## — МИНЕРАЛОГИЯ —

УДК 549.3

# Аg-СОДЕРЖАЩИЙ ТЕТРАЭДРИТ-(Cd), (Cu,Ag)<sub>6</sub>(Cu<sub>4</sub>Cd<sub>2</sub>)Sb<sub>4</sub>S<sub>13</sub>, ИЗ ГАЛЕНИТ-ФЛЮОРИТОВОГО МЕСТОРОЖДЕНИЯ КОН-ДАРА (ЮГО-ЗАПАДНЫЙ ПАМИР) — ПЕРВАЯ НАХОДКА В ТАДЖИКИСТАНЕ

© 2024 г. Н. Г. Любимцева<sup>1, \*</sup>, академик РАН Н. С. Бортников<sup>1</sup>, В. М. Гекимянц<sup>2</sup>, С. Е. Борисовский<sup>1</sup>, П. Ю. Плечов<sup>2</sup>

Поступило 20.06.2024 г. После доработки 26.06.2024 г. Принято к публикации 27.06.2024 г.

Тетраэдрит-(Cd),  $Cu_{10}Cd_2Sb_4S_{13}$ , является представителем тетраэдритовой серии группы тетраэдрита с преобладанием Cd в позиции C, как правило, занимаемой двухвалентными металлами. Крайние кадмиевые минералы из группы тетраэдрита встречаются редко: они описаны в 15 месторождениях и рудопроявлениях. В статье сообщается о новом месте обнаружения Agсодержащего тетраэдрита-(Cd) на месторождении Кон-Дара (Юго-Западный Памир, Таджикистан), и обобщены известные литературные сведения о редких Cd-содержащих блеклых рудах с содержанием Cd от 1 до 12.31 мас.%. Ag-содержащий тетраэдрит-(Cd) на месторождении Кон-Дара был обнаружен в виде ксеноморфных выделений размером 10–35 мкм в ассоциации с тетраэдритом-(Fe), тетраэдритом-(Zn), галенитом, полибазитом и халькопиритом, замещающих бурнонит. По данным PCMA, его состав, усреднённый по семи анализам (в мас.%): Ag 16.17, Cu 25.19, Cd 10.09, Fe 0.38, Zn 0.09, Pb 0.13, Sb 25.55, As 0.18, S 22.34. Исходя из расчёта 29 атомов, усреднённая химическая формула имеет вид ( $Cu_{7.40}Ag_{2.80})_{\Sigma10.20}(Cd_{1.68}Fe_{0.13}Zn_{0.03}Pb_{0.01})_{\Sigma1.84}(Sb_{3.92}As_{0.04})_{\Sigma3.96}S_{13.00}$ . По составу тетраэдрит-(Cd) из Кон-Дары близок к таковым из Pb-Zn-минерализации Тиндрума в Шотландии, барит-флюоритового-(Ag,Cu) месторождения Клара в Германии и Pb-Zn-месторождения Ксайтишань в Китае. Оценена температура образования Ag-содержащего тетраэдрита-(Cd) на месторождении Кон-Дара — около (170–140) $\pm$ 20°C.

*Ключевые слова*: группа тетраэдрита, блёклая руда, тетраэдрит-(Cd), полибазит, бурнонит, химический состав, температура образования, замещение, Кон-Дара, Памир, Таджикистан

**DOI:** 10.31857/S2686739724100097

## ВВЕДЕНИЕ

Исследование образца фрейбергита из галенит-флюоритового (галенит-плавикового) месторождения Кон-Дара<sup>1</sup> (Западный Памир, Таджикистан) из коллекции Минералогического музея имени А.Е. Ферсмана РАН (Москва, Россия) привело к обнаружению тетраэдрита с высоким содержанием кадмия. Его название в соответствии с действующей номенклатурой группы тетраэдрита [1], одобренной Комиссией по новым минералам, номенклатуре и классификации

Международной минералогической ассоциации (CNMNC IMA), — тетраэдрит-(Cd) (минеральный символ Ttr-Cd [2]). Авторы имеют отличные от CNMNC IMA взгляды относительно названия "группы минералов тетраэдрита": считают, что у CNMNC IMA не было необходимости придумывать новое название для этой группы минералов, и настаивают на сохранении исторического названия "блёклая руда"<sup>2</sup>.

<sup>&</sup>lt;sup>1</sup> Институт геологии рудных месторождений, петрографии, минералогии и геохимии Российской Академии наук, Москва, Россия

<sup>&</sup>lt;sup>2</sup>Минералогический музей им. А.Е. Ферсмана РАН, Москва, Россия

<sup>\*</sup>E-mail: luy-natalia@yandex.ru

<sup>&</sup>lt;sup>1</sup>Наряду с названием "Кон-Дара" в литературе для обозначения этого месторождения используется также название "Кан-Дара".

<sup>&</sup>lt;sup>2</sup>Предложенное CNMNC IMA название "минералы группы тетраэдрита" неудобно при описании минералов этой группы: оно совпадает с названиями серии и минерала; оно вносит путаницу и игнорирует огромное количество данных в опубликованной литературе, в которой название "тетраэдрит" применялось к крайнему сурьмяному члену блёклорудного твёрдого раствора.

Блёклые руды (минералы группы тетраэдрита) — наиболее распространённые сульфосоли во многих типах гидротермальных рудных месторождений. Эти халькогениды образуют сложный изотипический ряд с общей структурной формулой  $^{M(2)}A_6^{M(1)}(B_4C_2)^{X(3)}D_4^{S(1)}Y_{12}^{S(2)}Z_6$  где  $A=Cu^+$ ,  $Ag^+$ ,  $\Box$  (вакансия) и кластер  $(Ag_6)^{4+}$ ;  $B=Cu^+$  и  $Ag^+$ ;  $C=Zn^{2+}$ ,  $Fe^{2+}$ ,  $Hg^{2+}$ ,  $Cd^{2+}$ ,  $Ni^{2+}$ ,  $Mn^{2+}$ ,  $Cu^{2+}$ ,  $Cu^+$  и  $Fe^{3+}$ ;  $D=Sb^{3+}$ ,  $As^{3+}$ ,  $Bi^{3+}$  и  $Te^{4+}$ ;  $Y=S^{2-}$  и  $Se^{2-}$ ;  $Z=S^{2-}$ ,  $Se^{2-}$  и  $\Box$  [1]. Сложный химический состав минералов группы блёклой руды обусловлен различными гомо- и гетеровалентными изоморфными замещениями, которые часто используются в качестве индикаторов условий минералообразования.

Кадмий в блёклой руде не редкое явление, однако, чаще его содержание не превышает 0.3—0.6 мас. %, а его экономически значимым концентратором в месторождениях является сфалерит. Благодаря своему халькофильному поведению Сd концентрируется главным образом в сульфидах, в которых обычно изоморфно замещает Zn. Это происходит из-за близости ковалентных радиусов и подобия атомно-ионной структуры Cd и Zn. Поэтому эти два элемента демонстрируют схожее геохимическое поведение.

Блёклые руды, содержащие высокие концентрации Сd (химические составы с преобладанием Сd в позиции С) описывались ранее. Согласно нынешней номенклатуре группы тетраэдрита [1], одобренной CNMNC IMA, это тетраэдрить-(Сd) [3–9], теннантит-(Сd) [10–12], аргентотетраэдрить-(Сd) [3, 13–16] и хакит-(Сd) [17]. Синтетические аналоги тетраэдрита с преобладанием Сd были изучены Патриком и Холлом [18]. Кроме того, в литературе встречаются блёклые руды, в которых кадмий не играет видообразующей роли, но содержится в значительных концентрациях (от 1 до 3–5 мас. %) (например, [19, 20], [21, приложение 5]; ссылки выше и др.).

Имеющихся данных по Cd-содержащим минералам группы блёклой руды недостаточно, чтобы установить предел вхождения Cd в структуру тетраэдрита, но на основании сходства Cd с Zn и Hg предполагается, что предел вхождения Cd в структуру тетраэдрита составляет два атома на единицу формулы ([22], приложение 5).

Цель статьи — описание первой находки редкого минерала Ag-содержащего тетраэдрита-(Cd) на территории Таджикистана и его необычных тесных срастаний с другими крайними членами серии тетраэдрита: тетраэдрита-(Fe) и тетраэдрита-(Zn), предполагающих уникальные условия их образования.

## КРАТКОЕ ОПИСАНИЕ МЕСТОРОЖДЕНИЯ

Ад-содержащий тетраэдрит-(Cd) обнаружен в образце из галенит-флюоритового месторождения Кон-Дара (Таджикистан), находящегося на южном склоне Гиссарского хребта в 28 км к северу от г. Душанбе, вблизи автодороги, соединяющей г. Душанбе и г. Худжанд. Оно находится близ Варзобской горно-ботанической станции "Кондара", которая была основана в 30-х годах прошлого века советскими учёными и функционирует и по сей день.

Гиссарский хребет является частью складчатой области Тянь-Шаня, в строении которой принимают толщи, различные по возрасту, степени дислоцированности и составу. Рудные жилы месторождения залегают в гранитах Южно-Варзобского интрузива. Известно, что по минеральному составу рудных тел и условиям их образования месторождение Кон-Дара схоже с более крупным месторождением Такоб<sup>3</sup> ([23], приложение 5), с которым находится на расстоянии примерно 8 км.

## ОБРАЗЕЦ И МЕТОДЫ

## Характеристика образца

Образец хранится в коллекции Минералогического музея имени А.Е. Ферсмана РАН как фрейбергит из месторождения Кон-Дара (Таджикистан) под номером *FMM\_1\_74896*. Он поступил в музей в 1973 году от Г.С. Аверьянова, который работал в должности главного геолога Памирской геологоразведочной экспедиции с 1969 по 1992 гг.

Образец представляет собой агрегат равномернозернистого средне-крупнокристаллического (0.2–0.5 см) белого кварца и крупных (до нескольких см в поперечнике) выделений гигантокристаллического сидерита (размер отдельных индивидов достигает 1 см и более) (рис. 1). Сфалерит в виде отдельных зёрен (не более 1 мм) или их гнезд (от 2–3 до 10 мм) образует обильную равномерную вкрапленность в кварце. Бурнонит, содержащий тетраэдрит в тесных срастаниях с полибазитом, галенитом, и халькопиритом, слагает отдельные вытянутые гнёзда размером от 1 до 3 см.

<sup>&</sup>lt;sup>3</sup>На месторождении работает Такобский горно-обогатительный комбинат (ОАО "Таджикская алюминиевая компания"), который производит флюоритовый и свинец-цинковый концентраты. https://talco.com.tj/ru/about/talcogroup

Исследование музейного образца "фрейбергита" было предпринято с целью усовершенствования существующих представлений о кристаллохимических особенностях фрейбергитовой серии блёклых руд. Из образца была выделена монофракция блёклой руды, состоящая из нескольких зёрен, которые были запрессованы в шашку для дальнейшего изучения под оптическим и электроно-сканирующим микроскопами и с помощью PCMA. В одном из этих зёрен (из монофракции FMM\_FN1086 из образца FMM\_1\_74896) был диагностирован Ag-содержащий тетраэдрит-(Cd).

