Fitness of Venturia inaequalis isolates with resistance to multiple chemical classes of fungicides in vitro

Capa

Citar

Texto integral

Resumo

Background. The development of fungicide resistance in the apple scab pathogen suggests the development of measures to manage the development of resistance that can functionally delay the emergence of resistant populations of the pathogen. Knowledge of the pathogen's fitness is essential to applying this approach and assessing how successful it will be, since resistance may come with a fitness cost.

Purpose. To evaluate the fitness of sensitive Venturia inaequalis isolates and isolates with multiple fungicide resistances to osmotic and oxidative stress in vitro.

Methods. The size of isolates from four groups (a group with baseline sensitivity and three groups with different multiple resistances to fungicides) was evaluated on potato-glucose agar with the addition of various concentrations of NaCl (2, 3, 4, and 6%) and H2O2 (2, 5, and 10 mM).

Results. The inhibition of mycelium growth in variants with the addition of NaCl relative to the control occurred on average by about 10% with an increase in concentration of 1%. In all variants of the experiment, the average size of isolates in the initial group was smaller than in the pathogen groups with resistance to fungicides. Oxidative stress has the following effect on the average size of the isolates: in the control, it was 12.2 mm; at a concentration of H2O2, it was 2 mM–6.7 mm; and at 5 mM–1.3 mm. There was a tendency for the isolates to have a higher average size in the group with simultaneous resistance to two fungicides, compared with other groups at concentrations of H2O2 of 2 mM and 5 mM.

Conclusion. The absence of significant lower values of the average size of isolates in groups with multiple resistances to fungicides in comparison with the baseline group under in vitro stress conditions shows the absence of fitness cost.

Sobre autores

Andrei Nasonov

Federal State Budget Scientific Institution «North Caucasian Federal Scientific Center of Horticulture, Viticulture, Wine-making»

Autor responsável pela correspondência
Email: nasoan@mail.ru
ORCID ID: 0000-0002-4927-2192
Código SPIN: 5636-6106
Scopus Author ID: 56989221000
Researcher ID: K-9142-2017

Cand. Biol. Sci., Head of Biotechnological Control of Phytopathogens and Phytophages Laboratory

 

Rússia, 39, im. 40-letiya Pobedy Str., Krasnodar, 350901, Russian Federation

Galina Yakuba

Federal State Budget Scientific Institution «North Caucasian Federal Scientific Center of Horticulture, Viticulture, Wine-making»

Email: galyayaku@gmail.com
ORCID ID: 0000-0001-7735-960X
Código SPIN: 3835-6760
Scopus Author ID: 57191370976
Researcher ID: ABA-4739-2021

Cand. Biol. Sci., Senior Research Associate of Biotechnological Control of Phytopathogens and Phytophages Laboratory

 

Rússia, 39, im. 40-letiya Pobedy Str., Krasnodar, 350901, Russian Federation

Maria Bardak

Federal State Budget Scientific Institution «North Caucasian Federal Scientific Center of Horticulture, Viticulture, Wine-making»

Email: maria.brd1405@mail.ru
ORCID ID: 0000-0002-1559-5073
Código SPIN: 2569-9979
Scopus Author ID: 58551970800

Junior Research Associate of Biotechnological Control of Phytopathogens and Phytophages Laboratory

 

Rússia, 39, im. 40-letiya Pobedy Str., Krasnodar, 350901, Russian Federation

Nikita Marchenko

Federal State Budget Scientific Institution «North Caucasian Federal Scientific Center of Horticulture, Viticulture, Wine-making»

Email: marchekonikita@yandex.ru
ORCID ID: 0000-0002-1325-4881
Código SPIN: 8080-3469
Scopus Author ID: 57558038700
Researcher ID: ABA-3983-2021

Junior Research Associate of Biotechnological Control of Phytopathogens and Phytophages Laboratory

 

