Comparative assessment of the impact of pollution, drought and acidification of the soil on its indicative characteristics
- Autores: Tovstik E.V.1, Olkova A.S.1
-
Afiliações:
- Vyatka State University
- Edição: Volume 17, Nº 4 (2025)
- Páginas: 109-123
- Seção: Ecology, Soil Science and Nature Management
- ##submission.datePublished##: 31.10.2025
- URL: https://journal-vniispk.ru/2658-6649/article/view/351923
- DOI: https://doi.org/10.12731/2658-6649-2025-17-4-1214
- ID: 351923
Citar
Texto integral
Resumo
Background. Toxicity and biological indicators of soil condition can change not only as a result of pollution, but also under the action of unfavorable environmental factors.
The aim of the study was to compare the effects of chemical pollution, short-term drought and acidification on the toxicological and bioindication characteristics of sod-podzolic soil.
Research methods. The object of the study was samples of sod-podzolic soil, which experienced the independent action of three factors: cadmium pollution (6.4±0.5 mg/kg), average acidity level (pH 4.8), lack of moisture (25 days). During bioassay, Paramecium caudatum cultures and a preparation based on Escherichia coli were used, during bioindication, catalase and urease activity, the number of the main ecological and trophic groups of microorganisms in the soil were used.
Results. Bioassay of water extracts from the soil showed that in 30 min test reactions, the toxicity indices increase only in samples with a medium acid reaction of the medium. E. coli in 180 minutes showed sensitivity to soil samples that had experienced drought and cadmium pollution, P. caudatum – only to drought. The level of catalase activity of the soil under all influences was comparable to the control (soil without exposure); urease activity significantly decreased only in soil with a medium acidic reaction of the medium. The number of native ammonifiers in the soil decreased with all types of exposure; oligotrophes and oligocarbophiles gained an advantage (relative to control).
Conclusion. Thus, natural environmental factors can change the parameters of the ecological state of the soil in the same way as anthropogenic factors.
Sobre autores
Evgeniya Tovstik
Vyatka State University
Autor responsável pela correspondência
Email: tovstik2006@inbox.ru
ORCID ID: 0000-0003-1861-6076
Código SPIN: 8792-9281
Scopus Author ID: 57004932100
Researcher ID: Р-1350-2017
Candidate of Biological Sciences, Docent, Senior Researcher, Associate Professor of the Department of Fundamental Chemistry and Methods of Teaching Chemistry
Rússia, 36, Moskovskaya Str., 610000, Kirov, Russian Federation
Anna Olkova
Vyatka State University
Email: usr08617@vyatsu.ru
ORCID ID: 0000-0002-5798-8211
Código SPIN: 4874-9240
Scopus Author ID: 57195523346
Researcher ID: A-4963-2017
Doctor of Biological Sciences, Docent, Professor and Senior Research Fellow of the Department of Ecology and Environmental Management
Rússia, 36, Moskovskaya Str., 610000, Kirov, Russian Federation
Bibliografia
- Voronina, L. P., Pongaybo, K. E., & Savostikova, O. N. (2022). Rationale for selecting soil types for hygienic standardization of chemicals (literature review). Hygiene and Sanitation, 101(3), 270–274. https://doi.org/10.47470/0016-9900-2022-101-3-270-274. EDN: https://elibrary.ru/JNUISW
- Dobrovolskaya, T. G., Zvyagintsev, D. G., Chernov, I. Yu., Golovchenko, A. V., Zenova, G. M., Lysak, L. V., Manucharova, N. A., Marfenina, O. E., Polyanskaya, L. M., Stepanov, A. L., & Umarov, M. M. (2015). Role of microorganisms in ecological functions of soils. Eurasian Soil Science, 9, 1087–1096. https://doi.org/10.7868/S0032180X15090038. EDN: https://elibrary.ru/UDEUQV
- Dobrovolsky, G. V., Kust, G. S., Chernov, I. Yu., Dobrovolskaya, T. G., Lysak, L. V., Andreeva, O. V., Stepanov, A. L., Kovaleva, N. O., Makeev, A. O., Fedotov, G. N., Shalaev, V. S., Sokolov, M. S., Rozov, S. Yu., Smagin, A. V., Kovalev, I. V., Medvedeva, O. E., Bessonova, E. A., Popova, L. V., Rykhlikova, M. E., Rakhleeva, A. A., & Martynenko, I. A. (2012). Soils in the biosphere and human life (584 pp.). Moscow: Moscow State Forest University (Mytishchi). ISBN: 9785813505751. EDN: https://elibrary.ru/TNBORZ
- Kedrova, L. I., & Utkina, E. I. (2018). Effect of soil acidity on winter rye yield and possibilities of edaphic selection. Agricultural Science of the EuroNorthEast, 6(67), 17–25. https://doi.org/10.30766/2072-9081.2 Newton.67.6.17-25. EDN: https://elibrary.ru/VNWGUZ
- Novoselova, E. I., & Volkova, O. O. (2017). Effect of heavy metals on catalase activity in different soil types. Proceedings of Orenburg State Agrarian University, 2(64), 190–193. EDN: https://elibrary.ru/YMXHIZ
- Olkova, A. S., & Ashikhmina, T. Ya. (2021). Factors for obtaining representative results in biotesting of aquatic environments (review). Theoretical and Applied Ecology, 2, 22–30. https://doi.org/10.25750/1995-4301-2021-2-022-030. EDN: https://elibrary.ru/ANOOJP
- Olkova, A. S., & Tovstik, E. V. (2024). Information value of indicators of soil ecological state under lowlevel stress conditions: pollution, drought, acidity. Ecosystem Transformation, 7(3), 138–152. https://doi.org/10.23859/estr-230217. EDN: https://elibrary.ru/NMVRYS
- PND F T 14.1:2:3:4.1104. Method for determining integral toxicity of surface waters (including marine), groundwater, drinking water, wastewater, aqueous extracts of soils, waste, sewage sludge by changes in bacterial bioluminescence using the “Ecolum” test system [Document]. Ministry of Natural Resources of the Russian Federation, Moscow, 2004 (2010 edition).
