeva, T. E., Kuznetsov, D. A., & Ivanishchev, V. V. (2015). Effect of zinc and nickel ions on the formation of Pisum sativum L. seedlings. Proceedings of Tula State University. Natural Sciences, 3, 292–304. EDN: https://elibrary.ru/UMEKSZ
- Sedov, K. A., Litvinova, I. I., & Gladkov, E. A. (2012). Assessment of copper phytotoxicity and production of stressresistant dicotyledonous plants. Proceedings of MSTU, 2, 273–276. EDN: https://elibrary.ru/PVDJRT
- Timofeeva, N. A., Sigareva, L. E., Krylova, E. G., & Lapirova, A. G. (2016). Effect of copper and nickel ions on morphophysiological parameters of littoral aquatic plant seedlings. Proceedings of the Russian Academy of Sciences. Biological Series, 3, 295–302. https://doi.org/10.7868/S0002332916030115. EDN: https://elibrary.ru/VYLTFT
- Titov, A. F., Kaznina, N. M., & Talanova, V. V. (2014). Heavy metals and plants (194 pp.). Petrozavodsk: Karelian Research Centre of the RAS. EDN: https://elibrary.ru/UAJSQV
- Ahmad, N., Alatar, A. A., Faisal, M., Khan, M. I., Fatima, N., Anis, M., et al. (2015). Effect of copper and zinc on the in vitro regeneration of Rauvolfia serpentina. Biologia Plantarum, 59(11), 11–17. https://doi.org/10.1007/s10535-014-0479-5
- Ashagre, H., Almaw, D., & Feyisa, T. (2013). Effect of copper and zinc on seed germination, phytotoxicity, tolerance and seedling vigor of tomato (Lycopersicon esculentum L. cultivar Roma VF). International Journal of Agricultural Science Research, 2(11), 312–317.
- Bojarczuk, K. (2004). Effect of toxic metals on the development of poplar (Populus tremula L. × P. alba L.) cultured in vitro. Polish Journal of Environmental Studies, 13(2), 115–120.
- Dikkaya, E. T., & Ergun, N. (2014). Effects of cadmium and zinc interactions on growth parameters and activities of ascorbate peroxidase on maize (Zea mays L. MAT 97). European Journal Experimental Biology, 4(1), 288–295.
- González, Á., Chumillas, V., & del Carmen Lobo, M. (2012). Effect of Zn, Cd and Cr on growth, water status and chlorophyll content of barley plants (Hordeum vulgare L.). Agricultural Sciences, 3(4), 572–581. https://doi.org/10.4236/as.2012.34069
- Goyal, D., Yadav, A., Prasad, M., Singh, T. B., Shrivastav, P., Ali, A., Kumar, D. P., & Mishra, S. (2020). Effect of heavy metals on plant growth: an overview: Contaminants in agriculture (pp. 79–101). Springer, Cham. https://doi.org/10.1007/978-3-030-41552-5_4. EDN: https://elibrary.ru/GZRKCE
- Mangal, M., Agarwal, M., & Bhargava, D. (2013). Effect of cadmium and zinc on growth and biochemical parameters of selected vegetables. Journal of Pharmacognosy and Phytochemistry, 2(1), 110–114.
- Manivasagaperumal, R., Balamurugan, S., Thiyagarajan, G., & Sekar, J. (2011). Effect of zinc on germination, seedling growth and biochemical content of cluster bean (Cyamopsis tetragonoloba (L.) Taub). Current Botany, 2(5), 11–15.
- Murashige, T., & Skoog, F. A. (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiologia Plantarum, 15(3), 473–497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
- Vwioko, E. D., & Digwe, K. C. (2018). Comparing effects of copper and chromium treatments on growth of Cyperus esculentus L. in field and in vitro studies and further explanation by restriction fragment length polymorphism analysis. East African Journal of Sciences, 12(1), 41–50.
- Zayed, Z. E., ELDawayati, M. M., Hussien, F. A., & Saber, T. Y. (2020). Enhanced in vitro multiplication and rooting of date palm cv. Yellow Maktoum by zinc and copper ions. Plant Archives, 20(1), 517–528.
Supplementary files


