Prospects for the use of calendula flower polysaccharide in the post‑stress period

Cover Page

Cite item

Full Text

Abstract

Background.  Stress and its consequences have become one of the most significant medical and social problems of our time, affecting about 80% of all diseases. Everyone, regardless of age, gender, culture or social status, is affected by stress. This circumstance leads to a growing interest in the study of adaptive reactions to various types of stress, their negative consequences and the search for effective and fast methods to prevent and eliminate them in modern society.

The variety of adaptive reactions, their mechanisms and optimization possibilities, as well as ways to increase the body's resistance to adverse effects remain important issues of pathological physiology and pharmacology.

In recent decades, a particularly relevant area has become the study of new natural plant adaptogens that can limit stress, and which are more common than traditional ones, such as ginseng, rhodiola rosea and eleutherococcus prickly. The clinical value of these new adaptogens is determined by their ability to effectively optimize the processes of emergency and long-term adaptation, which includes reducing hyperergic damage caused by stress, activating regenerative metabolic processes, prolonging the stage of resistance and preventing the development of the stage of exhaustion. In addition, new plant adaptogens should have medicinal properties, contributing to faster recovery after stress damage and dysfunction of various systems and organs.

Purpose. To study the effect of polysaccharide extracted from calendula flowers on the regulation of erythropoiesis and restoration of hematopoietic functions in animals under stress, as well as to evaluate its potential as a therapeutic agent for improving the body's condition in the post-stress period.

Materials and methods. In the course of the work, a review of literature data from open medical databases such as eLibrary, PubMed, Google Scholar and the Chinese CNKI citation database was conducted. The review was unsystematic in nature and was a semantic analysis of research conducted over the past 10 years (from 2014 to 2024). As a result, more than 4,000 publications were found. The materials received were analyzed and discussed by the research group, and only those papers that met the following criteria were included in the final review: the study is devoted to the study of stress mechanisms and their correction; it is an experimental or clinical study with a clearly described methodology that allows the results to be considered reliable; published in peer-reviewed scientific journals; the full-text version of the article is available in open databases or can be obtained from the authors through the Research Gate.

Results. This review is devoted to the consideration of various aspects of the biological activity of plant polysaccharides, in particular those extracted from calendula officinalis flowers and the possibility of their use as effective plant adaptogens under stress.

Conclusion. The results of the experiment showed that the polysaccharide helps to reduce the number of erythroblastic islets in the bone marrow and the level of red blood cells in the blood, which may indicate its ability to regulate erythropoiesis. In addition, there was a significant increase in hemoglobin levels and its concentration in erythrocytes, as well as an increase in catalase activity in erythrocyte membranes in animals treated with polysaccharide. These data confirm the possibility of using calendula polysaccharide as a therapeutic agent for restoring hematopoietic functions and improving the body's condition in the post-stress period, which opens up new prospects for further research in this field.

About the authors

Darya S. Vanina

Ryazan State Medical University named after Academician I. P. Pavlov

Author for correspondence.
Email: sirotkina.dashulya@inbox.ru
ORCID iD: 0009-0009-0690-3300

Assistant of the Department of Pathophysiology

 

Russian Federation, 9, Vysokovoltnaya Str., Ryazan, 390026, Russian Federation

Yuri Yu. Byalovsky

Ryazan State Medical University named after Academician I. P. Pavlov

Email: b_uu@mail.ru
ORCID iD: 0000-0002-6769-8277

MD, Professor, Head of the Department of Pathophysiology

 

Russian Federation, 9, Vysokovoltnaya Str., Ryazan, 390026, Russian Federation

Igor A. Sychev

Ryazan State Medica lUniversity named after Academician I. P. Pavlov

Email: i.sytchev@rzgmu.ru
ORCID iD: 0009-0003-3684-8775

Doctor of Biological Sciences, Associate Professor of the Department of General Chemistry

 

Russian Federation, 9, Vysokovoltnaya Str., Ryazan, 390026, Russian Federation

Andrey A. Burzhinsky

Ryazan State Medical University named after Academician I. P. Pavlov

Email: andreyhistology@gmail.com
ORCID iD: 0009-0002-9398-4741

PhD, Associate Professor of the Department of Histology, Pathological Anatomy and Medical Genetics

 

Russian Federation, 9, Vysokovoltnaya Str., Ryazan, 390026, Russian Federation

Raisa K. Voronina

Ryazan State Medical University named after Academician I. P. Pavlov

Email: raisa.voronina58@yandex.ru
ORCID iD: 0009-0004-0279-8252

Senior Lecturer at the Department of Histology, Pathological Anatomy and Medical Genetics

