— МИНЕРАЛОГИЯ —

УДК 550.93/552.323.6

ВЕЗУВИАН — НОВЫЙ U-РЬ-МИНЕРАЛ-ГЕОХРОНОМЕТР ДЛЯ ОЦЕНКИ ВОЗРАСТА РУДНЫХ МЕСТОРОЖДЕНИЙ

© 2024 г. М. В. Стифеева^{1,*}, Т. Л. Паникоровский², А. М. Ларин¹, Е. Б. Сальникова¹, член-корреспондент РАН А. Б. Котов¹, В. В. Бортников¹

Поступило 18.03.2024 г. После доработки 23.05.2024 г. Принято к публикации 29.05.2024 г.

Представлены результаты U-Pb (ID-TIMS)-геохронологических исследований везувиана из рудоносных метасоматитов Хопунваара (Питкярантский рудный район, Северное Приладожье). Полученная оценка возраста (1550 ± 6 млн лет) в пределах погрешности совпадает с возрастом образования рудоносных скарнов, генетически связанных с гранитами рапакиви Салминского батолита. Это свидетельствует о возможности использования везувиана в качестве U-Pb-минерала-геохронометра в том числе для рудоносных контактово-реакционных пород.

Ключевые слова: Питкярантский рудный район, U-Pb (ID-TIMS), везувиан, рапакиви, Салминский батолит

DOI: 10.31857/S2686739724100109

Среди известных U-Pb-минералов-геохронометров выделяются минералы (гранат, перовскит, титанит), в кристаллической структуре которых присутствие U обусловлено механизмом изоморфного замещения им части Ca. Это создаёт предпосылки для исследования других кальциевых минералов — потенциальных источников геохронологической информации. Среди минералов, содержащих значительное количество Ca, но до настоящего момента практически не использовавшихся в качестве геохронометров, выделяются минералы группы везувиана. Известно, что в ряде случаев содержание UO₂ в везувиане может достигать 13 мас. % (не опубликованные данные авторов).

Минералы группы везувиана (МГВ) образуются в различных геологических обстановках и являются важными индикаторами контактово-реакционных процессов, проявленных в большом диапазоне PT-параметров. Кристаллическая структура МГВ характеризуется наличием крупных катионных позиций

ствует изоморфному вхождению в их состав высокозарядных элементов группы актиноидов. МГВ относятся к классу орто-диортосиликатов и кристаллизуются в тетрагональной сингонии, что делает их устойчивыми к наложенным процессам. Необходимо отметить, что везувиан ранее уже рассматривался рядом исследователей в качестве возможного источника геохронологической информации [1-4]. Однако широкого применения в качестве U-Pb-минерала-геохронометра он не получил ввиду существующих трудностей, возникающих на этапе интерпретации полученных данных. Как правило, это связано с присутствием в их составе значительного количества обыкновенного свинца [1]. Это определяет важность проведения методических U-Рb-исследований везувиана с целью определения возможности его использования для датирования различных пород. Необходимым условием для успешной апробации новых минералов-геохронометров является выбор "эталонных" объектов, для которых уже имеются независимые и надёжные оценки возраста.

с координационным числом 7-9, что способ-

В качестве объекта исследований был выбран везувиан из рудоносных метасоматитов Хопунваара (Питкярантский рудный район, Северное Приладожье), ассоциирующего

¹Институт геологии и геохронологии докембрия Российской Академии наук, Санкт-Петербург, Россия