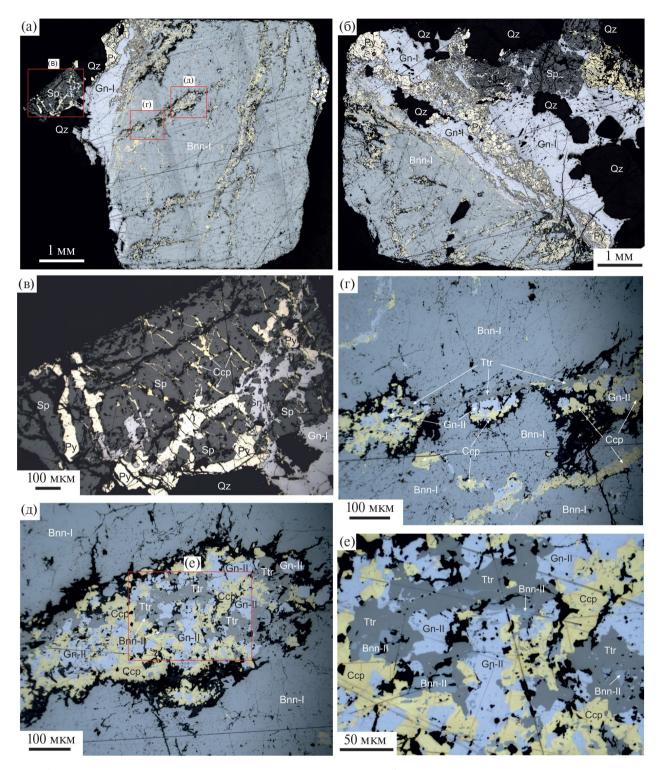
### Методы исследования

Оптическая и электроно-сканирующая микроскопия. Исследование и фотографии минералов в отражённом свете выполнены на микроскопе Olympus BX-53, оснащённым цифровой камерой, с программным обеспечением SIAMS в лаборатории геоинформатики ИГЕМ РАН. Изучение минералов в обратно-рассеянных электронах и качественная диагностика минералов проведено в лаборатории кристаллохимии минералов ИГЕМ РАН (аналитик Л.А. Иванова) с помощью электронного микроскопа "JSM-IT500" (Япония) при ускоряющем напряжении в 20 кВ и рабочем расстоянии до образца 10 мм. Использовались следующие характеристические линии: K<sub>a</sub> для S, Fe, Cu, Zn, As; L<sub>a</sub> для Ag, Cd, Sb; M<sub>a</sub> для Рь. Карты распределения элементов по блёклой руде и сфалериту накапливались в течение 1 часа для каждого минерала. Результаты съёмки обработаны при помощи программы Smile View Lab версии V1.4.9 японской фирмы JEOL Ltd.

Рентгеноспектральный микроанализ (РСМА) выполнен с использованием электронно-зондового микроанализатора "JEOL" JXA-8200 в лаборатории анализа минерального вещества (Центр Коллективного пользования "ИГЕМ-аналитика"). Микроанализатор оборудован пятью волновыми спектрометрами. Анализы проводились при ускоряющем напряжении 20 кВ, токе зонда на цилиндре Фарадея 20 нА и диаметре зонда 1 мкм; анализ полибазита – при токе зонда 10 нА и расширенном диаметре зонда 10 мкм. Время экспозиции при анализе главных элементов составляло 10 с, для элементов-примесей — 20 с. Использовались следующие аналитические линии:  $L_{\alpha}$  для Sb, Se, Ag, As и Te;  $K_{\alpha}$  для Zn, S, Cu и Fe;  $M_{\alpha}$  для Hg, Bi и Pb;  $L_{\beta}$  для Cd. Использовались кристаллы-анализаторы TAP (для As и Se), LIF (для Fe, Cu и Zn) и PET (для Sb, S, Ag, Te, Cd, Hg, Pb и Bi). Стандартами служили AgSbS<sub>2</sub> для Sb, Ag и S, CdSe для Se, CdS для Cd, ZnS для Zn,



Рис. 1. Образец FMM\_1\_74896 из месторождения Кон-Дара (Юго-Западный Памир, Таджикистан) с Ад-содержащим тетраэдритом-(Сd). Коллекция Минералогического музея им. А.Е. Ферсмана РАН (Москва, Россия). Обозначения минералов в соответствии с [2]: Впп — бурнонит, Sp — сфалерит, Qz — кварц, Sid — сидерит.


GaAs для As, HgS для Hg, CuFeS $_2$  для Fe, PbS для Pb и сплавы химически чистых элементов для Cu, Bi и Te. Точность измерений  $\pm 2\%$  для главных элементов и  $\pm 3-5\%$  для элементов-примесей. Дискриминатор импульсов использовался в режиме *dif* mode для S, As, Se, Sb, Ag, Te, Hg, Pb и Bi и в режиме *int* для Fe, Cu, Zn и Cd. Расчёт поправок осуществлялся по методу ZAF с использованием программы фирмы "JEOL".

## **РЕЗУЛЬТАТЫ**

## Минеральная ассоциация и особенности срастаний

Ад-содержащий тетраэдрит-(Cd) обнаружен в тонких прожилках, мощностью 0.1–0.3 мм, рассекающих агрегаты бурнонита-I, который находится в ассоциации со сфалеритом, галенитом-I и пиритом (рис. 2, 3). Прожилки сложены мелкозернистыми агрегатами тесно срастающихся друг с другом Ад-содержащими блёклыми рудами (тетраэдритом-(Cd), тетраэдритом-(Fe) и тетраэдритом-(Zn)), галенитом-II, халькопиритом, бурнонитом-II и полибазитом. Эти минералы образуют парагенетическую минеральную ассоциацию, отложившуюся близко по времени, в результате замещения бурнонита-I.

Блёклые руды (Ад-содержащие тетраэдриты) обнаружены в прожилках в бурноните-I, в которых встречены в тесных срастаниях с галенитом-II, халькопиритом, полибазитом



**Рис. 2.** Срастания минералов в аншлифе из образца FMM\_1\_74896 (Кон-Дара, Таджикистан). (а, б) Срастание бурнонита-I (Впп), галенита-I (Gп), сфалерита (Sp) и пирита (Ру). Бурнонит-I сечётся полиминеральными прожилками; (в) Сфалерит содержит сеть прожилков (систему трещин), заполненных пиритом, галенитом-II и халькопиритом. Пирит слагает прожилки мощностью 20—60 мкм. Галенит-II развивается по прожилкам мощностью 10—50 мкм в сфалерите и внутри прожилков пирита, частично замещая его. Халькопирит выполняет прожилки мощностью менее 5 мкм, которые секут сфалерит и прожилки пирита; (г) Бурнонит-I содержит галенит-халькопиритовые (10—20 мкм) и мономинеральные тетраэдритовые (5—10 мкм) прожилки, в раздувах которых тесные ксеноморфные срастания галенита-II, халькопирита и тетраэдрита (Тtr); (д, е) Участок полиминерального прожилка с раздувом мощностью 300 мкм в бурноните-I и его увеличенный фрагмент. Тесные срастания галенита-II, халькопирита, тетраэдрита и бурнонита-II. Фотографии в отражённом свете.

и бурнонитом-II. Они выполняют интерстиции между зернами галенита и халькопирита, тяготея к периферийной части прожилков, к контакту с бурнонитом-I. К выделениям тетраэдритов приурочены агрегаты полибазита, совместно с которым они замещают и корродируют галенит (рис. 2 г—е). Замещая галенит, тетраэдрит наследует включения бурнонита, содержащиеся в галените (рис. 4 в).

Ag-содержащий тетраэдрит-(Cd) образует ксеноморфные зёрна размером 10-35 мкм, приуроченные к выделениям тетраэдрита-(Fe) и тетраэдрита-(Zn). Малые размеры зёрен и тесные взаимопрорастания с другими минералами, в том числе и с блёклыми рудами не позволили провести рентгеновские исследования. Под микроскопом минерал изотропный. Его цвет тёмно-серый без оттенков, очень схож и не отличим от цвета тетраэдрита-(Fe) и тетраэдрита-(Zn) (рис. 4 a). Отражение тетраэдрита-(Cd) ниже, чем у галенита и бурнонита. Следовательно, оптические свойства этого минерала идентичны таковым для минералов из группы блёклых руд. На изображениях в обратно-рассеянных электронах (BSE) тетраэдрит-(Cd) серого цвета, который несколько светлее более тёмных тетраэдрита-(Fe) и тетраэдрита-(Zn) (рис. 4  $6-\Gamma$ ). Выделения тетраэдрита-(Cd) совместно с тетраэдритом-(Fe) и тетраэдритом-(Zn) и полибазитом образуют тесные срастания. Тетраэдрит-(Cd) имеет нечёткую размытую границу с тетраэдритом-(Fe) и тетраэдритом-(Zn) и чуть более чёткую границу с полибазитом. Тетраэдрит-(Cd), располагается ближе всех из трёх тетраэдритов к выделениям бурнонита-I, но не имеет непосредственного контакта с ним. Вдоль границы тетраэдрита-(Cd) и бурнонита-I присутствуют поры и полости (рис. 4).

Бурноним встречен в виде крупнозернистых агрегатов в ассоциации со сфалеритом, ранним крупнозернистым галенитом-І и пиритом (генерация I) (рис. 2) и в виде включений внутри полиминеральных прожилков, секущих ранний бурнонит-I (генерация II) (рис. 4 в). Бурнонит-I сечётся различными по минеральному составу прожилками, среди которых галенит-халькопиритовые, мономинеральные тетраэдритовые и полиминеральными с бурнонит-халькопирит-тетраэдрит-полибазит-галенитовыми срастаниями. На изображениях в скрещенных николях бурнонит-І проявляет блочное строение и полисинтетическое двойникование (рис. 3 б). Бурнонит-ІІ присутствует в виде включений различной формы в галените, тетраэдрите, халькопирите и полибазите (рис. 2 е, 4 в-г). Вероятно, присутствуют 2 типа включений бурнонита-II: одни представляют собой реликты бурнонита-І (они в большем количестве приурочены к выделениям тетраэдрита, имеют трещины и поры), другие — являются новообразованным

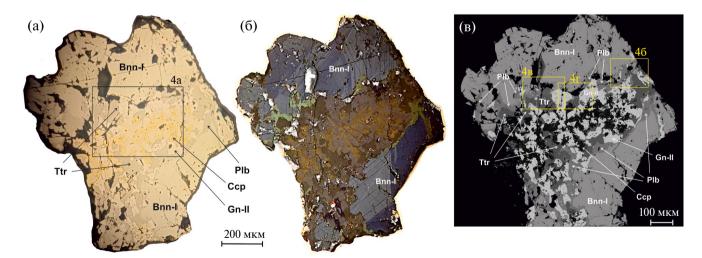



Рис. 3. Зерно из монофракции FMM\_FN1086 (образец FMM\_1\_74896, Кон-Дара, Таджикистан), в котором был обнаружен Ag-содержащий тетраэдрит-(Cd). (а) Бурнонит-I (Bnn) замещается агрегатом, сложенным галенитом-II (Gn), халькопиритом (Сср), тетраэдритом (Тtr), полибазитом (Plb) и бурнонитом-II. Фрагмент прожилка, подобного тем, которые представлены на рис. 2. Изображение в отражённом свете; (б) То же в скрещенных николях. В бурноните-I проявлено полисинтетическое двойникование; (в) То же в обратно-рассеянных электронах (BSE). Центральная часть прожилка сложена галенитом и приуроченным к нему халькопиритом. Тетраэдрит выполняет интерстиции между зёрнами галенита и халькопирита, тяготея к периферийной части прожилка. Полибазит развит вдоль контакта тетраэдрита (и/или галенита-II) и бурнонита-I.

бурнонитом-II (они преимущественно развиты в галените и халькопирите, имеют изометричные и вытянутые формы, чистую без пор поверхность и ровную границу с минералом-хозяином.

Сфалерит слагает крупнозернистые агрегаты с системой трещин, прожилки в которой частично заполнены пиритом, халькопиритом и галенитом (рис. 2 а, в), и раздробленные мелкозернистые (размер зёрен  $\leq$  50 мкм) агрегаты, цементированные пиритом, халькопиритом и галенитом (рис. 2 б).

Пирит слагает раздробленные агрегаты, мелкозернистые мозаичные срастания со сфалеритом и прожилки внутри сфалерита мощностью 20—60 мкм (рис. 2 а—в). Крупные зёрна пирита секутся прожилками халькопирита, агрегаты из мелких зёрен пирита в срастании со сфалеритом цементируются халькопиритом.