 

Russian Federation, 9, Vysokovoltnaya Str., Ryazan, 390026, Russian Federation

References

  1. Apokina, L. Yu., & Ershova, E. L. (2018). The effect of xenobiotics and phytoextracts on blood parameters in mice in an experiment. Scientific Journal, (6), 29. EDN: https://elibrary.ru/XTIOZN
  2. Afanasyeva, P. V., & Kurkina, A. V. (2015). Rationale for approaches to pharmaceutical analysis of raw materials and preparations of calendula officinalis. Postgraduate Bulletin of the Volga Region, (5–6), 223–226. EDN: https://elibrary.ru/WXOGXB
  3. Beloglazova, K. E., Rysmukhambetova, G. E., & Ziruk, I. V. (2021). Dynamics of biochemical blood parameters in rats with polysaccharides added to feed. In Proceedings of the VI International Scientific and Practical Conference “Priorities and Scientific Support for the Implementation of the State Policy of Healthy Nutrition in Russia” (Oryol, March 15–31, 2021, pp. 14–18). Oryol. EDN: https://elibrary.ru/BFIEBQ
  4. Boyko, T. V., Buzmakova, N. A., & Varfolomeyeva, K. V. (2020). Calendula officinalis as a source of biologically active substances for human and veterinary medicine. In Current Issues in Veterinary Medicine: Proceedings of the International Scientific and Practical Conference Dedicated to the 100th Anniversary of the Department of Veterinary Microbiology, Infectious and Invasive Diseases, Faculty of Veterinary Medicine, IVMiB (Omsk, June 29, 2020, pp. 250–255). Omsk: Omsk State Agrarian University named after P. A. Stolypin.
  5. Bokov, D. O., Sokurenko, M. S., & Bessonov, V. V. (2019). Qualitative and quantitative assessment of plant polysaccharides as food and pharmaceutical substances of plant and animal origin. In Nutrition and Health (pp. 6–8). EDN: https://elibrary.ru/WKFOQZ
  6. Varfolomeyeva, K. V., Yakob, D. A., Boyko, T. V., & Luksha, E. A. (2021). Pharmacological agents based on calendula officinalis (Calendula officinalis L.): prospects for use in veterinary medicine. Bulletin of Omsk SAU, (4), 81–101. https://doi.org/10.48136/2222 0364_2 prepared_2021_4_81. EDN: https://elibrary.ru/BYEHWC
  7. Vychuzhanova, E. A. (2015). The effect of chronic stress on acute stress response in rats. Science and Education: Problems, Ideas, Innovations, (1), 9–11. EDN: https://elibrary.ru/UEACFX
  8. Grishin, A. I. (2017). Pharmacognostic analysis of medicinal plant raw materials with anti inflammatory properties: calendula officinalis (Calendula officinalis L.), chamomile (Chamomilla recutita L.), yarrow (Achillea millefolium L.). Bulletin of Medical Internet Conferences, 7(6), 1254. EDN: https://elibrary.ru/ZGCFGZ
  9. Dadonova, E. D., & Grifel, D. A. (2021). The effect of plant polysaccharides on blood and hematopoiesis. In Innovative Discourse of Modern Science and Technology Development (pp. 229–233). EDN: https://elibrary.ru/QSZEWA
  10. Denisov, E. I., Pfaf, V. F., Stepanyan, I. V., & Gorokhova, S. G. (2016). Shift in biomedical paradigm: from homeostasis to allostasis. Neurocomputers: Development, Application, (2), 16–21. EDN: https://elibrary.ru/VOKTAP
  11. Erzyleva, T. V. (2015). The effect of plant polysaccharides on blood and hematopoiesis in health and disease. Science of the Young (Eruditio Juvenium), (3), 97–102. EDN: https://elibrary.ru/UMFNDL
  12. Esin, R. G., Esin, O. R., & Khakimova, A. R. (2020). Stress induced disorders. Journal of Neurology and Psychiatry named after S. S. Korsakov, (5), 131–137. https://doi.org/10.17116/jnevro2020120051131. EDN: https://elibrary.ru/HWEYZZ
  13. Ivanova, E. A. (2014). Modern concepts of the impact of psychoemotional stress on immune system organs (using the example of the digestive system in rats). Academic Journal of Western Siberia, 10(2), 117–118. EDN: https://elibrary.ru/SBLWYD
