Monitoring of genetic polymorphism of DNA markers of dairy cattle productivity

Cover Page

Cite item

Full Text

Abstract

Background. Traditional dairy cattle improvement systems require significant resources and are not highly efficient. Selection based on DNA markers makes it possible to optimally form herds. Monitoring of genetic polymorphism of genes associated with improved qualities of dairy cattle is the basis for correction of breeding programs.

Purpose. To study the genotypic features of dairy cattle populations in the Omsk region.

Materials and methods. The object of the study is the genotypes of cows of the red steppe and black-mottled breeds. Monitoring of gene polymorphism was carried out on the basis of genetic passports of cows from 2020 to 2024. The number of genotypes of cows in the monitoring is 356 heads. Genotyping was carried out in the laboratories of KSITEST, Moscow and in the Federal State Budgetary Educational Institution "GAU Northern Trans-Urals", Tyumen. SNPs have been determined by the CSN2, LGB, and GH genes.

Results. The A1 allele, the CSN2 gene, has the highest proportion in the population, from 40% in the red steppe breed and up to 45% in the black-mottled one. The lowest frequency of occurrence in the black-and–white breed in the F allele is 0.71%. The proportion of CSN2A2A2 homozygotes in the red steppe breed is 23.33%, which is higher than in the black-mottled breed by 6.18%. The frequency of occurrence of the allele A of the LGB gene in black-and-white cows was 62.14% and 51.67% in the red steppe breed. From 2022 to 2024, the frequency of the desired allele of the CSN2 gene decreased by 0.06 – 0.07. The frequency of the desired allele of GH and LGB increased in 2024 in two populations. The genetic basis of the population has practically not changed over the period 2022-2024, which indicates the absence of breeding pressure, taking into account DNA markers.

Conclusion. Dairy cattle populations in the Omsk region are characterized by high genetic diversity in terms of genes-markers of dairy productivity, and regular monitoring of the genetic structure of breeds will optimize the breeding process.

About the authors

Irina P. Ivanova

Omsk State Agrarian University named after P.A. Stolypin

Author for correspondence.
Email: ip.ivanova@omgau.org
ORCID iD: 0000-0001-5700-9186
SPIN-code: 4502-2120
Scopus Author ID: 57212277573

Candidate of Agricultural Sciences, Associate Professor, Associate Professor of the Department of Breeding and Genetics of Farm Animals

 

Russian Federation, 1, Institutskaya Square, Omsk, 644008, Russian Federation

Elena N. Yurchenko

Omsk State Agrarian University named after P.A. Stolypin

Email: en.yurchenko@omgau.org
ORCID iD: 0000-0002-7602-8099
SPIN-code: 5242-1428

Candidate of Agricultural Sciences, Associate Professor, Head of the Department of Breeding and Genetics of Farm Animals

 

Russian Federation, 1, Institutskaya Square, Omsk, 644008, Russian Federation

Yuliya A. Okoneshnikova

Omsk State Agrarian University named after P.A. Stolypin

Email: yua.okontshnikova@omgau.org
ORCID iD: 0009-0009-3615-6342
SPIN-code: 4889-7952

Assistant of the Department of Breeding and Genetics of Farm Animals

 