Галенит, вероятно, присутствуют в виде двух генераций. Галенит-I отлагался в ассоциации со сфалеритом, бурнонитом-I и пиритом (рис. 2 а, б). Галенит-II встречен внутри прожилков, замещающих сфалерит и бурнонит-I (рис. 2 в, г). В сфалерите галенит-II слагает прожилки мощностью 10—50 мкм и частично внутри пиритовых прожилков замещает пирит

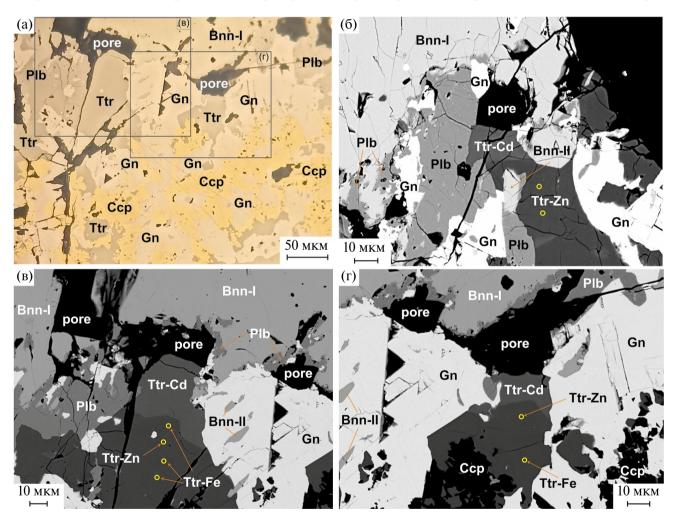



Рис. 4. Увеличенные фрагменты зерна, представленного на рис. 3, с Ад-содержащим тетраэдритом-(Cd). (а) Увеличенный фрагмент зерна с рис. 3 а. Тесные срастания тетраэдрита, галенита-II, халькопирита и полибазита внутри агрегата бурнонита-I. Халькопирит имеет дендритоподобные выделения, которые внедряются и секут галенит-II, а также врастают в тетраэдрит. (б-г) Укрупнённые фрагменты рис. 3 в и 4 а: (б) Полибазит образует тесные срастания с тетраэдритом и галенитом-I на контакте с бурнонитом-II. (в-г) Тесные срастания тетраэдрита, сложенного тремя крайними Fe-, Zn- и Cd-членами тетраэдритового твёрдого раствора, галенита-II, полибазита, бурнонита-II и халькопирита внутри агрегата бурнонита-I. Тетраэдрит-(Cd) образует тесные срастания с полибазитом и располагается ближе всех из трёх тетраэдритов к контакту бурнонита-I. Вдоль границы тетраэдрита-(Cd) и бурнонита-I характерно наличие пор и отсутствие непосредственного контакта этих двух минералов. Тетраэдрит-(Fe) тяготеет к контакту с халькопиритом. Тетраэдрит-(Zn) занимает промежуточное между тетраэдритом-(Cd) и тетраэдритом-(Fe) положение. Бурнонит-II присутствует в галените, тетраэдрите и полибазите в виде вытянутых включений.

(рис. 2 в). В прожилках, развитых по бурнониту-I, галенит-II представлен ксеноморфными и угловатыми разобщёнными зёрнами, которые сцементированы тетраэдритом и халькопиритом (рис. 2д, е). Галенит-II содержит изометричные и вытянутые включения новообразованного бурнонита-II (рис. 4 в, г).

Халькопирит встречен в виде тонких прожилков мощностью менее 5 мкм секущих сфалерит (рис. 2 в), прожилков, замещающих и цементирующих пирит (рис. 2 б) и полиминеральных прожилков, секущих бурнонит-I (рис. 2 г—е). Внутри последних халькопирит образует дендритоподобные ветвистые с фестончатыми краями выделения, которые внедряются и секут галенит, а также "врастают" в тетраэдрит. Выделения халькопирита всегда приурочены к агрегатам галенита (рис. 2, 4 а). К контакту с халькопиритом приурочены выделения тетраэдрита-(Fe) (рис. 4 г). На картинах ВSE халькопирит имеет неоднородное мозаичное строение.

Полибазит развит вдоль контакта тетраэдрита (или галенита) и бурнонита-I, в виде реакционной каймы, поскольку почти нет участков, в которых тетраэдрит (а также галенит) контактировал бы непосредственно с бурнонитом-I, везде между ними располагаются полибазит или поры (рис. 3, 4 б—г). Полибазит тесно срастается с тетраэдритом и галенитом-I на контакте с бурнонитом-I (рис. 4 б—г). Полибазит содержит включения галенита и бурнонита-II.

Исходя из описанных взаимоотношений, следует, что минералы, слагающие прожилки в бурноните-I (галенит-II, халькопирит, Ag-coдержащие тетраэдриты, полибазит и бурнонит-II), отложились позднее в результате его замещения. Занимаемое одинаковое положение в пространстве (прожилки) и тесные срастания галенита-II, халькопирита, Ag-содержащих тетраэдритов, полибазита и бурнонита-ІІ указывают на одну парагенетическую ассоциацию, минералы в которой отлагались близко по времени. Вновь образованные минералы содержат металлы бурнонита: Cu, Pb, Sb и S, а также металлы, не характерные для бурнонита: Ag, Cd, Fe и Zn. Прожилки, секущие бурнонит-І и сфалерит отличаются. В прожилках, секущих сфалерит, отсутствует тетраэдрит и полибазит, и присутствует пирит. Всё это свидетельствует о преобразовании ранних минералов (перераспределении химических элементов) благодаря ретроградным реакциям в результате поступления позднего флюида и определённых PT-условий, из-за которых ранние минералы (сфалерит, пирит, бурнонит-І

и галенит-І) стали неустойчивы и замещались поздней минеральной ассоциацией.

## Расчёт химической формулы минералов группы блёклой руды

Существуют разные подходы к пересчёту химической формулы блёклой руды ( $^{M(2)}A_6^{M(1)}$  ( $B_4C_2$ ) $^{X(3)}D_4^{S(1)}Y_{12}^{S(2)}Z$ ): на 29 атомов в формуле (1), на  $\Sigma$ ( $Me^+ + Me^{2+} + \Pi Me$ ) = 16 атомов (2), на  $\Sigma\Pi Me_{(As+Sb+Te+Bi)} = 4$  атомов (3), на 13 атомов серы (4). Последний подход расчёта формулы, на наш взгляд, изжил себя, поскольку было доказано наличие вакансий серы в позиции S(2). Третий основан на незначительных изменениях идеального числа катионов, находящихся в позиции X(3), отмеченных при наблюдениях Джонсоном с соавторами ([22], приложение 5). Первый подход наиболее универсальный, но может "замаскировать" дефицит серы в позиции S(2), особенно при расчёте химической формулы обогащённых серебром минеральных видов из группы тетраэдрита (например, [24], приложение 5]); и/или дефицит серебра в позиции М(2). Поэтому чаще всего при расчете формул Ag-содержащих блёклых руд, чтобы не пропустить наличие вакансий в позиции S(2) используют второй подход, предполагая отсутствие вакансий в позициях M(2), M(1) и X(3).

Результаты нашего исследования и обзора литературы по Cd-содержащим блёклым рудам показывают, что содержания Ад в них не настолько велико, чтобы в позиции S(2) появлялись значимые содержания вакансий серы (приложение 3). По данным ([24], приложение 5] появление вакансий серы (0.5 ф.к. □ S) начинается при содержаниях серебра ≈ 4.5 ф.к. и выше, а концентрации серебра в известных кадмиевых минералах группы блёклых руд в единичных случаях достигает 6.7 ф.к. и 5.6-5.1, а в основном меньше 4 ф.к. (см. приложения 3 и 4), что исключает наличие вакансий. Поэтому для блёклой руды из месторождения Кон-Дара был выбран способ пересчёта химической формулы на основе 29 атомов в формуле.

## Химический состав

В изученном образце по данным РСМА и согласно номенклатуре группы тетраэдрита [1] обнаружено три практически крайних члена тетраэдритовой серии блёклорудного твёрдого раствора: тетраэдрит-(Cd), тетраэдрит-(Fe) и тетраэдрит-(Zn). Составы тетраэдритов и ассоциирующих с ними минералов приведены в таблицах 1 и 2.

**Таблица 1**. Результаты РСМА блёклой руды и ассоциирующих с ней минералов в образце FMM\_1\_74896 из месторождения Кон-Дара

| №   |                    |       |       |       | Содер | эжание, м | иас. % |       |      |       |        |
|-----|--------------------|-------|-------|-------|-------|-----------|--------|-------|------|-------|--------|
| п/п | Минерал            | Ag    | Cu    | Zn    | Fe    | Pb        | Cd     | Sb    | As   | S     | Сумма  |
| 1   | Ttr-Cd             | 16.28 | 25.10 | _     | 0.15  | 0.15      | 10.43  | 25.44 | 0.21 | 22.25 | 100.06 |
| 2   | Ttr-Cd             | 16.18 | 25.21 | 0.16  | 0.49  | 0.20      | 10.36  | 25.81 | 0.12 | 22.34 | 100.88 |
| 3   | Ttr-Cd             | 16.66 | 25.02 | 0.09  | 0.44  | 0.12      | 10.13  | 25.59 | 0.15 | 22.37 | 100.56 |
| 4   | Ttr-Cd             | 16.38 | 25.20 | 0.13  | 0.28  | 0.17      | 10.01  | 25.28 | 0.19 | 22.35 | 99.99  |
| 5   | Ttr-Cd             | 15.59 | 25.37 | 0.06  | 0.36  | 0.17      | 10.00  | 25.50 | 0.18 | 22.37 | 99.60  |
| 6   | Ttr-Cd             | 15.83 | 25.37 | 0.12  | 0.53  | _         | 9.93   | 25.51 | 0.22 | 22.36 | 99.85  |
| 7   | Ttr-Cd             | 16.29 | 25.03 | 0.07  | 0.39  | 0.12      | 9.81   | 25.74 | 0.16 | 22.33 | 100.01 |
| 8   | Ttr-Zn             | 15.99 | 27.19 | 5.54  | 0.47  | 0.15      | 1.43   | 26.61 | 0.15 | 23.25 | 100.78 |
| 9   | Ttr-Zn             | 15.54 | 27.38 | 5.51  | 0.39  | 0.10      | 1.40   | 26.76 | 0.09 | 23.39 | 100.56 |
| 10  | Ttr-Zn             | 15.44 | 27.65 | 3.20  | 2.18  | 0.13      | 0.68   | 26.62 | 0.19 | 23.66 | 99.74  |
| 11  | Ttr-Zn             | 15.19 | 27.74 | 5.72  | 0.60  | 0.05      | 0.62   | 26.75 | 0.13 | 23.64 | 100.51 |
| 12  | Ttr-Fe             | 16.00 | 28.36 | 1.02  | 3.58  | 0.09      | 1.12   | 26.66 | 0.25 | 23.71 | 100.76 |
| 13  | Ttr-Fe             | 15.56 | 29.20 | 0.21  | 4.07  | 0.10      | 0.72   | 27.04 | 0.29 | 23.75 | 101.00 |
| 14  | Ttr-Fe             | 15.47 | 28.73 | 1.24  | 4.10  | 0.10      | _      | 26.91 | 0.24 | 23.85 | 100.68 |
| 15  | Ttr-Fe             | 17.12 | 26.90 | 0.08  | 5.83  | 0.13      | _      | 26.74 | 0.18 | 23.65 | 100.63 |
| 16  | Ccp ( <i>n</i> =3) | _     | 34.15 | 0.02  | 28.79 | _         | _      | 1.38  | 0.05 | 34.97 | 99.34  |
| 17  | Ccp ( <i>n</i> =2) | _     | 34.19 | 0.02  | 29.28 | _         | _      | 0.65  | _    | 35.22 | 99.36  |
| 18  | Ccp ( <i>n</i> =3) | _     | 34.38 | 0.03  | 30.06 | _         | _      | 0.34  | _    | 35.36 | 100.17 |
| 19  | Сср                | _     | 34.22 | 0.05  | 29.86 | _         | _      | 0.09  | _    | 35.60 | 99.82  |
| 20  | Bnn ( <i>n</i> =2) | _     | 13.21 | 0.05  | _     | 41.79     | _      | 23.82 | 0.28 | 20.14 | 99.37  |
| 21  | Gn ( <i>n</i> =3)  | 0.04  | 0.11  | _     | 0.11  | 85.27     | _      | 0.12  | _    | 13.52 | 99.22  |
| 22  | Plb                | 61.68 | 7.67  | _     | _     | 0.10      | _      | 10.62 | _    | 15.51 | 95.74  |
| 23  | Plb                | 58.41 | 8.31  | 0.06  | 0.04  | 0.24      | _      | 11.17 | _    | 16.12 | 94.44  |
| 24  | Plb                | 58.38 | 7.87  | _     | _     | 0.09      | _      | 10.38 | _    | 15.15 | 92.14  |
| 25  | Plb                | 57.65 | 8.33  | _     | 0.04  | 0.07      | _      | 10.55 | _    | 15.38 | 92.42  |
| 26  | Plb                | 57.56 | 8.26  | _     | _     | 0.07      | _      | 11.15 | _    | 15.94 | 93.19  |
| 27  | Sp ( <i>n</i> =5)  | _     | 0.18  | 65.16 | 1.20  | _         | 0.32   |       |      | 32.58 | 99.51  |
| 28  | Sp                 | _     | _     | 66.12 | 0.13  | _         | 0.27   |       |      | 33.12 | 99.75  |