Rússia, 39, im. 40-letiya Pobedy Str., Krasnodar, 350901, Russian Federation

Bibliografia

  1. Ivanova, E. V., Nikishina, M. B., Tretyakova, A. V., Mukhtorov, L. G., Perelomov, L. V., & Atroschenko, Yu. M. (2021). Study of the fungicidal activity of new derivatives of 7-R-1,5-dinitro-3,7-diazabicyclo [3.3.1] nonane-2-one. Siberian Journal of Life Sciences & Agriculture, 13(5), 307-320. https://doi.org/10.12731/2658-6649-2021-13-5-307-320 EDN: https://elibrary.ru/xwvffk
  2. Nasonov, A. I. (2019). A new method for obtaining Venturia inaequalis culture from ascospores. Mycology and Phytopathology, 53(1), 46-48. https://doi.org/10.1134/S0026364819010094 EDN: https://elibrary.ru/ytixyt
  3. Nasonov, A. I., & Bardak, M. V. (2023). Morphotype composition and sensitivity to difenoconazole of populations of the apple scab pathogen differing in fungicide application history. Siberian Journal of Life Sciences and Agriculture, 15(3), 219-238. https://doi.org/10.12731/2658-6649-2023-15-3-219-238 EDN: https://elibrary.ru/qppsxf
  4. Nasonov, A. I., Yakuba, G. V., & Astapchuk, I. L. (2021). Sensitivity of the Krasnodar population of Venturia inaequalis to difenoconazole, a sterol demethylation inhibitor. Mycology and Phytopathology, 55(4), 297-308. https://doi.org/10.31857/S0026364821040103 EDN: https://elibrary.ru/jahfjc
  5. Nasonov, A. I., Yakuba, G. V., Astapchuk, I. L., & Marchenko, N. A. (2024). Sensitivity of initial and orchard populations of Venturia inaequalis to succinate dehydrogenase inhibitors (SDHI) fungicides. Siberian Journal of Life Sciences and Agriculture, 16(1), 189-210. https://doi.org/10.12731/2658-6649-2024-16-1-707 EDN: https://elibrary.ru/notwnf
  6. Nasonov, A. I., Yakuba, G. V., Bardak, M. V., Astapchuk, I. L., & Marchenko, N. A. (2024). Characterization of the adaptability of Venturia inaequalis isolates resistant and sensitive to fungicides in vitro. Scientific Notes of Kazan University. Series: Natural Sciences, 166(1), 23-37. https://doi.org/10.26907/2542-064X.2024.1.23-37 EDN: https://elibrary.ru/djqcyr
  7. Nasonov, A. I., Yakuba, G. V., & Lobodina, E. V. (2022). Long-term persistence of carbendazim resistance in Venturia inaequalis in the Krasnodar Territory (Russia). Mycology and Phytopathology, 56(5), 374-378. https://doi.org/10.31857/S0026364822050087 EDN: https://elibrary.ru/cmvduj
  8. Pozhilova, E. V., Novikov, V. E., & Levchenkova, O. S. (2015). Reactive oxygen species in cell physiology and pathology. Bulletin of Smolensk State Medical Academy, 14(2), 13-22. EDN: https://elibrary.ru/uhovfr
  9. Antonovics, J., Alexander, H. M. (1989). The concept of fitness in plant-fungal pathogen systems. Plant Disease Epidemiology, 2, 185-214.
  10. Bardas, G. A., Myresiotis, C. K., Karaoglanidis, G. S. (2008). Stability and fitness of anilinopyrimidine-resistant strains of Botrytis cinerea. Phytopathology, 98(4), 443-450. https://doi.org/10.1094/PHYTO-98-4-0443
  11. Bauske, M. J., Mallik, I., Yellareddygari, S. K. R., Gudmestad, N. C. (2018). Spatial and temporal distribution of mutations conferring QoI and SDHI resistance in Alternaria solani across the United States. Plant Disease, 102(2), 349-358. https://doi.org/10.1094/PDIS-06-17-0852-RE
  12. Chapman, K. S., Sundin, G. W., Beckerman, J. L. (2011). Identification of resistance to multiple fungicides in field populations of Venturia inaequalis. Plant Disease, 95(8), 921-926. https://doi.org/10.1094/PDIS-12-10-0899
  13. Dorigan, A. F., Moreira, S. I., Ceresini, P. C., Pozza, E. A., Belan, L. L., da Silveira, P. R., Alves, E. (2022). Higher fitness and competitive advantage of Pyricularia oryzae Triticum lineage resistant to QoI fungicides. Pest Management Science, 78(12), 5251-5258. https://doi.org/10.1002/ps.7144 EDN: https://elibrary.ru/bwmtoi
  14. Dowling, M., Gelain, J., May De Mio, L. L., Schnabel, G. (2021). Characterization of high fludioxonil resistance in Botrytis cinerea isolates from Calibrachoa flowers. Phytopathology, 111(3), 478-484. https://doi.org/10.1094/phyto-07-20-0268-r EDN: https://elibrary.ru/idsdym
  15. Fan, Z., Yang, J. H., Fan, F., Luo, C. X., Schnabel, G. (2015). Fitness and competitive ability of Alternaria alternata field isolates with resistance to SDHI, QoI and MBC fungicides. Plant Disease, 99(12), 1744-1750. https://doi.org/10.1094/PDIS-03-15-0354-RE