  14. Klypa, T. V., Orekhova, M. S., & Zabrosaeva, L. I. (2015). Hyperglycemia in critical conditions. Diabetes Mellitus, (1), 33–41. https://doi.org/10.14341/DM2015133 41. EDN: https://elibrary.ru/TOVLHR
  15. Kozhevnikov, A. A., Raskina, K. V., Martynova, E. Yu., Tyakht, A. V., Perfiliev, A. V., & Drapkina, O. M. (2017). Gut microbiota: modern concepts of species composition, functions, and research methods. RMJ, 25(17), 1244–1247. EDN: https://elibrary.ru/ZPEWXZ
  16. Kopchekchi, K. A. (2023). The effect of polysaccharides on the rat organism. In In the World of Scientific Discoveries (pp. 504–507). EDN: https://elibrary.ru/MELOJX
  17. Kupriyanov, R. V., & Zhdanov, R. I. (2014). Stress and allostasis: problems, prospects, and interrelations. I. P. Pavlov Journal of Higher Nervous Activity, 64(1), 21. https://doi.org/10.7868/S0044467714010080. EDN: https://elibrary.ru/RUNUFT
  18. Kurkin, V. A., Avdeeva, E. V., Pravdivtseva, O. E., Kurkina, A. V., Varina, N. R., Stenyaeva, V. V., Tsibina, A. S., & Pervushkin, S. V. (2021). Scientific rationale for the use of medicinal plants in otorhinolaryngology. Science and Innovations in Medicine, 6(2), 54–59. https://doi.org/10.35693/2500 1388 2021 6 2 54 59. EDN: https://elibrary.ru/INAJXQ
  19. Kurkin, V. A., Kurkina, A. V., & Zaitseva, E. N. (2016). Study of diuretic activity of preparations based on calendula officinalis flowers. Bulletin of Siberian Medicine, 15(2), 51–57. https://doi.org/10.20538/1682 0363 2016 2 51 57. EDN: https://elibrary.ru/VZTZSB
  20. Malankina, E. L., Kozlovskaya, L. N., Biktimirova, L. V., & Komarova, E. L. (2021). Comprehensive assessment of calendula officinalis cultivars by content of major pharmacologically significant compounds. Vegetables of Russia, (1), 69–73. https://doi.org/10.18619/2072 9146 2021 1 69 73. EDN: https://elibrary.ru/PYONPC
  21. Matkarimova, A. A., Tursunova, Sh. A., & Khamidov, Sh. A. (2016). Bioecological features of some medicinal plants. International Scientific Review, (18), 32–34. EDN: https://elibrary.ru/WYBEJT
  22. Matkina, O. V. (2014). Pathohistological changes in thymus and spleen of non inbred white rats under acute stress. Perm Medical Journal, 31(1), 121–128. EDN: https://elibrary.ru/RXXDUN
  23. Mirovich, V. M., & Privalova, E. G. (2018). Biologically active substances of plants (polysaccharides, essential oils, phenolglycosides, coumarins, flavonoids): textbook. Irkutsk: ISMU. 70 pp.
  24. Petryankin, F. P., Lavrentyev, A. Yu., & Sherne, V. S. (2017). The effect of feeding on the immune status of animal organisms (scientific review). Bulletin of the Chuvash State Agricultural Academy, (2), 46. EDN: https://elibrary.ru/ZWTRCT
  25. Sevryukova, G. A. (2022). Reostasis, allostasis, and allostatic load: what is meant by these terms? International Research Journal, (10), 124. https://doi.org/10.23670/IRJ.2022.124.22. EDN: https://elibrary.ru/OUVLSX
  26. Selye, H. (1972). At the level of the whole organism (Transl. from English). Moscow: Nauka. 121 pp.
  27. Selye, H. (1960). Essays on the adaptation syndrome. Moscow: Medgiz. 254 pp.
  28. Troitsky, M. S., Tokarev, A. R., & Gladkikh, P. G. (2016). Possibilities of psychoemotional stress correction (brief literature review). In Prospects of University Science: Collection of Works (Part 2, pp. 66–77). Tula. EDN: https://elibrary.ru/WYIZLT
  29. Khazieva, F. M., Tsyganok, S. I., Samatadze, T. E., & Morozov, A. I. (2019). Varietal specificity of macro and microelement accumulation in calendula officinalis L. flowers and their cytogenetic variability. Agrochemical Bulletin, (2), 58–61. https://doi.org/10.24411/0235-2516-2019-10029. EDN: https://elibrary.ru/VGPGRQ