- Strashnaya, A. I., Birman, B. A., & Bereza, O. V. (2018). Features of the 2012 drought in the Urals and Western Siberia and its impact on spring grain crop yields. Hydrometeorological Research and Forecasting, 2(368), 154–169. EDN: https://elibrary.ru/UTCDQO
- Tovstik, E. V., Shirokikh, I. G., Solovyova, E. S., Shirokikh, A. A., Ashikhmina, T. Ya., & Savinykh, V. P. (2018). Changes in soil actinobiotics under the influence of Heracleum sosnowskyi invasion. Theoretical and Applied Ecology, 4, 114–118. https://doi.org/10.25750/1995-4301-2018-4-114-118. EDN: https://elibrary.ru/YXSUIX
- FR. 1.39.2015.19243. Method for determining toxicity of soil and bottom sediment samples using the express method with the “Biotester” series device (16 pp.). Saint Petersburg: LLC “SPEKTR M”, 2015.
- Khaziev, F. Kh. (2005). Methods of soil enzymology (252 pp.). Moscow: Nauka. ISBN: 5020339407. EDN: https://elibrary.ru/QKXHYJ
- Dixon, J. C. (2015). Soil morphology in the critical zone: The role of climate, geology, and vegetation in soil formation in the critical zone. Developments in Earth Surface Processes, 19, 147–172. https://doi.org/10.1016/B978-0-444-63369-9.00005-7
- Dong, J., & Ochsner, T. E. (2018). Soil texture often exerts a stronger influence than precipitation on mesoscale soil moisture patterns. Water Resources Research, 54(3), 2199–2211. https://doi.org/10.1002/2017WR021692
- Fan, D., Wang, S., Guo, Y., Liu, J., Agathokleous, E., Zhu, Y., & Han, J. (2021). The role of bacterial communities in shaping Cdinduced hormesis in ‘living’ soil as a function of landuse change. Journal of Hazardous Materials, 409, 124996. https://doi.org/10.1016/j.jhazmat.2020.124996. EDN: https://elibrary.ru/JLHKTZ
- FrenchMcCay, D. P., Robinson, H. J., Adams, J. E., Frediani, M. A., Murphy, M. J., Morse, Ch., Gloekler, M., & Parkerton, Th. F. (2024). Parsing the toxicity paradox: Composition and duration of exposure alter predicted oil spill effects by orders of magnitude. Marine Pollution Bulletin, 202, 116285. https://doi.org/10.1016/j.marpolbul.2024.116285. EDN: https://elibrary.ru/FOAAFE
- Howe, J. A., & Peyton, S. A. (2021). The soil habitat. In T. J. Gentry, J. J. Fuhrmann, & D. A. Zuberer (Eds.), Principles and Applications of Soil Microbiology (3rd ed., pp. 23–55). Elsevier. https://doi.org/10.1016/B978-0-12-820202-9.00002-2
- Olkova, A. S., & Tovstik, E. V. (2022). Comparison of natural abiotic factors and pollution influence on the soil enzymatic activity. Ecological Engineering & Environmental Technology, 23(1), 42–48. https://doi.org/10.12912/27197050/143003. EDN: https://elibrary.ru/MKSPWQ
- Sohail, M. I., Arif, M., Rauf, A., Rizwan, M., Ali, S., Saqib, M., & ZiaurRehman, M. (2019). Chapter 2: Organic manures for cadmium tolerance and remediation. In: Cadmium Tolerance in Plants (pp. 19–67). https://doi.org/10.1016/B978-0-12-815794-7.00002-3. EDN: https://elibrary.ru/YXETYY
- Sparks, D. L., Singh, B., & Siebecker, M. G. (2024). Chapter 9: The chemistry of soil acidity. In: Environmental Soil Chemistry (3rd ed., pp. 381–410). Academic Press. https://doi.org/10.1016/B978-0-443-14034-1.00009-5
- Zhang, Y., Yang, S., Yang, J., Wu, Z., Liu, H., Nie, Z., Qu, J., Hu, Y., Shao, Y., Liu, J., Liu, F., & Hua, D. (2023). Temporal hormetic response of soil microbes to cadmium: A metagenomic perspective. Science of the Total Environment, 891, 164190. https://doi.org/10.1016/j.scitotenv.2023.164190. EDN: https://elibrary.ru/ZBCKIQ
Arquivos suplementares