Примечание. Содержание (в мас.%) Hg 0.06 (ан. 13), Bi 0.05 (ан. 1), 0.06 (ан. 7, 25), 0.07 (ан. 11), 0.13 (ан. 24) и 0.08 (ан. 26), Se 0.05 (ан. 14), Te 0.05 (ан. 21), 0.16 (ан. 22), 0.09 (ан. 23), 0.14 (ан. 24, 26) и 0.23 (ан. 26), In 0.06 (ан. 27) и 0.11 (ан. 28). n — количество усреднённых анализов, "—" ниже предела обнаружения 2 $\sigma$ . Пределы обнаружения по 2 $\sigma$  (мас. %): Ag 0.04, Cu 0.05, Hg 0.06, Zn 0.06, Fe 0.04, Pb 0.05, Cd 0.09, Sb 0.06, As 0.07, Bi 0.05, S 0.01, Se 0.05 и Te 0.04. Анализы тетраэдрита 2, 8, 9 относятся к области рис. 4  $\sigma$ , ан. 1, 4, 5, 7, 11—14 — рис. 4  $\sigma$ , ан. 3, 6, 10, 15 — рис. 4  $\sigma$ .

**Таблица 2**. Формулы блёклой руды и ассоциирующих с ней минералов в образце FMM\_1\_74896 из месторождения Кон-Дара

| №<br>п/п | Минерал      | Формула                                                                                                                                    | $\frac{\mathrm{Sb}}{(\mathrm{Sb} + \mathrm{As})}$ | $\frac{Zn}{(Fe + Zn + Cd)}$ | Ag/<br>(Ag + Cu) |
|----------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|-----------------------------|------------------|
| 1        | Ttr-Cd       | $(Cu_{7.40}Ag_{2.83})_{\Sigma10.23}(Cd_{1.74}Fe_{0.05})_{\Sigma1.80}(Sb_{3.91}As_{0.05})_{\Sigma3.97}S_{13.00}$                            | 0.99                                              | 0.00                        | 0.28             |
| 2        | Ttr-Cd       | $(Cu_{7.37}Ag_{2.79})_{\Sigma10.15}(\textbf{Cd}_{\textbf{1.71}}Fe_{0.16}Zn_{0.05})_{\Sigma1.94}(Sb_{3.94}As_{0.03})_{\Sigma3.97}S_{12.94}$ | 0.99                                              | 0.02                        | 0.27             |
| 3        | Ttr-Cd       | $(Cu_{7.33}Ag_{2.88})_{\Sigma10.20}(\textbf{Cd}_{\textbf{1.68}}Fe_{0.15}Zn_{0.03})_{\Sigma1.86}(Sb_{3.91}As_{0.04})_{\Sigma3.95}S_{12.99}$ | 0.99                                              | 0.01                        | 0.28             |
| 4        | Ttr-Cd       | $(Cu_{7.41}Ag_{2.84})_{\Sigma10.25}(\textbf{Cd}_{\textbf{1.66}}Fe_{0.09}Zn_{0.04})_{\Sigma1.81}(Sb_{3.88}As_{0.05})_{\Sigma3.93}S_{13.02}$ | 0.99                                              | 0.02                        | 0.28             |
| 5        | Ttr-Cd       | $(Cu_{7.47}Ag_{2.70})_{\Sigma10.17}(\textbf{Cd}_{\textbf{1.66}}Fe_{0.12}Zn_{0.02})_{\Sigma1.82}(Sb_{3.92}As_{0.05})_{\Sigma3.97}S_{13.05}$ | 0.99                                              | 0.01                        | 0.27             |
| 6        | Ttr-Cd       | $(Cu_{7.44}Ag_{2.74})_{\Sigma10.18}(\textbf{Cd}_{\textbf{1.65}}Fe_{0.18}Zn_{0.04})_{\Sigma1.86}(Sb_{3.91}As_{0.05})_{\Sigma3.96}S_{13.00}$ | 0.99                                              | 0.02                        | 0.27             |
| 7        | Ttr-Cd       | $(Cu_{7.36}Ag_{2.82})_{\Sigma10.19}(\textbf{Cd}_{\textbf{1.63}}Fe_{0.13}Zn_{0.02})_{\Sigma1.79}(Sb_{3.95}As_{0.04})_{\Sigma4.00}S_{13.02}$ | 0.99                                              | 0.01                        | 0.28             |
| 8        | Ttr-Zn       | $(Cu_{7.62}Ag_{2.64})_{\Sigma10.26}(\textbf{Zn}_{\textbf{1.51}}Cd_{0.23}Fe_{0.15})_{\Sigma1.90}(Sb_{3.89}As_{0.04})_{\Sigma3.93}S_{12.92}$ | 0.99                                              | 0.80                        | 0.26             |
| 9        | Ttr-Zn       | $(Cu_{7.67}Ag_{2.56})_{\Sigma10.23}(\mathbf{Zn_{1.50}}Cd_{0.22}Fe_{0.12})_{\Sigma1.85}(Sb_{3.91}As_{0.02})_{\Sigma3.93}S_{12.98}$          | 0.99                                              | 0.81                        | 0.25             |
| 10       | Ttr-Zn       | $(Cu_{7,73}Ag_{2.54})_{\Sigma10.28}(\mathbf{Z}\mathbf{n}_{0.87}Fe_{0.69}Cd_{0.11})_{\Sigma1.68}(Sb_{3.89}As_{0.04})_{\Sigma3.93}S_{13.11}$ | 0.99                                              | 0.52                        | 0.25             |
| 11       | Ttr-Zn       | $(Cu_{7.72}Ag_{2.49})_{\Sigma10.21}(\mathbf{Zn_{1.55}}Fe_{0.19}Cd_{0.10})_{\Sigma1.84}(Sb_{3.88}As_{0.03})_{\Sigma3.92}S_{13.03}$          | 0.99                                              | 0.84                        | 0.24             |
| 12       | Ttr-Fe       | $(Cu_{7.86}Ag_{2.61})_{\Sigma10.47}(Fe_{1.13}Zn_{0.27}Cd_{0.18})_{\Sigma1.58}(Sb_{3.86}As_{0.06})_{\Sigma3.92}S_{13.03}$                   | 0.99                                              | 0.17                        | 0.25             |
| 13       | Ttr-Fe       | $(Cu_{8.06}Ag_{2.53})_{\Sigma10.59}(Fe_{1.28}Cd_{0.11}Zn_{0.06})_{\Sigma1.47}(Sb_{3.89}As_{0.07})_{\Sigma3.96}S_{12.99}$                   | 0.98                                              | 0.04                        | 0.24             |
| 14       | Ttr-Fe       | $(Cu_{7.91}Ag_{2.51})_{\Sigma10.42}(Fe_{1.28}Zn_{0.33})_{\Sigma1.62}(Sb_{3.87}As_{0.05})_{\Sigma3.92}S_{13.03}$                            | 0.99                                              | 0.20                        | 0.24             |
| 15       | Ttr-Fe       | $(Cu_{7,45}Ag_{2,79})_{\Sigma10,24}(Fe_{1.84}Zn_{0.02})_{\Sigma1.87}(Sb_{3.86}As_{0.04})_{\Sigma3.90}S_{12.98}$                            | 0.99                                              | 0.01                        | 0.27             |
| 16       | Ccp<br>(n=3) | $Cu_{1.00}(Fe_{0.96}Sb_{0.02})_{\Sigma 0.98}S_{2.02}$                                                                                      |                                                   |                             |                  |
| 17       | Ccp<br>(n=2) | $Cu_{0.99}(Fe_{0.97}Sb_{0.01})_{\Sigma 0.98}S_{2.03}$                                                                                      |                                                   |                             |                  |
| 18       | Ccp<br>(n=3) | $Cu_{0.99}(Fe_{0.99}Sb_{0.01})_{\Sigma 1.00}S_{2.02}$                                                                                      |                                                   |                             |                  |
| 19       | Сср          | $Cu_{0.99}(Fe_{0.98}Sb_{0.02})_{\Sigma 0.98}S_{2.03}$                                                                                      |                                                   |                             |                  |
| 20       | Bnn<br>(n=2) | $Cu_{1.01}Pb_{0.98}(Sb_{0.95}As_{0.02})_{\Sigma 0.97}S_{3.04}$                                                                             | 0.98                                              |                             |                  |
| 21       | Gn (n=3)     | $Pb_{0.98}S_{1.01}$                                                                                                                        |                                                   |                             |                  |
| 22       | Plb          | $(Ag_{13.11}Cu_{2.77})_{\Sigma15.87}Sb_{2.00}S_{11.09}$                                                                                    |                                                   |                             |                  |
| 23       | Plb          | $(Ag_{12.36}Cu_{2.99})_{\Sigma15.35}Sb_{2.09}S_{11.48}$                                                                                    |                                                   |                             |                  |
| 24       | Plb          | $(Ag_{12.81}Cu_{2.93})_{\Sigma15.74}Sb_{2.02}S_{11.19}$                                                                                    |                                                   |                             |                  |
| 25       | Plb          | $(Ag_{12.54}Cu_{3.08})_{\Sigma15.62}Sb_{2.03}S_{11.26}$                                                                                    |                                                   |                             |                  |
| 26       | Plb          | $(Ag_{12.34}Cu_{3.00})_{\Sigma15.34}Sb_{2.12}S_{11.50}$                                                                                    |                                                   |                             |                  |
| 27       | Sp (n=5)     | $(Zn_{0.98}Fe_{0.02})_{\Sigma 1.00}S_{1.00}$                                                                                               |                                                   |                             |                  |
| 28       | Sp           | $Zn_{0.99}S_{1.01}$                                                                                                                        |                                                   |                             |                  |
|          |              |                                                                                                                                            |                                                   |                             |                  |