²Кольский научный центр Российской Академии наук, Апатиты, Россия

^{*}E-mail: stife eva.maria@y and ex.ru

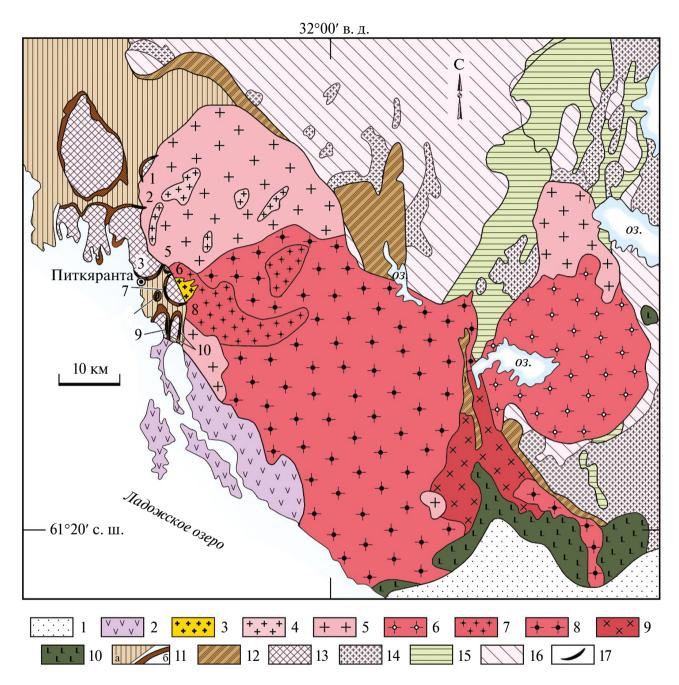


Рис. 1. Геологическое строение Салминского батолита и размещение месторождений Питкярантского рудного района. По [5] с дополнениями и изменениями. 1 — платформенный покров; 2 — вулканогенно-осадочные образования йотния (салминская свита); 3−10 — породы Салминского батолита: 3 — топазсодержащие граниты (Li−F-граниты), 4 — мелкозернистые порфировидные биотитовые граниты; 5 — крупнозернистые биотитовые граниты; 6 — крупнозернистые биотит-роговообманковые граниты; 7 — овоидные биотит-роговообманковые граниты рапакиви с мелкозернистой основной массой; 8 — выборгиты и питерлиты; 9 — крупнозернистые биотит-роговообманковые кварцевые сиениты; 10 — основные и средние породы (анортозиты, нориты, ферродиориты, монцониты); 11−12 — PR1 супракрустальные породы: 11 — Свекофеннской складчатой области (сортавальская и ладожская серии); 12 — Карельского кратона; 13 — AR2-PR1 гнейсограниты куполов; 14−16 — AR2 комплексы Карельского кратона: 14 — граниты и мигматит-граниты; 15 — зеленокаменные пояса; 16 — ТТГ-ассоциация; 17 — месторождения и рудопроявления Питкярантского рудного района. Месторождения: 1−4 — скарново-пропилитовые Sn-полиметаллические: 1 — Юкан Коски, 2 — Кители, 3 — Старое рудное поле, 4 — Хепоселька; 5−10 — скарново-грейзеново-пропилитовые Sn-Ве- и Sn-Ве-полиметаллические: 5 — Новое рудное поле, 6 — Хопунваара, 7 — Люпикко, 8 — Южное Люпикко, 9 — Ристиниеми, 11 — Уукса.

с гранитами рапакиви Салминского батолита (рис. 1). Значительный объём надёжных геохронологических данных, имеющихся как для гранитов Салминского батолита, так и для контактово-реакционных образований этого рудного района [5], позволяет оценить потенциал везувиана как источника геохронологической информации.

Be-Sn-полиметаллическое рудопроявление Хопунваара относится к скарново-грейзеново-пропилитовому типу и приурочено к зоне контакта гранитов рапакиви Салминского батолита с карбонатными горизонтами питкярантской свиты (рис. 2). Для этого рудопроявления характерно образование следующих видов метасоматитов: магнезиальные и известковые скарны, флюорит-везувиан-магнетитовые метасоматиты, апоскарновые метасоматиты (грейзены, пропилиты и полевошпатовые метасоматиты) и поздние кварц-карбонатные метасоматиты. Формирование скарнов и флюорит-везувиан-магнетитовых метасоматитов связано с магматической стадией, тогда как все апоскарновые метасоматиты и кварц-карбонатные метасоматиты образованы в постмагматический этап. Комплексные руды Питкярантского рудного района генетически связаны с гранитами рапакиви Салминского батолита. На это указывают как минералого-геохимические характеристики гранитов и руд, так и геохронологические и изотопные данные [5].