  30. Chernykh, I. V., Kirichenko, E. E., Shchulkin, A. V., Popova, N. M., Kotlyarova, A. A., & Yakusheva, E. N. (2018). Possibilities of using non starch plant derived polysaccharides in clinical practice. I. P. Pavlov Russian Medical Biological Herald, 26(2), 305–316. https://doi.org/10.23888/PAVLOVJ2018262305 316. EDN: https://elibrary.ru/OVIRWR
  31. Shatalova, T. A., Sergeeva, E. O., & Michnik, L. A. (2017). Study of the pharmacological action of stabilized aqueous extracts of chamomile, yarrow, calendula, and buckthorn. Journal of Scientific Articles “Health and Education in the XXI Century”, 19(10), 317–320. EDN: https://elibrary.ru/ZATPGJ
  32. Shvydkiy, V. O., Smirnova, A. N., Volkov, V. A., & Shishkina, L. N. (2020). UV spectrometry and lipid composition of water propylene glycol extracts of several medicinal plants. Chemistry of Plant Raw Material, (1). https://doi.org/10.14258/jcprm.2020016115. EDN: https://elibrary.ru/KZRCKD
  33. Sheremetyeva, A. S., Durnova, N. A., & Raikova, S. V. (2017). Comparative analysis of antimicrobial activity of infusions of calendula officinalis (Calendula officinalis L.) and chamomile (Chamomilla recutita L.). Bulletin of the Botanical Garden of Saratov State University, 15(3), 41–49. https://doi.org/10.18500/1682 1637 2017 15 3 41 49. EDN: https://elibrary.ru/ZUCHUF
  34. Ebzeeva, E. Yu., & Polyakova, O. A. (2022). Stress and stress induced disorders. Medical Council, 16(2), 127–133. https://doi.org/10.21518/2079 701X 2022 16 2 127 133. EDN: https://elibrary.ru/AWUNWO
  35. Ahlawat, S., & Sharma, K. K. (2021). Gut organ axis: a microbial outreach and networking. Letters in Applied Microbiology, 72(6), 636–668.
  36. Ahmadi, N., Hajsadeghi, F., Yehuda, R., Anderson, N., Garfield, D., Ludmer, C., & Vaidya, N. (2015). Traumatic brain injury, coronary atherosclerosis and cardiovascular mortality. Brain Injury, 29(13–14), 1635–1641.
  37. Chakravarty, S., Pathak, S. S., Maitra, S., Khandelwal, N., Karisetty, B. C., & Kumar, A. (2014). Epigenetic regulatory mechanisms in stress induced behavior. International Review of Neurobiology, 115, 117–154. DOI: https://doi.org/10.1016/B978-0-12-801311-3.00004-4. EDN: https://elibrary.ru/USNZIZ
  38. Cho, C. W., Han, C. J., Rhee, Y. K., Lee, Y. C., Shin, K. S., Shin, J. S., Shin, J.-S., & Lee, K.-T., Hong, H.-D. (2015). Cheonggukjang polysaccharides enhance immune activities and prevent cyclophosphamide induced immunosuppression. International Journal of Biological Macromolecules, 72, 519–525.
  39. Cool, J., & Zappetti, D. (2019). The physiology of stress. В Medical Student Well Being (eds. Zappetti, D., & Avery, J., pp. 1–16). Cham: Springer.
  40. Elgindi, M., Abdalkhalik, S., Melek, F., Hassan, M., & Abdelaziz, H. (2015). Saponins isolated from Polyscias guilfoylei F. Araliaceae. Research Journal of Pharmaceutical, Biological and Chemical Sciences, 6(3), 545–549. EDN: https://elibrary.ru/WRBEFP
  41. Fava, G. A., Cosci, F., & Sonino, N. (2017). Current psychosomatic practice. Psychotherapy and Psychosomatics, 86(1), 13–30. DOI: https://doi.org/10.1159/000448856
  42. Guan, L., Collet, J. P., Mazowita, G., & Claydon, V. E. (2018). Autonomic nervous system and stress to predict secondary ischemic events after transient ischemic attack or minor stroke: possible implications of heart rate variability. Frontiers in Neurology. DOI: https://doi.org/10.3389/fneur.2018.00090
  43. Jiao, R., Liu, Y., Gao, H., Xiao, J., & So, K. F. (2016). The anti oxidant and antitumor properties of plant polysaccharides. The American Journal of Chinese Medicine, 44(3), 463–488. DOI: https://doi.org/10.1142/S0192415X16500269. EDN: https://elibrary.ru/WTRFAV
