Genotyping of Gleditsia triacanthos L. based on RbcL gene expression and using ISSR markers in arid climate conditions
- Autores: Krylov P.A.1, Kuzmin P.A.1
-
Afiliações:
- Federal Scientific Center of Agroecology, Complex Melioration, and Protective Afforestation RAS
- Edição: Volume 17, Nº 2 (2025)
- Páginas: 82-97
- Seção: Plant Physiology and Biochemistry
- ##submission.datePublished##: 30.04.2025
- URL: https://journal-vniispk.ru/2658-6649/article/view/310418
- DOI: https://doi.org/10.12731/2658-6649-2025-17-2-1115
- EDN: https://elibrary.ru/WKRCPL
- ID: 310418
Citar
Texto integral
Resumo
Background. Fighting against desertification is one of the priorities in the world. Gleditsia triacanthos L. is a promising species for afforestation as it has high drought resistance. Genotyping of G. triacanthos has not been previously conducted based on the study of photosynthetic productivity by evaluating the expression of the large subunit gene of RuBisCo - RbcL and linking it to ISSR markers.
Purpose. To conduct the genotyping of individuals in the G. triacanthos population by evaluation the quantitative expression of the large subunit gene of RuBisCo - RbcL and their linkage to ISSR markers.
Materials and methods. The study was carried out at the arboretum of the FSC of agroecology RAS, where 10 individuals of G. triacanthos in good vital state were selected. The expression of RbcL was evaluated using RT-PCR. ISSR analysis was performed to examine the genetic structure of the studied G. triacanthos individuals. Statistical analysis of experimental data was performed using the software package Statistica 12.0 (StatSoft, USA) and POPGENE version 1.31.
Results. Based on the results of the RbcL expression evaluation, individuals with different transcriptional activity were identified: 20% of G. triacanthos individuals had high expression, 40% had moderate expression, and 40% had low expression. Effective primers from the UBC group, 836 and 873, were identified during ISSR analysis in G. triacanthos individuals. Genotyping by ISSR revealed two groups of G. triacanthos individuals with high and low RbcL expression.
Conclusion. The acquired data can potentially be used in molecular breeding of G. Triacanthos to obtain not only drought-resistant genotypes, but also genotypes with high photosynthetic productivity to address agroforestry tasks.
Palavras-chave
Sobre autores
Pavel Krylov
Federal Scientific Center of Agroecology, Complex Melioration, and Protective Afforestation RAS
Autor responsável pela correspondência
Email: krylov-p@vfanc.ru
ORCID ID: 0000-0001-9587-5886
Código SPIN: 9652-7459
Scopus Author ID: 57213164834
Researcher ID: V-6884-2017
Cand. Sc. (Biology), Leading Researcher, Head of the Laboratory of Genomic and Postgenomic Technologies
Rússia, 97, Universitetsky pr., Volgograd, 400062, Russian Federation
Petr Kuzmin
Federal Scientific Center of Agroecology, Complex Melioration, and Protective Afforestation RAS
Email: kuzmin-p@vfanc.ru
ORCID ID: 0000-0002-1303-765X
Código SPIN: 7551-8803
Scopus Author ID: 56192995500
Researcher ID: N-4277-2016
Cand. Sc. (Agriculture), Docent, Leading Researcher, Head of the Laboratory of Molecular Breeding
Rússia, 97, Universitetsky pr., Volgograd, 400062, Russian Federation
Bibliografia