Примечание. Таблица 2 является приложением к Таблице 1. Номера анализов в табл. 2 соответствуют номерам в табл. 1. Формулы тетраэдрита рассчитаны на 29 атомов. В формулах тетраэдрита не отражены элементы  $Pb \le 0.02$  ф.к. и Bi, Se и  $Te \le 0.01$  ф.к., чтобы не усложнять их, но они учтены в суммах металлов и полуметаллов. В формуле полибазита содержания (в ф.к.) Pb = 0.02 - 0.04, Pb = 0.01 - 0.03, Pb = 0.02 - 0.04, Pb = 0.01 - 0.03, Pb = 0.02 - 0.04, Pb = 0.01 - 0.03, Pb = 0.02 - 0.04, Pb = 0.01 - 0.03, Pb = 0.02 - 0.04, Pb = 0.01 - 0.03, Pb = 0.02 - 0.04, Pb = 0.01 - 0.03, Pb = 0.02 - 0.04, Pb = 0.01 - 0.03, Pb = 0.02 - 0.04, Pb = 0.01 - 0.03, Pb = 0.02 - 0.04, Pb = 0.01 - 0.03, Pb = 0.02 - 0.04, Pb = 0.01 - 0.03, Pb = 0.02 - 0.04, Pb = 0.01 - 0.03, Pb = 0.02 - 0.04, Pb = 0.01 - 0.03, Pb = 0.02 - 0.04, Pb = 0.01 - 0.03, Pb = 0.02 - 0.04, Pb = 0.01 - 0.03, Pb = 0.02 - 0.04, Pb = 0.01 - 0.03, Pb = 0.02 - 0.04, Pb = 0.01 - 0.03, Pb = 0.02 - 0.04, Pb = 0.01 - 0.03, Pb = 0.02 - 0.04, Pb = 0.02 - 0.04,

Ад-содержащий тетраэдрит-(Cd) по данным 7 анализов в трёх разобщённых зёрнах имеет примерно одинаковый химический состав (усреднённые содержания, мас.%): Ад 16.17, Cu 25.19, Cd 10.09, Fe 0.38, Zn 0.09, Pb 0.13, Sb 25.55, As 0.18, S 22.34 (табл. 1, ан. 1–7). Эмпирическая формула имеет вид (Си<sub>7 40</sub>Ag<sub>2 80</sub>)  $\Sigma_{10.20}(Cd_{1.68}Fe_{0.13}Zn_{0.03}Pb_{0.01})_{\Sigma 1.84}(Sb_{3.92}As_{0.04})$   $\Sigma_{3.96}S_{13.00}$  (табл. 2, ан. 1–7), которая близка к идеальной формуле  $(Cu,Ag)_6(Cu_4Cd_2)Sb_4S_{13}$ . По содержанию Sb (соотношение Sb/(Sb+As) равно 0.99) является крайним сурьмяным членом тетраэдритовой серии. Концентрации Ад (соотношение Ag/(Ag + Cu) равно 0.28) являются высокими для тетраэдрита, что делает его ближе к аргентотетраэдриту. Содержание Fe немного преобладает над Zn, но из-за их низких концентраций и высоких содержаний Cd соотношение Zn/(Fe + Zn + Cd) низкое 0-0.02. Содержания полуметаллов и серы близки к идеальным стехиометрическим значениям. Концентрации одновалентных металлов выше, а двухвалентных ниже стехиометрических. Однако общая сумма металлов почти соответствует стехиометрическим значениям.

Состав Ag-Cd-содержащего тетраэдрита-(Zn) по данным 4 анализов варьирует в следующих интервалах (в мас. %): Ag 15.19—15.99, Cu 27.19—27.74, Zn 3.20—5.72, Fe 0.39—2.18, Cd 0.62—1.43, Pb 0.05—0.15, Sb 26.61—26.76, As 0.09—0.19, S 23.25—23.66; эмпирическая формула ( $Cu_{7.73-7.62}Ag_{2.49-2.64}$ ) $_{\Sigma10.21-10.28}(Zn_{1.55-0.87}Fe_{0.69-0.12}Cd_{0.23-0.10}Pb_{0.01}$ ) $_{\Sigma1.68-1.90}$  (Sb 3.91—3.88  $As_{0.02-0.04}$ ) $_{\Sigma3.92-3.92}S_{12.92-13.11}$  (табл. 1, 2, ан. 8—11) близка к идеальной формуле ( $Cu_{A}Ag_{b}$ ( $Cu_{4}(Zn,Cd)_{2}$ )Sb  $_{4}S_{13}$ . Минерал является крайним сурьмянистым членом тетраэдритовой серии, соотношение Sb/(Sb+As) равно 0.99. Тетраэдрит-(Zn) имеет высокие концентрации Zn (соотношение Zn/(Fe+Zn+Cd) 0.52—0.84).

Состав Ag-Cd-содержащего тетраэдрита-(Fe) по данным 4 анализов варьирует в следующих интервалах (в мас. %): Ag 15.47–17.12, Cu 26.90–29.20, Zn 0.08–1.24, Fe 4.07–5.83, Cd н.п.о.<sup>4</sup>–1.12, Pb 0.09–0.13, Sb 26.66–27.04, As 0.18–0.29, S 23.65–23.85; эмпирическая формула ( $Cu_{8.06-7.45}Ag_{2.51-2.79}$ ) $_{\Sigma10.24-10.59}$  ( $Fe_{1.84-1.13}Zn_{0.33-0.02}Cd_{0.18-0}Pb_{0.01}$ ) $_{\Sigma1.47-1.87}$  ( $Sb_{3.89-3.86}As_{0.04-0.07}$ ) $_{\Sigma3.90-3.96}S_{12.98-13.03}$  (табл. 1, 2, ан. 12–15) близка к идеальной формуле ( $Cu_{A}g_{b}$ ) $_{C}Cu_{A}(Fe,Cd)_{2}$ ) $Sb_{4}S_{13}$ . Тетраэдрит-(Fe)

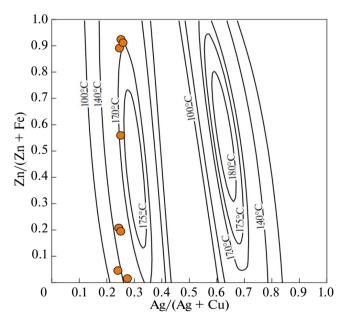
содержит высокие концентрации Sb и Fe (соотношения Sb/(Sb+As) 0.98-0.99 и Zn/(Fe+Zn+Cd) 0.04-0.20). Содержания Cd в нём ниже, чем в сосуществующих с ним тетраэдрите-(Zn) и тетраэдрите-(Cd).

Все обнаруженные блёклые руды являются крайними сурьмяными членами (относятся к тетраэдритовой серии). Содержание Ад во всех трёх тетраэдритах близко между собой, варьирует в незначительном интервале 13.70–18.60 мас. % (2.27-3.15 ф.к.). Главной особенностью обнаруженных на месторождении Кон-Дара блёклых руд является их различие по содержанию двухвалентных металлов: Сd 10.43-9.81 мас. % (1.74-1.63 ф.к.) в тетраэдрите-(Cd), Fe 5.83–3.58 мас. % (1.84—1.28 ф.к.) в тетраэдрите-(Fe) и Zn 5.72— 3.20 мас. % (1.55–0.87 ф.к.) в тетраэдрите-(Zn). Во всех тетраэдритах присутствует примесь Рь в концентрациях до 0.14 мас. % (0.01 ф.к.). Обращает на себя внимание, что во всех тетраэдритах отмечается дефицит двухвалентных металлов (Cd+Fe+Zn) и избыток олновалентных металлов (Cu+Ag).

На картинах распределения элементов в характеристических лучах видно, что Cd сосредоточен главным образом в блёклой руде: контуры выделений блёклой руды, а также аномалий по Ag и Sb, совпадают с контурами высоких концентраций Cd (Приложение 1).

*Бурнонит* по данным двух анализов имеет усреднённый состав (в мас. %): Cu 13.21, Pb 41.79, Sb 23.82, As 0.28, S 20.14 и Zn 0.05, который рассчитывается на формулу, близкую к стехиометрической  $Cu_{1.01}Pb_{0.98}(Sb_{0.95}As_{0.02})_{\Sigma 0.97}S_{3.04}$  (табл. 1, 2, ан. 20).

Полибазит (по данным 5 анализов) имеет следующие вариации состава (в мас.%): Ag 57.65—61.68, Cu 7.67—8.33, Sb 10.38—11.17, S 15.15—16.12, Te 0.09—0.23, Pb 0.07—0.24, Bi н.п.о. —0.13, Zn до 0.06 и Fe до 0.04 и рассчитывается на формулу (Ag<sub>12.34—13.11</sub>Cu<sub>3.08—2.77</sub>) $_{\Sigma 15.34—15.87}$ Sb<sub>2.00—2.12</sub>S<sub>11.09—11.50</sub> (табл. 1, 2, ан. 22—26). Трудно объяснить заниженные суммы анализов, полученные с помощью PCMA для полибазита: в процессе анализа интенсивность излучения элементов не менялась, а другие элементы на энерго-дисперсионных спектрах (ЭДС), кроме измеренных, не просматривались.


Усреднённый состав *галенита* по данным 3 анализов содержит (в мас. %): Pb 85.27, S 13.52, Sb 0.12, Cu 0.11, Fe 0.11, Ag 0.04, Te 0.05 (табл. 1, 2, ан. 21). Обнаруженные при анализе галенита элементы Sb, Cu, Fe, Ag и Te, скорее всего,

 $<sup>^4</sup>$ Н.п.о. — ниже предела обнаружения (2 $\sigma$ ). Значения 2 $\sigma$  приведены в Примечании к табл. 1.

связаны с присутствием в нем мельчайших включений тетраэдрита, бурнонита и/или полибазита в галените.

При анализе *халькопирита* в его составе обнаружена примесь Sb (табл. 1, 2, ан. 16—19). Содержание Sb в разных зёрнах халькопирита различается: от максимальных 1.38 мас. % до минимальных 0.09 мас. %. По другим элементам химический состав почти не отличается (средний состав по данным 9 анализов, мас. %): Cu 34.24, Fe 29.44, Sb 0.73, Zn 0.03, S 35.22; формула Cu<sub>0.99</sub>(Fe<sub>0.97</sub>Sb<sub>0.01</sub>)<sub>Σ0.98</sub>S<sub>2.02</sub>. Природа появления Sb в составе халькопирита неясна, вероятно, это её присутствие может являться следствием замещения бурнонита халькопиритом.

Сфалерим по данным 6 анализов содержит невысокие концентрации Fe и Cd. Его усреднённый состав (мас. %): Zn 65.32, Fe 1.02, Cd 0.32, Cu 0.15, In 0.07 и S 32.67 (табл. 1—2, ан. 27—28). Низкие концентрации Cd и Fe в сфалерите также подтверждаются картинами распределения элементов в характеристических лучах (приложение 2).



**Рис. 5.** Составы тетраэдрита-(Fe) и тетраэдрита-(Zn) (отмечены оранжевыми кружками), сосуществующие с тетраэдритом-(Cd), нанесены на график, заимствованный из [25]. Нарисованы изотермы и области несмесимости блёклой руды (Cu,Ag) $_{10}$ (Fe,Zn) $_2$ As $_4$ S $_{13}$  при 100, 140, 170, 180 и 185°C, рассчитанные для  $\Delta \bar{G}^*_{3s} = 10$  кДж/моль (слева) и  $\Delta \bar{G}^*_{3s} = -10$  кДж/моль (справа).