  44. Kernan, W. N., Ovbiagele, B., Black, H. R., Bravata, D. M., Chimowitz, M. I., Ezekowitz, M. D., et al. (2014). Guidelines for the prevention of stroke in patients with stroke and transient ischemic attack: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke, 45(7), 2160–2236. DOI: https://doi.org/10.1161/STR.0000000000000024. EDN: https://elibrary.ru/UPTCXZ
  45. McEwen, B. S., & Karatsoreos, I. N. (2020). What is stress? В Stress Challenges and Immunity in Space (ed. Choukir, A., pp. 19–42). Cham: Springer.
  46. Jan, N., Iqbal Andrabi, K., & Javed, R. (2017). Calendula officinalis. An important medicinal plant with potential biological properties. Proceedings of the Indian National Science Academy, 83(4), 769–787. DOI: https://doi.org/10.16943/ptinsa/2017/49126
  47. Pang, P., Wang, F., & Zhang, L. (2018). Dose matters: direct killing or immunoregulatory effects of natural polysaccharides in cancer treatment. Carbohydrate Polymers, 195, 243–256. DOI: https://doi.org/10.1016/j.carbpol.2018.04.100. EDN: https://elibrary.ru/SGYMFB
  48. Pomatto, L. C. D., & Davies, K. J. A. (2018). Adaptive homeostasis and the free radical theory of ageing. Free Radical Biology and Medicine, 124, 420–430. DOI: https://doi.org/10.1016/j.freeradbiomed.2018.06.016
  49. Sarjan, H. N., Divyashree, S., & Yajurvedi, H. N. (2017). The protective effect of the Vacha rhizome extract on chronic stress induced immunodeficiency in rats. Pharmaceutical Biology, 55, 1358–1367. DOI: https://doi.org/10.1080/13880209.2017.1301495. EDN: https://elibrary.ru/YGDOET
  50. Shi, J. J., Zhang, J. G., Sun, Y. H., Qu, J., Li, L., Prasad, C., & Wei, Z.-J. (2016). Physicochemical properties and antioxidant activities of polysaccharides sequentially extracted from peony seed dreg. International Journal of Biological Macromolecules, 9, 23–30.
  51. Srinivasan, S., Loganathan, S., Wankhar, W., Sheeladevi, R., & Ravindran, R. (2016). Stress effect on humoral and cell mediated immune response: indispensable part of corticosterone and cytokine in neutrophil function. Trials in Vaccinology, (5), 61–70.
  52. Stankiewicz, A. M., Swiergiel, A. H., & Lisowski, P. (2013). Epigenetics of stress adaptations in the brain. Brain Research Bulletin, 98, 76–92. DOI: https://doi.org/10.1016/j.brainresbull.2013.07.003. EDN: https://elibrary.ru/RMDCGT
  53. Sterling, P. (2012). Allostasis: a model of predictive regulation. Physiology & Behavior, 106, 5–15.
  54. Sterling, P., & Eyer, J. (1988). Allostasis: a new paradigm to explain arousal pathology. В Handbook of Life Stress, Cognition and Health (eds. Fisher, S., & Reason, J., pp. 629–649). New York: John Wiley & Sons.
  55. Sytar, O., Zivcak, M., Brestic, M., Rauh, C., & Brestic, M. (2018). Comparative analysis of bioactive phenolic compounds composition from 26 medicinal plants. Saudi Journal of Biological Sciences, 25(4), 631–641. URL: http://europepmc.org/backend/ptpmcrender.cgi?accid=PMC5937015&blobtype=pdf. DOI: https://doi.org/10.1016/j.sjbs.2016.01.036. EDN: https://elibrary.ru/YBFIKD
  56. Von Känel, R. (2015). Acute mental stress and hemostasis: when physiology becomes vascular harm. Thrombosis Research, 135(1, Suppl.), S52–S55.
  57. Wang, J., Li, W., Huang, X., Liu, Y., Li, Q., Zheng, Z., & Wang, K. (2017). A polysaccharide from Lentinus edodes inhibits human colon cancer cell proliferation and suppresses tumor growth in athymic nude mice. Oncotarget, (8), 610–623. DOI: https://doi.org/10.18632/oncotarget.13481. EDN: https://elibrary.ru/YZXEQH
  58. Wethington, E. (2016). Life events scale. В Stress: Concepts, Cognition, Emotion, and Behavior (pp. 103–108). DOI: https://doi.org/10.1016/B978-0-12-800951-2.00012-1

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».