- Balakina, A. A., Nefedieva, E. E., & Larikova, Yu. S. (2021). Study of the structure and composition of the seed coat of Gleditsia and some changes in its structure during swelling. Agrarian Bulletin of the Urals, 206(3), 46-52. https://doi.org/10.32417/1997-4868-2021-206-03-46-52 EDN: https://elibrary.ru/BTTYJU
- Belyaev, A. I., Krylov, P. A., Pugacheva, A. M., & Derevshchikova, L. V. (2023). Analysis of the presence of genomes of woody shrub plants used in agroforestry of the southern regions of Russia. Izvestiya Nizhnevolzhskogo Agrouniversitetskogo Kompleksa: Nauka i Vysshee Professionalnoe Obrazovanie, 70(2), 30-42. https://doi.org/10.32786/2071-9485-2023-02-03 EDN: https://elibrary.ru/TTKJCA
- Kryuchkov, S. N., Solonkin, A. V., & Solomentseva, A. S. (2024). Intensive methods for growing seedlings of small-seeded woody species in semi-desert conditions. Siberian Journal of Life Sciences and Agriculture, 16(1), 144-163. https://doi.org/10.12731/2658-6649-2024-16-1-702 EDN: https://elibrary.ru/VWPTXX
- Kulik, K. N. (2022). Current state of protective plantations in the Russian Federation and their role in mitigating the consequences of droughts and desertification of lands. Scientific and Agricultural Journal, 188(3), 8-13. https://doi.org/10.34736/FNC.2022.118.3.001.08-13 EDN: https://elibrary.ru/LWWQFG
- Kulik, K. N., Belyaev, A. I., & Pugacheva, A. M. (2023). The role of protective afforestation in combating drought and desertification of agricultural landscapes. Arid Ecosystems, 94(1), 4-14. https://doi.org/10.24412/1993-3916-2023-1-4-14 EDN: https://elibrary.ru/CSZXWA
- Martynyuk, A. A., Turchin, T. Ya., Cheplyansky, I. Ya., & Kulik, A. K. (2023). Current state of state protective forest belts of the steppe and semi-desert zones, main directions of their preservation and rehabilitation. Izvestiya Nizhnevolzhskogo Agrouniversitetskogo Kompleksa: Nauka i Vysshee Professionalnoe Obrazovanie, 69(1), 78-81. https://doi.org/10.32786/2071-9485-2023-01-07 EDN: https://elibrary.ru/TLKSNA
- Melnik, K. A., & Khuzakhmetova, A. Sh. (2022). Features of fruiting of introduced representatives of the Gleditsia genus complex in terms of age. Izvestiya Nizhnevolzhskogo Agrouniversitetskogo Kompleksa: Nauka i Vysshee Professionalnoe Obrazovanie, 68(4), 184-193. https://doi.org/10.32786/2071-9485-2022-04-21 EDN: https://elibrary.ru/YWSHZO
- Yakushina, L. G., & Shkhalakhova, R. M. (2021). Efficiency of SSR and ISSR markers for assessing genetic polymorphism of varieties and hybrids of garden chrysanthemum (Chrysanthemum × hortorum Bailey). Problems of Botany of Southern Siberia and Mongolia, 20-1, 520-525. https://doi.org/10.14258/pbssm.2021105
- Abd-Dada, H., Bouda, S., Khachtib, Y., Bella, Y. A., & Haddioui, A. (2023). Use of ISSR markers to assess the genetic diversity of an endemic plant of Morocco (Euphorbia resinifera O. Berg). Journal of Genetic Engineering & Biotechnology, 21(1), 91. https://doi.org/10.1186/s43141-023-00543-4 EDN: https://elibrary.ru/FWMQAY
- Andablo-Reyes, A. D. C., Moreno-Calles, A. I., Cancio-Coyac, B. A., Gutiérrez-Coatecatl, E., Rivero-Romero, A. D., et al. (2023). Agri-silvicultures of Mexican Arid America. Journal of Ethnobiology and Ethnomedicine, 19(1), 39. https://doi.org/10.1186/s13002-023-00612-5 EDN: https://elibrary.ru/YEMDHA