Условия образования Ag-содержащих тетраэдритов из месторождения Кон-Дара

С помощью геотермометра для Ад-содержащих блеклых руд ([25], приложение 5) путём нанесения на график Ag/(Ag+Cu) vs Zn/(Zn+Fe)составов тетраэдрита-(Fe) и тетраэдрита-(Zn) оценены вероятные температуры их отложения (рис. 5). Наиболее высокотемпературным оказался тетраэдрит-(Zn): он мог отложиться при температуре 170±20°С. Затем, при падении температуры до  $140\pm20^{\circ}$ C, кристаллизовался тетраэдрит-(Fe). Как было сказано ранее, тесные срастания тетраэдрита-(Fe) и тетраэдрита-(Zn) с тетраэдритом-(Cd), обнаруженные в тончайших прожилках, позволяют предполагать, что тетраэдрит-(Cd) отлагался из того же флюида и при одинаковых условиях, что и тетраэдрит-(Fe) с тетраэдритом-(Zn). Следовательно, кристаллизация тетраэдрита-(Cd) на месторождении Кон-Дара происходила в интервале температур  $(170-140)\pm20^{\circ}$ C.

Полученные данные являются первой оценкой температуры отложения блёклой руды на этом месторождении. Ранее температуры отложения флюорита, галенита и кальцита были определены методом растрескивания минералов ([23], приложение 5), который в настоящее время не считается достоверным и дискредитирован.

## ОБСУЖДЕНИЕ

В результате проведённых исследований редкий минерал из группы блёклых руд — Ag-содержащий тетраэдрит-(Cd) впервые обнаружен в рудах месторождения на территории Таджикистана. Ранее описанные блеклые руды из месторождений Таджикистана содержали сотые доли или первые проценты кадмия (например, [20]; [21, 26], приложение 5]).

В серебряных и серебросодержащих месторождениях Таджикистана блёклые руды являются одним из основных рудных минералов, содержание которого в отдельных рудных телах может быть выше концентрации других рудных минералов в целом ([26], приложение 5). По данным обобщения составов блёклых руд из месторождений Северного и Центрального Таджикистана, а также Памира, установлено, что наиболее широким распространением пользуются тетраэдриты, а не теннантиты, при этом за редким исключением все блёклые руды сереброносны ([26], приложение 5). Содержание серебра в блёклых рудах всего региона в целом варьирует от 0.13 (Кансай) до 33.91 (Школьное) мас. %

([26], приложение 5), что согласуется с данными изучения блёклых руд из нескольких месторождений Карамазара (от 0.10 до 35.73 мас. % Ад, [20]). До данного исследования максимально оцененное содержание Сd в блёклой руде на территории Таджикистана было установлено в аргентотетраэдрите-(Zn) из месторождения Школьное, и составляло 2.76 мас. % (по данным [21], приложение 5) и из личного сообщения Н.С. Бортникова).

По своему химическому составу Ад-содержащий тетраэдрит-(Cd) из Кон-Дары близок к таковым из Pb—Zn-минерализации Тиндрума (Tyndrum) в Шотландии [4], барит-флюоритового-(Ag,Cu) месторождения Клара (Clara mine) в Германии [8] и Pb—Zn-месторождения Ксайтишань (Xitieshan) в Китае [5].

Ад-содержащий тетраэдрит-(Cd) образовался на месторождении в результате ретроградных реакций замещения раннего бурнонита вновь образованными минеральными агрегатами. При этом часть металлов: Cu, Pb, Sb и S, содержащихся в бурноните, связываются во вновь образованные минералы, а часть металлов: Ag, Cd, Fe и Zn, привносится поздними растворами, проникающими по тонким трещинкам в бурноните. Следовательно, процесс замещения бурнонита скорее был не изохимическим, хотя баланс вещества не рассчитывался.

Вероятные ретроградные реакции, которые могли иметь место при образовании Адсодержащих блеклых руд на месторождении Кон-Дара:

Ag—Cu-обменная реакция между блёклой рудой и полибазитом:

$$1/16 \text{ Ag}_{16} \text{Sb}_2 \text{S}_{11} + 1/10 \text{ Cu}_{10} \text{Fe}_2 \text{Sb}_4 \text{S}_{13} \leftrightarrow 1/16 \text{ Cu}_{16} \text{Sb}_2 \text{S}_{11} + 1/10 \text{ Ag}_{10} \text{Fe}_2 \text{Sb}_4 \text{S}_{13}$$
(1)  

$$(Plb) \qquad (Roz-Fe) \qquad (Plb) \qquad (Roz-Fe)$$

(реакция 4 в [27], приложение 5)

и реакция обогащения блеклой руды серебром при охлаждении:

$$1/10 \text{ Cu}_{10}(\text{Fe},\text{Zn})_2 \text{Sb}_4 \text{S}_{13} + 1/2 \text{ Pb}_2 \text{S}_2 + \text{AgSbS}_2 \leftrightarrow 1/10 \text{ Ag}_{10}(\text{Fe},\text{Zn})_2 \text{Sb}_4 \text{S}_{13} + \text{CuPbSbS}_3$$
 (2)  
(*Ttr*) (*Gn*) (*s Gn*) (*Roz*) (*Bnn*)

(реакция 45 в [27], Приложение 5).

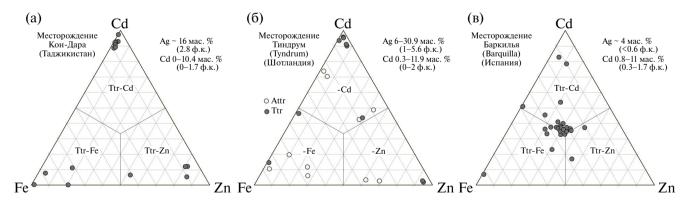
Самым интересным в обнаруженной в прожилках бурнонита ассоциации является совместное нахождение трёх минералов из группы блёклых руд, трёх тетраэдритов с резко различающимся содержанием в них Cd, Fe и Zn при почти одинаковых концентрациях Ag, Cu и Sb. Ha небольшом участке (всего  $0.7 \times 0.4$  мм) в тесных срастаниях встречено три практически крайних члена тетраэдритовой серии группы блёклой руды: тетраэдрит-(Cd), тетраэдрит-(Fe) и тетраэдрит-(Zn) без промежуточных составов (рис. 6 a). Тесное срастание этих минералов в тонких прожилках свидетельствует об их отложении из одного и того же флюида, одновременно в одних и тех же физико-химических условиях. Вероятнее всего, такие взаимоотношения могут предполагать разрыв смесимости в блёклых рудах между их крайними членами, различающихся по содержанию двухвалентных (Cd, Fe и Zn) металлов. Возможно, одновременная кристаллизация разных по составу минералов из группы блёклых руд на месторождении Кон-Дара произошла в неравновесных условиях.

Картина распределения двухвалентных металлов в Ад-содержащих тетраэдритах из месторождения Кон-Дара близка к таковой для составов аргентотетраэдритов и Ад-содержащих тетраэдритов на месторождении Тиндрум (Шотландия) (рис. 5 б). На месторождении Баруилья (Испания) мы видим противоположную месторождениям Кон-Дара и Тиндрум картину: составы Cd—Fe—Zn-содержащих тетраэдритов (с содержанием Ад менее 4 мас. %) скученно занимают центральную часть поля (рис. 5 в).

Можно предположить, что на распределение двухвалентных металлов в кристаллических структурах тетраэдрита и аргентотетраэдрита влияет содержание Ag. При содержаниях Ag меньше 4 мас. % тетраэдрит с одинаковой способностью готов включать в себя любой из представленных двухвалентных металлов. Содержания Ag выше 6 мас. % делают кристаллические структуры тетраэдрита и аргентотетраэдрита более разборчивыми в выборе двухвалентного металла, и в разное время (вероятно, в зависимости от химического состава флюида и активностей

компонентов в нём) тетраэдрит/аргентотетраэдрит включает в себя либо тот, либо другой двухвалентный металл.

Кроме кристаллохимических особенностей блёклой руды, подобное распределение двухвалентных металлов может быть связано с разрывом смесимости в теннантит-тетраэдритовом ряду Ад-содержащих блёклых руд при температурах ниже 170°С, предсказанным Р.О. Сэком ([24], приложение 5 и ссылки там). Составы Ад-содержащих блёклых руд из месторождений Кон-Дара и Тиндрум, а также результаты применения блёклорудного геотермометра для тетраэдритов из Кон-Дары, подтверждают это предсказание Р.О. Сэка.

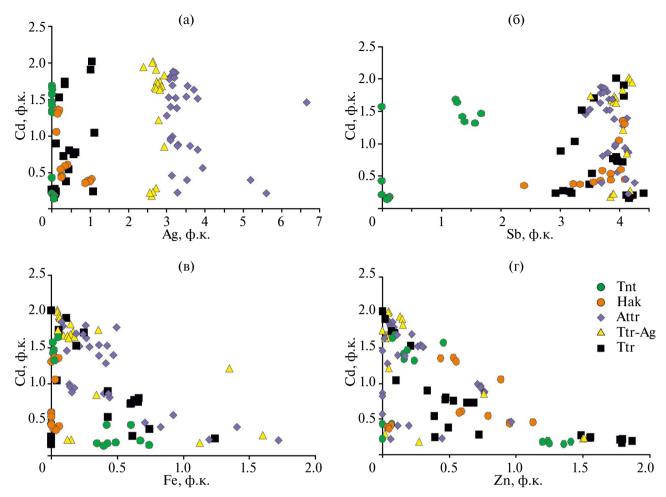

Проведённые исследования и анализ опубликованных данных по кадмиевым блёклым рудам позволяют сделать некоторые заключения об особенностях их распространения и химического состава. Кадмиевые и Cd-содержащие блёклые руды являются крайне редкими в природе. Известно 19 месторождений и рудопроявлений, в которых обнаружены эти минералы с содержаниями выше 1 мас. % до максимально возможных 12.31 мас. % на основании 101 анализа (см. приложение 3, 4). Среди обогащенных кадмием минералов группы тетраэдрита обнаружено 4 крайних кадмиевых члена блёклорудного твёрдого раствора, которые, согласно принятой CNMNC IMA номенклатуре, определены как самостоятельные минеральные виды [1] (табл. 3).

Среди минералов блёклых руд самое высокое содержание кадмия 12.31 мас. % (2.01 ф.к.) выявлено в тетраэдрите-(Cd) из кварцевых жил рудопроявления золота Красное (Бодайбинский район) ([7] и по данным личного сообщения Е.Е. Паленовой) (приложения 3 и 4, ан. 50).

В нём присутствует 6.12 мас. «Ад (1.04 ф.к.), а концентрации Fe и Zn оказались ниже минимальных пределов обнаружения. Вероятно, этот минерал является крайним кадмиевым природным членом блёклорудного твёрдого раствора.

Рассмотрение совокупности анализов (n = 101) не выявило каких-либо чётких взаимосвязей содержаний кадмия с тем или иным элементом в химическом составе Cd-содержащих блёклых руд (рис. 7). Тем не менее, некоторые особенности их состава проявляются. Среди блёклых руд наиболее обогащённым кадмием минералом (до 2.02 ф.к. или 12.31 мас. % Cd) является тетраэдрит, чуть меньшие содержания Cd (1.88 ф.к. или 11.15 мас. %) встречены в аргентотетраэдрите, ещё меньше (1.68 ф.к. или 11.79 мас. %) — в теннантите, а всех меньше, содержание Cd в хаките — не превышает 1.36 ф.к. или 6.55 мас. % (приложение 3, 4 и ссылки там).

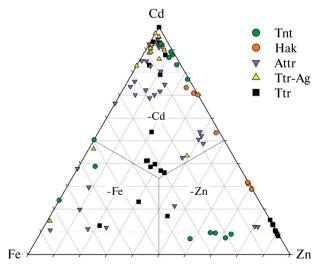
Среди кадмиевых блёклых руд встречаются как богатые серебром (аргентотетраэдрит и Agсодержащий тетраэдрит), так и почти полностью бессеребряные минералы (теннантит и хакит) (рис. 7 а). При этом обращает на себя внимание график распределения Cd vs Ag, на котором фиксируется отсутствие Cd-содержащих блеклых руд с содержанием Ag от 1 до 2.5 ф.к. ( $\sim$  от 6 до 13.7 мас. %) (рис. 7 а). В Сd-содержащей блёклой руде максимальное содержание Ag, равное 6.66 ф.к. (35.82 мас. %), обнаружено в аргентотетраэдрите-(Cd) из минерализации Маврокорифи (Mavrokoryfi) (Греция) [15]. Паттрик и Холл изучали замещение Ад в синтетическом тетраэдрите, содержащем Zn, Cd и Fe, и сделали вывод, что для Cd-содержащих блёклых руд максимально возможное содержание Ад равно 7.02 ф.к [18].