  16. Fernández-Ortuño, D., Grabke, A., Bryson, P. K., Amiri, A., Peres, N. A., & Schnabel, G. (2014). Fungicide resistance profiles in Botrytis cinerea from strawberry fields of seven southern U.S. states. Plant Disease, 98(6), 825-833. https://doi.org/10.1094/PDIS-09-13-0970-RE
  17. Fiaccadori, R. (2018). Persistence of Venturia inaequalis populations resistant to strobilurins in the field and in the glasshouse. American Journal of Plant Sciences, 9(4), 552-560. https://doi.org/10.4236/ajps.2018.94042
  18. Frederick, Z. A., Villani, S. M., Cooley, D. R., Biggs, A. R., Raes, J. J., & Cox, K. D. (2014). Prevalence and stability of qualitative QoI resistance in populations of Venturia inaequalis in the Northeastern United States. Plant Disease, 98(8), 1122-1130. https://doi.org/10.1094/PDIS-10-13-1042-RE
  19. Hammer, Ø., & Harper, D. A. (2001). Past: paleontological statistics software package for education and data analysis. Palaeontologia Electronica, 4(1), 1-9.
  20. Karaoglanidis, G. S., Luo, Y., & Michailides, T. J. (2011). Competitive ability and fitness of Alternaria alternata isolates resistant to QoI fungicides. Plant Disease, 95(2), 178-182. https://doi.org/10.1094/PDIS-07-10-0510
  21. Kim, Y. K., & Xiao, C. L. (2011). Stability and fitness of pyraclostrobin- and boscalid-resistant phenotypes in field isolates of Botrytis cinerea from apple. Phytopathology, 101(11), 1385-1391. https://doi.org/10.1094/PHYTO-04-11-0123
  22. Lesniak, K. E., Proffer, T. J., Beckerman, J. L., & Sundin, G. W. (2011). Occurrence of QoI resistance and detection of the G143A mutation in Michigan populations of Venturia inaequalis. Plant Disease, 95(8), 927-934. https://doi.org/10.1094/PDIS-12-10-0898
  23. Malandrakis, A. A., Vattis, K. N., Doukas, E. G., & Markoglou, A. N. (2013). Effect of phenylpyrrole-resistance on fitness parameters and ochratoxin production in Aspergillus carbonarius. International Journal of Food Microbiology, 165(3), 287-294. https://doi.org/10.1016/j.ijfoodmicro.2013.05.019
  24. Mikaberidze, A., McDonald, B. A., & Bonhoeffer, S. (2014). Can high-risk fungicides be used in mixtures without selecting for fungicide resistance? Phytopathology, 104(4), 324-331. https://doi.org/10.1094/PHYTO-07-13-0204-R
  25. Quello, K. L., Chapman, K. S., & Beckerman, J. L. (2010). In situ detection of benzimidazole resistance in field isolates of Venturia inaequalis in Indiana. Plant Disease, 94(6), 744-750. https://doi.org/10.1094/PDIS-94-6-0744
  26. Ren, W., Shao, W., Han, X., Zho, M., & Chen, C. (2016). Molecular and biochemical characterization of laboratory and field mutants of Botrytis cinerea resistant to fludioxonil. Plant Disease, 100(7), 1414-1423. https://doi.org/10.1094/PDIS-11-15-1290-RE
  27. Standish, J. R., Brenneman, T. B., Brewer, M. T., & Stevenson, K. L. (2019). Assessing fitness costs and phenotypic instability of fentin hydroxide and tebuconazole resistance in Venturia effuse. Plant Disease, 103(9), 2271-2276. https://doi.org/10.1094/PDIS-12-18-2292-RE
  28. Wen, Z., Zhang, Y., Chen, Y., Zhao, Y., Shao, W., & Ma, Z. (2024). Characterization of the fludioxonil and phenamacril dual resistant mutants of Fusarium graminearum. Pesticide Biochemistry and Physiology, 200, 105815. https://doi.org/10.1016/j.pestbp.2024.105815 EDN: https://elibrary.ru/mjbhui
  29. Yakuba, G. V., Astapchuk, I. L., Mazyrin, E. S., Nasonov, A. I., & Milovanov, A. V. (2022). The first report on the mycoparasite Trichothecium roseum (Pers. 1809) on Venturia inaequalis (Cooke) G. Winter in Russia. Siberian Journal of Life Sciences & Agriculture, 14(3), 11-23. https://doi.org/10.12731/2658-6649-2022-14-3-11-23 EDN: https://elibrary.ru/bqxkrn
  30. Zhao, W., Sun, C., Wei, L., Chen, W., Wang, B., Li, F., & Xiang, Z. (2021). Detection and fitness of dicarboximide-resistant isolates of Alternaria alternata from Dendrobium officinale, a Chinese indigenous medicinal herb. Plant Disease, 105(8), 2222-2230. https://doi.org/10.1094/PDIS-06-20-1246-RE EDN: https://elibrary.ru/lbhzhd

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML


Creative Commons License
Este artigo é disponível sob a Licença Creative Commons Atribuição–NãoComercial–SemDerivações 4.0 Internacional.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».