- Dorogina, O. V., Nuzhdina, N. S., Zueva, G. A., Gismatulina, Y. A., & Vasilyeva, O. Y. (2022). Specific shoot formation in Miscanthus sacchariflorus (Poaceae) under different environmental factors and DNA passportization using ISSR markers. Vavilovskii Zhurnal Genetiki i Selektsii, 26(1), 22-29. https://doi.org/10.18699/VJGB-22-04 EDN: https://elibrary.ru/AAYMFL
- Kader, A., Sinha, S. N., & Ghosh, P. (2022). Clonal fidelity investigation of micropropagated hardened plants of jackfruit tree (Artocarpus heterophyllus L.) with RAPD markers. Journal of Genetic Engineering & Biotechnology, 20(1), 145. https://doi.org/10.1186/s43141-022-00426-0 EDN: https://elibrary.ru/EJPWVA
- Kalmykova, E., & Lazarev, S. (2023). Increasing the biodiversity of the dendroflora of sparsely wooded regions by adapted representatives of the genus Robinia L. Agriculture, 13(3), 695. https://doi.org/10.3390/agriculture13030695 EDN: https://elibrary.ru/FVQNPY
- Martin-Avila, E., Lim, Y. L., Birch, R., Dirk, L. M. A., Buck, S., Rhodes, T., et al. (2020). Modifying plant photosynthesis and growth via simultaneous chloroplast transformation of rubisco large and small subunits. The Plant Cell, 32(9), 2898-2916. https://doi.org/10.1105/tpc.20.00288 EDN: https://elibrary.ru/FJTOLD
- Müller, M., Kües, U., Budde, K. B., & Gailing, O. (2023). Applying molecular and genetic methods to trees and their fungal communities. Applied Microbiology and Biotechnology, 107(9), 2783-2830. https://doi.org/10.1007/s00253-023-12480-w EDN: https://elibrary.ru/VEICHK
- Sharwood, R. E., Ghannoum, O., Kapralov, M. V., Gunn, L. H., & Whitney, S. M. (2016). Temperature responses of Rubisco from Paniceae grasses provide opportunities for improving C3 photosynthesis. Nature Plants, 2, 16186. https://doi.org/10.1038/nplants.2016.186 EDN: https://elibrary.ru/WVMHWA
- Sheikina, O. V., & Romanov, E. M. (2024). Variability of Scots pine (Pinus sylvestris L.) plus trees in the Middle and Upper Volga Region with the use of ISSR markers. Vavilovskii Zhurnal Genetiki i Selektsii, 28(2), 148-154. https://doi.org/10.18699/vjgb-24-17 EDN: https://elibrary.ru/TVPFSO
- Shestibratov, K. A., Baranov, O. Y., Mescherova, E. N., Kiryanov, P. S., Panteleev, S. V., Mozharovskaya, L. V., et al. (2021). Structure and phylogeny of the curly birch chloroplast genome. Frontiers in Genetics, 12, 625764. https://doi.org/10.3389/fgene.2021.625764 EDN: https://elibrary.ru/SLSAEC
- Tao, Y., Chiu, L.-W., Hoyle, J. W., Dewhirst, R. A., Richey, C., Rasmussen, K., et al. (2023). Enhanced photosynthetic efficiency for increased carbon assimilation and woody biomass production in engineered hybrid poplar. Forests, 14(4), 827. https://doi.org/10.3390/f14040827 EDN: https://elibrary.ru/WVJMEF
- Xiao, F., Zhao, Y., Wang, X., & Jian, X. (2023). Full-length transcriptome characterization and comparative analysis of Gleditsia sinensis. BMC Genomics, 24(1), 757. https://doi.org/10.1186/s12864-023-09843-y EDN: https://elibrary.ru/FLFRPG
- Zhao, Z., Zhang, H., Wang, P., Yang, Y., Sun, H., et al. (2023). Development of SSR molecular markers and genetic diversity analysis of Clematis acerifolia from Taihang Mountains. PLOS ONE, 18(5), e0285754. https://doi.org/10.1371/journal.pone.0285754 EDN: https://elibrary.ru/EOIASA
- Zoschke, R., & Bock, R. (2018). Chloroplast translation: structural and functional organization, operational control, and regulation. Plant Cell, 30(4), 745-770. https://doi.org/10.1105/tpc.18.00016 EDN: https://elibrary.ru/YIIWHJ
Arquivos suplementares