**Рис. 6.** Содержания двухвалентных металлов Cd, Zn и Fe в минералах группы блёклой руды из месторождения Кон-Дара (Таджикистан) (данная работа) (а) в сравнении с таковыми из месторождений Тиндрум (Шотландия) (график построен авторами на основании анализов, приведённых в работах [3, 4]) (б) и Баркилья (Испания) (рис. 7 из [6] с дополнениями) (в).

Таблица 3. Кадмиевые блёклые руды, обнаруженные в природе, и их реальные составы

| Минеральный вид (формула)                                                                        | Кол-во<br>мест<br>находок | Место находки<br>(страна)                                                                                                                                                                                                                         | Формула минерала                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ссылка                                                                                                                                                                                                                                                                |
|--------------------------------------------------------------------------------------------------|---------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $ m Terpa  m эдрит$ -(Cd) $ m Cu_6(Cu_4Cd_2)Sb_4S_{13}$                                          | ∞                         | 1 — Тиндрум (Шотландия),     2 — рудопроявление Красное (Россия),     3 — Xitieshan (Китай),     4 — Radĕtice (Чехия),     5 — Clara mine (Германия),     6 — Кон-Дара (Талжикистан),     7 — Вагquilla (Испания),     8 — Змеиногорское (Россия) | $\begin{split} &1-(Cu_{8.72}Ag_{1.04})_{\Sigma 9.76}Cd_{2.01}(Sb_{3.95}As_{0.16})_{\Sigma 4.11}S_{13.02} \\ &2-(Cu_{7.12}Ag_{2.65})_{\Sigma 9.77}(Cd_{2.02}Zn_{0.05}Fe_{0.05})_{\Sigma 2.12}(Sb_{4.16}As_{0.16})_{\Sigma 4.32}S_{12.80} \\ &3-(Cu_{6.84}Ag_{2.95})_{\Sigma 9.79}(Cd_{1.82}Zn_{0.15}Fe_{0.15})_{\Sigma 2.12}(Sb_{4.06}As_{0.25})_{\Sigma 4.31}S_{12.79} \\ &4-(Cu_{9.71}Ag_{0.34})_{\Sigma 10.05}(Cd_{1.74}Hg_{0.07}Zn_{0.07}Fe_{0.06})_{\Sigma 1.94}Sb_{4.08}S_{12.91} \\ &5-(Cu_{8.28}Ag_{2.74})_{\Sigma 11.02}(Cd_{1.74}Fe_{0.36})_{\Sigma 1.79}(Sb_{3.91}As_{0.05})_{\Sigma 3.96}S_{13.00} \\ &6-(Cu_{7.40}Ag_{2.83})_{\Sigma 10.23}(Cd_{1.74}Fe_{0.05})_{\Sigma 1.79}(Sb_{3.91}As_{0.05})_{\Sigma 2.05}(Sb_{3.57}As_{0.52})_{\Sigma 4.09}S_{12.87} \\ &7-(Cu_{9.64}Ag_{0.34})_{\Sigma 9.98}(Cd_{1.71}Fe_{0.25}Zn_{0.09})_{\Sigma 2.05}(Sb_{3.57}As_{0.52})_{\Sigma 4.09}S_{12.87} \\ &8-(Cu_{9.61}Ag_{1.12})_{\Sigma 10.73}(Cd_{1.04}Mn_{0.26}Zn_{0.10}Fe_{0.04})_{\Sigma 1.44}(Sb_{3.25}As_{0.61})_{\Sigma 3.86}S_{12.97} \end{split}$ | 1 – [4]; прил. 3-4, an. 31<br>2 – [7]; прил. 3-4, an. 50<br>3 – [5]; прил. 3-4, an. 35<br>4 – [9]; прил. 3-4, an. 52<br>5 – [8]; прил. 3-4, an. 36<br>6 – авторы;<br>табл. 2, ан. 1;<br>прил. 3-4, ан. 37<br>7 – [6]; прил. 3-4, an. 53<br>8 – [9]; прил. 3-4, an. 53 |
| Аргентотетраэ-<br>дрит-(Сd)<br>Ag $_6$ (Сu $_4$ Сd $_2$ )Sb $_4$ S $_{13}$                       | ٠,                        | 1 — Rudno nad Hronom<br>(Словакия),<br>2 — минерализация Mavrokoryfi<br>(Греция),<br>3 — Тиндрум (Шотландия),<br>4 — Ушкатын-III (Казахстан)<br>5 — Tunaberg (Швеция)                                                                             | $\begin{split} &1-(Cu_{6.86}Ag_{3.17})_{\Sigma10.03}(Cd_{1.88}Fe_{0.06}Zn_{0.04})_{\Sigma1.98}(Sb_{3.70}As_{0.25})_{\Sigma3.95}S_{13.04}\\ &2-(Cu_{6.66}Ag_{3.52})_{\Sigma10.18}(Cd_{1.45}Fe_{0.12})_{\Sigma1.57}(Sb_{3.44}As_{0.64})_{\Sigma4.08}S_{13.05}\\ &3-(Cu_{6.69}Ag_{3.11})_{\Sigma9.80}(Cd_{1.40}Fe_{0.47}Zn_{0.12})_{\Sigma1.99}(Sb_{4.13}As_{0.01})_{\Sigma4.14}S_{13.07}\\ &4-(Cu_{6.84}Ag_{3.16})_{\Sigma10.00}(Cd_{0.99}Fe_{0.71}Zn_{0.14})_{\Sigma1.84}(Sb_{3.94}As_{0.17})_{\Sigma4.11}S_{13.04}\\ &5-(Cu_{6.46}Ag_{3.61})_{\Sigma10.07}(Cd_{0.86}Mn_{0.78}Fe_{0.43})_{\Sigma2.07}(Sb_{3.81}Bl_{0.14})_{\Sigma3.95}S_{12.91} \end{split}$                                                                                                                                                                                                                                                                                                                                                                                                 | 1 – [16]; прил. 3-4,<br>ан. 1<br>2 – [15]; прил. 3-4,<br>ан. 16<br>3 – [3]; прил. 3-4,<br>ан. 14<br>4 – [13]; прил. 3-4,<br>ан. 18<br>5 – [14]; прил. 3-4,<br>ан. 21                                                                                                  |
| Теннантит-(Сd) $Cu_6(Cu_4Cd_2)As_4S_{13}$                                                        | 2                         | 1 - Томинское (Россия),<br>2 - Berenguela (Боливия)                                                                                                                                                                                               | $\begin{array}{l} 1-(Cu_{9.90}Ag_{0.01})_{\Sigma 9.97}(Cd_{1.68}Zn_{0.09}Fe_{0.05})_{\Sigma 1.82}(As_{2.63}Sb_{1.25})_{\Sigma 3.88}S_{13.31} \\ 2-(Cu_{9.96}Ag_{0.01})_{\Sigma 9.97}(Cd_{1.57}Zn_{0.46}Fe_{0.01})_{\Sigma 2.04}As_{3.96}S_{13.03} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 – [11]; прил. 3-4,<br>ан. 73<br>2 – [12] прил. 3-4,<br>ан. 75                                                                                                                                                                                                       |
| Хакит-(Cd)<br>Cu <sub>6</sub> (Cu <sub>4</sub> Cd <sub>2</sub> )Sb <sub>4</sub> Se <sub>13</sub> |                           | Рйбгат (Чехия)                                                                                                                                                                                                                                    | $ (Cu_{9.95}Ag_{0.16})_{\Sigma10.11} (Cd_{1.36}Zn_{0.53}Hg_{0.07}Fe_{0.03})_{\Sigma1.99} \\ (Sb_{4.06}Bi_{0.16})_{\Sigma4.22} (Se_{12.28}S_{0.39})_{\Sigma12.67} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | [17]; прил. 3-4,<br>ан. 88                                                                                                                                                                                                                                            |
|                                                                                                  |                           |                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                       |


Примечание. Формулы минералов рассчитаны на 29 атомов.



**Рис. 7.** Содержания Сd против содержаний Ag (a), Sb (б), Fe (в) и Zn (г) (в ф.к.) в кадмиевых блёклых рудах. Графики построены на основании обобщённой таблицы анализов (приложения 3 и 4), полученных из различных источников. Формульные коэффициенты в минералах рассчитаны на основании 29 атомов в формуле.

Рисунок 7 б позволяет сделать вывод, что Cd предпочтительнее концентрируется в сурьмяных блёклых рудах. При этом, вероятнее всего, что присутствие значимых содержаний серебра в тетраэдрите-(Cd) и аргентотетраэдрите-(Cd) связано с тем, что Ag предпочтительнее концентрируется в сурьмяных блёклых рудах.

Картины распределения двухвалентных металлов в Cd-содержащих блёклых рудах на графиках Cd vs Fe и Cd vs Zn схожи (рис. 7 в, г). Не наблюдается приуроченность концентраций кадмия в блёклых рудах к Fe или Zn: встречаются как железистые, так и цинкистые крайние члены Cd-содержащих тетраэдрита, аргентотетраэдрита и теннантита (рис. 7 в, г, 8). Исключением является хакит-(Fe), в котором пока ещё не было обнаружено значимых (более 1 мас. %) концентраций Cd.



**Рис. 8.** Распределение двухвалентных металлов Cd, Zn и Fe в Cd-содержащих блёклых рудах, известных в мире. На график нанесены все анализы из приложений 3 и 4 за исключением Cd-содержащих аргентотетраэдрита-(Mn) и хакита-(Hg).

Тройная диаграмма распределения двухвалентных металлов, построенная по всем известным в природе Cd-содержащим блёклым рудам, демонстрирует относительно небольшое количество анализов в центральной её части (рис. 8). Это говорит о том, что промежуточные Cd—Zn—Fe-содержащие блёклые руды крайне редки. Они обнаружены только на месторождении Barquilla в Испании. Приведённые данные могут свидетельствовать о наличии разрывов смесимости в Cd-Zn-Fe-содержащем теннантиттетраэдритовом твёрдом растворе. Разрыв смесимости может быть обусловлен низкими температурами образования Cd-содержащих блёклых руд (< 200°С), при которых имеет место распад блёклорудного твёрдого раствора на крайние Fe-, Zn- и Cd-члены, либо может быть связан с определёнными физико-химическими условиями кристаллизации Cd-Zn-Fe-содержащих блёклых руд и составом минералообразующего флюида.

Частыми спутниками кадмия в кадмиевых блёклых рудах являются Sb и Ag, а также в меньшем количестве Zn и Fe. Но кроме этих элементов в литературе описывались следующие сопутствующие с Cd элементы: As, Se, Mn, Hg, Bi и Co

в Cd-содержащих блёклых рудах (см. приложение 3 и ссылки там).

Редкость кадмиевых блёклых руд может быть связана с низким содержанием Сd в породах коры. Высказывалось мнение, что Сd предпочтительнее встраивается в сокристаллизующиеся с блёклой рудой халькопирит и сфалерит, и что содержание Сd выше в тех образцах блёклой руды, которые кристаллизуются в ассоциациях, не содержащих сфалерита и халькопирита, или в средах, необычно обогащённых Сd ([28], приложение 5). Однако результаты данного исследования показали, что Сd в раннем сфалерите содержится в незначительных количествах (до 0.4 мас. %) и полностью отсутствует в халькопирите, образовавшемся близко-одновременно с Ад-содержащим тетраэдритом-(Cd).