Russian Federation, 1, Institutskaya Square, Omsk, 644008, Russian Federation

References

  1. Deryugina, A. V., Ivashchenko, M. N., Metelin, V. B., et al. (2023). Effect of technological stress on nonspecific resistance of cows’ organisms. Siberian Journal of Life Sciences and Agriculture, 15(3), 26–40. https://doi.org/10.12731/2658-6649-2023-15-3-26-40. EDN: https://elibrary.ru/RJKSHF
  2. Dunin, I. M., Tyapugin, S. E., Semenova, N. V., et al. (2024). Efficiency of dairy cattle selection using different methods of breeding value prediction. Milk and Meat Cattle Breeding, (2), 3–5. https://doi.org/10.33943/MMS.2024.18.25.001. EDN: https://elibrary.ru/VEEIZS
  3. Ivanova, I. P. (2024). Genetic characteristics of Holstein cows in Omsk Oblast. Bulletin of Omsk State Agrarian University, (3(55)), 74–79. EDN: https://elibrary.ru/HSXABJ
  4. Isupova, Yu. V., & Achkasova, E. V. (2021). Prospects for using genomic breeding value assessment in dairy cattle selection under conditions of the Udmurt Republic. Proceedings of Orenburg State Agrarian University, (4(90)), 307–311. EDN: https://elibrary.ru/YYBQKA
  5. Karymsakov, T. N. (2021). Efficiency of using index assessment methods in dairy cattle breeding. Bulletin of Agrarian Science, (3(90)), 89–93. https://doi.org/10.17238/issn2587-666X.2021.3.89. EDN: https://elibrary.ru/LWHGIU
  6. Oleynik, S. A., Skripkin, V. S., Lesnyak, A. V., et al. (2023). Comparative analysis of fatty acid composition of milk from Red Steppe cows under different natural and climatic zones of the North Caucasus. Siberian Journal of Life Sciences and Agriculture, 15(4), 236–259. https://doi.org/10.12731/2658-6649-2023-15-4-236-259. EDN: https://elibrary.ru/LZRJFA
  7. Popov, N., Nekrasov, A., & Fedotova, E. (2020). Genetic marking in cattle breeding. Animal Husbandry of Russia, (S2), 9–15. https://doi.org/10.25701/ZZR.2020.47.51.002. EDN: https://elibrary.ru/ZXFJUR
  8. Skachkova, O. A., & Brigida, A. V. (2022). Selection for increased milk productivity in cattle: significance of genetic marker predictors. Veterinary Medicine and Feeding, (2), 47–49. https://doi.org/10.30917/ATT-VK-1814-9588-2022-2-13. EDN: https://elibrary.ru/UKKPNR
  9. Surov, A. I., Shumaenko, S. N., Omarov, A. A., et al. (2023). Use of genotyping method for selection of animals of desired type. Siberian Journal of Life Sciences and Agriculture, 15(4), 136–157. https://doi.org/10.12731/2658-6649-2023-15-4-136-157. EDN: https://elibrary.ru/KLDNAL
  10. Chizhova, L. N., Surzhikova, E. S., & Mikhailenko, T. N. (2020). Assessment of genetic potential of young dairy cattle by marker genes CSN3, GH, PIT1, PRL. Bulletin of Kursk State Agricultural Academy, (6), 40–46. EDN: https://elibrary.ru/SWRWQT
  11. Sheveleva, O. M., Chasovshchikova, M. A., & Sukhanova, S. F. (2021). Productive and some biological characteristics of the Salers cattle breed gene pool under conditions of Western Siberia. Siberian Journal of Life Sciences and Agriculture, 13(1), 156–173. https://doi.org/10.12731/2658-6649-2021-13-1-156-173. EDN: https://elibrary.ru/GERQEL
  12. Barkema, H. W., Von Keyserlingk, M. A. G., Kastelic, J. P., Lam, T. J. G. M., Luby, C., Roy, J. P., Kastelic, & Kelton, D. F. (2015). Invited review: Changes in the dairy industry affecting dairy cattle health and welfare. Journal of Dairy Science, 98(11), 7426–7445. https://doi.org/10.3168/jds.2015-9377
  13. Bijttebier, J., Hamerlinck, J., Moakes, S., Scollan, N., Van Meensel, J., & Lauwers, L. (2017). Low input dairy farming in Europe: exploring a context specific notion. Agricultural Systems, 156, 43–51. https://doi.org/10.1016/j.agsy.2017.05.016
  14. Borusiewicz, A., & Mazur, K. (2017). Environmental and economic conditioning of the breeding of dairy cattle. Fresenius Environmental Bulletin, 26(10), 5824–5832.
  15. Galloway, C., Conradie, B., Prozesky, H., & Esler, K. (2018). Opportunities to improve sustainability on commercial pasture based dairy farms by assessing environmental impact. Agricultural Systems, 166, 1–9. https://doi.org/10.1016/j.agsy.2018.07.008. EDN: https://elibrary.ru/VHGAEG
  16. Kharzhau, A., Batyrgaliyev, Y. A., & Bogolyubova, N. V. (2023). Features of feeding dairy cows of cattle. Science and Education, (2–3(71)), 44–51. https://doi.org/10.52578/2305-9397-2023-2-3-44-51. EDN: https://elibrary.ru/XASXYG
  17. Naumenkova, V. A., Khrabrova, L. A., & Atroshchenko, M. M. (2023). Analysis of the interconnection of stallion semen indicators with genetic markers of proteins. Siberian Journal of Life Sciences and Agriculture, 15(4), 197–209. https://doi.org/10.12731/2658-6649-2023-15-4-197-209. EDN: https://elibrary.ru/HURKBR
  18. Rozhkova Timina, I. O. (2023). Feed allowance for Holstein cows during lactation and dry periods (Sakhalin island). Siberian Journal of Life Sciences and Agriculture, 15(4), 56–73. https://doi.org/10.12731/2658-6649-2023-15-4-56-73. EDN: https://elibrary.ru/IHVNLN
  19. Sedykh, T. A., Kalashnikova, L. A., Dolmatova, I. Yu., et al. (2023). Developing meat productivity in bull calves of different DGAT1 genotypes. Siberian Journal of Life Sciences and Agriculture, 15(3), 155–174. https://doi.org/10.12731/2658-6649-2023-15-3-155-174. EDN: https://elibrary.ru/XIBFND
  20. Sheveleva, O. M., & Bakharev, A. A. (2022). Meat productivity of French bred bulls due to adaptive technology in Western Siberia. Siberian Journal of Life Sciences and Agriculture, 14(4), 370–383. https://doi.org/10.12731/2658-6649-2022-14-4-370-383. EDN: https://elibrary.ru/BNQCIU

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».