Отмечалось, что в гипергенных условиях Cd, содержащийся изоморфно в сфалерите, легко отделяется от Zn ([29], приложение. 5). Вероятно, в рудах месторождения Кон-Дара имела место ретроградная Fe-Zn-обменная реакция между сфалеритом и тетраэдритом (реакция 19 в [27], Приложение 5):

$$ZnS(Sp) + 1/2 Cu_{10}Fe_2Sb_4S_{13}(Ttr-Fe) \leftrightarrow FeS(eSp) + 1/2 Cu_{10}Zn_2Sb_4S_{13}(Ttr-Zn)$$
 (3),

а также подобная ей Cd-Zn-обменная реакция:

$$CdS(eSp) + 1/2 Cu_{10}Zn_2Sb_4S_{13}(Ttr-Zn) \leftrightarrow ZnS(Sp) + 1/2 Cu_{10}Cd_2Sb_4S_{13}(Ttr-Cd)$$
 (4).

В результате последней реакции (4) при остывании флюида блёклые руды обогащались кадмием, вынесенным из сфалерита.

## ЗАКЛЮЧЕНИЕ

Впервые обнаружен редкий минерал крайней кадмиевой блёклой руды — Ад-содержащий тетраэдрит-(Cd) — на территории Таджикистана. Его необычные тесные срастания с другими крайними членами группы блёклой руды (тетраэдритом-(Fe) и тетраэдритом-(Zn)) могут свидетельствовать о разрыве смесимости в блёклорудном твёрдом растворе при температурах ниже 200°С.

В блёклых рудах Сd предпочтительнее концентрируется в сурьямяных минералах: тетраэдрите, аргентотетраэдрите, хаките. Кадмиевые блёклые руды часто содержат значимые концентрации Ag, которые, скорее всего, связаны с Sb, а не с Cd.

По имеющимся в литературе анализам Cd-содержащих блёклых руд в твёрдом растворе между тетраэдритом-(Cd) и аргентотетраэдритом-(Cd) не наблюдается полной смесимости: на основании PCMA установлен разрыв смесимости в интервале содержаний Ag от 1 до 2.5 ф.к. (~ от 6 до 13.7 мас. %). На месторождении Кон-Дара разрыв смесимости наблюдался и в Cd—Zn—Fe-содержащем тетраэдритовом твёрдом растворе между двухвалентными металлами.

Оценена температура образования Ag-содержащего тетраэдрита-(Cd) и сосуществующих с ним Ag-содержащих тетраэдрита-(Fe) и тетраэдрита-(Zn) на месторождении Кон-Дара — (170—140)±20°С. Образование Ag-содержащего тетраэдрита-(Cd) происходило при остывании флюида в результате ретроградных реакций Cd—Zn-обмена, при которых блёклые руды обогащались кадмием, вынесенным из сфалерита.

### ИСТОЧНИК ФИНАНСИРОВАНИЯ

Исследования выполнены при финансовой поддержке проекта № 124022400142-2 "Кристаллохимические особенности, химический состав минералов и их ассоциаций как генетические индикаторы эндогенных и экзогенных процессов" Института геологии рудных месторождений, петрографии, минералогии и геохимии Российской акалемии наук (ИГЕМ РАН).

Приложения 1—5 доступны в виде электронных приложений по DOI данной статьи.

## СПИСОК ЛИТЕРАТУРЫ

- Biagioni C., George L. G., Cook N. J., Makovicky E., Moëlo Y., Pasero M., Sejkora J., Stanley C. J., Welch M. D., Bosi F. The tetrahedrite group: Nomenclature and classification. Am. Miner. 2020. V. 105. P. 109–122.
- 2. *Warr L. N.* IMA-CNMNC approved mineral symbols // Mineralogical Magazine. 2021. V. 85. № 3. P. 291–320.
- 3. *Pattrick R. A. D.* Microprobe analyses of cadmiumrich tetrahedrites from Tyndrum, Perthshire, Scotland // Mineralogical Magazine. 1978. V. 42. № 322. P. 286–288.
- 4. *Pattrick R. A. D.* Pb-Zn and minor U mineralization at Tyndrum, Scotland // Mineralogical Magazine. 1985. V. 49. № 354. P. 671–681.
- Jia D., Fu Z., Zhang H., Zhao C. The first discovery of Cd-freibergite in China // Acta Miner. Sinica. 1988.
   V. 8. P. 136–137 (in Chinese with English abstract).
- 6. Pascua M. I., Muriego A., Pellitero E., Babkine J., Dusausoy Y. Sn-Ge-Cd-Cu-Fe-bearing sulfides and sulfosalts from the Barquilla deposit, Salamanca, Spain // Canadian Mineralogist. 1997. V. 35. P. 39–52.
- 7. Паленова Е. Е., Блинов И. А., Заботина М. В. Минералы серебра в кварцевых жилах рудопроявления золота Красное (Бодайбинский район) // Минералогия. 2015. № 2. С. 9—17.
- 8. *Bayerl R., Desor J., Möhn G.* New Minerals for the Clara mine, Oberwolfach, Germany. 2022. https://www.mindat.org/reference.php?id=16098796
- Sejkora J., Biagioni C., Škácha P., Musetti S., Kasat-kin A. V., Nestola F. Tetrahedrite-(Cd), Cu<sub>6</sub>(Cu<sub>4</sub>Cd<sub>2</sub>)
  Sb<sub>4</sub>S<sub>13</sub>, from Radětice near Příbram, Czech Republic: the new Cd member of the tetrahedrite group //

- European Journal of Mineralogy. 2023. V. 35. № 6. P. 897–907.
- Тихомирова В.Д. Особенности состава блеклых руд месторождений формации медистых песчаников на Севере Урала / Теория, история, философия и практика минералогии: Материалы IV Междунар. минерал. семинара. 2006. С. 193–195.
- 11. Плотинская О. Ю., Ковальчук Е. В. Блеклые руды Cu-(Mo)-порфировых месторождений Урала // Минералогия. 2022. Т. 8. № 3. С. 5—22.
- 12. Biagioni C., Kasatkin A., Sejkora J., Nestola F., Škoda R. Tennantite-(Cd), Cu<sub>6</sub>(Cu<sub>4</sub>Cd<sub>2</sub>)As<sub>4</sub>S<sub>13</sub>, from the Berenguela mining district, Bolivia: the first Cd-member of the tetrahedrite group // Mineral. Mag. 2022. V. 86. P. 834–840.
- 13. *Воропаев А. В., Спиридонов Э. М., Щибрик В. И.* Тетраэдрит-Cd первая находка в СССР // Доклады АН СССР. 1988. Т. 300. № 6. С. 1446—1448.
- 14. *Dobbe R. T. M.* Manganoan-cadmian tetrahedrite from the Tunaberg Cu-Co deposit, Bergslagen, central Sweden // Mineral. Mag. 1992. V. 56. P. 113–115.
- 15. *Voudouris P. C.* Conditions of formation of the mavrokoryfi high-sulfidation epithermal Cu–Ag–Au–Te mineralization (Petrota Graben, NE Greece) // Mineralogy and Petrology. 2011. V. 101. P. 97–113.
- 16. Mikuš T., Vlasáč J., Majzlan J., Sejkora J., Steciuk G., Plášil J., Röβler C., Matthes C. Argentotetrahedrite-(Cd), Ag<sub>6</sub>(Cu<sub>4</sub>Cd<sub>2</sub>)Sb<sub>4</sub>S<sub>13</sub>, a new member of the tetrahedrite group from Rudno nad Hronom, Slovakia // Mineralogical Magazine. 2023. V. 87. № 2. P. 262–270.
- 17. Škácha P., Sejkora J., Palatinus L., Makovicky E., Plášil J., Macek I., Goliáš V. Hakite from Příbram, Czech Republic: compositional variability, crystal structure and the role in Se mineralization // Mineralogical Magazine. 2016. V. 80. № 6. P. 1115–1128. https://doi.org/10.1180/minmag.2016.080.038
- 18. *Pattrick R. A. D., Hall A. J.* Silver substitution into synthetic zinc, cadmium, and iron tetrahedrites // Mineralogical Magazine. 1983. V. 47. № 345. P. 441–451.
- 19. *Юшкин Н. П.* Новая кадмиевая разновидность тетраэдрита // Доклады АН СССР. 1978. Т. 242. № 2. С. 246—249.
- 20. Бортников Н. С., Коваленкер В. А., Гейнке В. Р., Тронева Н. В., Раздолина Н. В. Химический состав и парагенетические ассоциации сульфосолей в серебро-полиметаллических месторождениях Средней Азии / В кн.: Метасоматоз, минералогия и вопросы генезиса золотых и серебряных месторождений. М.: Наука, 1986. С. 146—167.

## Ag-BEARING TETRAHEDRITE-(Cd), (Cu,Ag)<sub>6</sub>(Cu<sub>4</sub>Cd<sub>2</sub>)Sb<sub>4</sub>S<sub>13</sub>, FROM GALENITE-FLUORITE DEPOSIT KON-DARA MINERAL (SOUTH-WESTERN PAMIRS) — FIRST DISCOVERY IN TAJIKISTAN

N. G. Lyubimtseva<sup>a,#</sup>, Academician of the RAS N. S. Bortnikov<sup>a</sup>, V. M. Gekimyants<sup>c</sup>, S. E. Borisovsky<sup>a</sup>, P. Yu. Plechov<sup>b</sup>

<sup>a</sup>Institute of Geology of Ore Deposits, Petrography, Mineralogy, and Geochemistry, Russian Academy of Sciences, Moscow, Russian Federation

<sup>b</sup>A. Fersman Mineralogical Museum, Russian Academy of Sciences, Moscow, Russian Federation

<sup>#</sup>E-mail: luy-natalia@yandex.ru

Tetrahedrite-(Cd), with the ideal formula  $Cu_{10}Cd_2Sb_4S_{13}$ , is a member of the tetrahedrite series of the tetrahedrite group with a predominance of Cd at the C position typically occupied by divalent metals. Cadmium end-members from the tetrahedrite group are rare: they were found in 15 deposits and ore occurrences. The article reports on a new discovery site of Ag-bearing tetrahedrite-(Cd) at the Kon-Dara mineral deposit (Southwestern Pamirs, Tajikistan) and summarizes the known data on rare Cd-bearing fahlores with Cd content from 1 to 12.31 wt. %. Ag-bearing tetrahedrite-(Cd) at the Kon-Dara deposit occurs as xenomorphic segregations  $10-35~\mu m$  in size in association with tetrahedrite-(Fe), tetrahedrite-(Zn), galena, polybasite, and chalcopyrite, which replace bournonite. According to the EPMA data, its composition averaged over seven analyzes (in wt. %) is as follow: Ag 16.17, Cu 25.19, Cd 10.09, Fe 0.38, Zn 0.09, Pb 0.13, Sb 25.55, As 0.18, S 22.34. The empirical formula calculated based on 29 atoms per the unit is  $(Cu_{7.40}Ag_{2.80})_{\Sigma10.20}(Cd_{1.68}Fe_{0.13}Zn_{0.03}Pb_{0.01})_{\Sigma1.84}(Sb_{3.92}As_{0.04})_{\Sigma3.96}S_{13.00}$ . The composition of the tetrahedrite-(Cd) from Kon-Dara is similar to those from the Tyndrum Pb-Zn mineralization in Scotland, the Clara baryte-fluorite-(Ag,Cu) mine in Germany, and the Xaitishan Pb-Zn deposit in China. The formation temperature of Ag-bearing tetrahedrite-(Cd) at the Kon-Dara deposit is estimated to has been at about  $(170-140)\pm20^{\circ}C$ .

*Keywords*: tetrahedrite group, fahlore, tetrahedrite-(Cd), polybasite, bournonite, chemical composition, temperature, replacement, Kon-Dara, Pamir, Tajikistan