Флюорит-везувиан-магнетитовые метасоматиты рудопроявления Хопунваара образуют пластовые, а также трубообразные сложно ветвящиеся тела в мраморах и кальцифирах питкярантской свиты. Характерной особенностью этих пород является ритмичная тонкополосчатая структура. С ними связано бериллиевое оруденение, причём практически весь Ве находится в виде изоморфной примеси в везувиане (до 0.85% BeO).

Для изучения структуры и состава везувиана из метасоматитов рудопроявления Хопунваара был проведён рентгеноструктурный анализ монокристалла (размер $0.22 \times 0.15 \times 0.15$ мм³) с использованием дифрактометра "Rigaku" XtaLAB Synergy-S (ЦКП ФИЦ КНЦ РАН). Более полусферы рентген-дифракционных данных было собрано при комнатной температуре с использованием монохроматического Мо $K\alpha$ излучения ($\lambda=0.71069$ Å). Параметры элементарной ячейки уточнялись методом наименьших квадратов. Поправка на поглощение была определена эмпирически с помощью

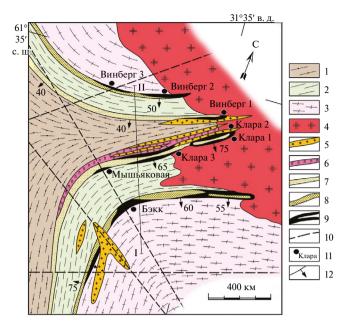
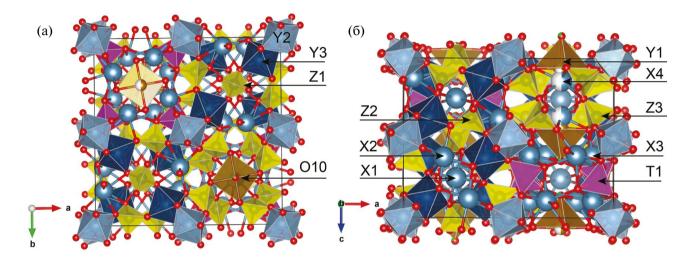


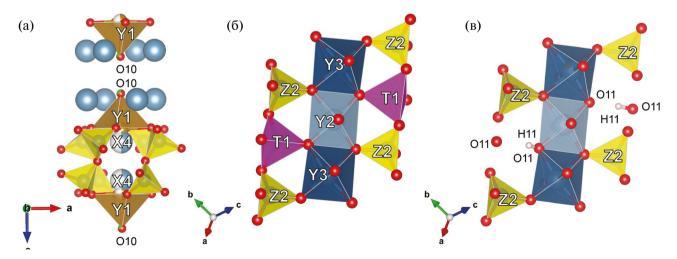
Рис. 2. Геологическая схема месторождения Хопунваара, Питкярантский рудный район. По [5] с дополнениями и изменениями. 1 — глинозёмистые сланцы ладожской серии; 2 — амфиболовые сланцы и амфиболиты питкярантской свиты; 3 — гнейсограниты куполов; 4 — овоидные биотит-роговообманковые граниты рапакиви Салминского массива; 5 — Li-F-граниты; 6 — керамические пегматиты; 7-8 — рудовмещающие карбонатные горизонты питкярантской свиты (7 — верхний, 8 — нижний); 9 — рудные залежи; 10 — разломы; 11 — шахты; 12 — элементы залегания метаморфических пород.

сферических гармоник, реализованных в алгоритме калибрования SCALE ABSPACK в программном комплексе CrysAlisPro [6]. Уточнение структур проводилось с помощью программы SHELXL [7], встроенного в программный комплекс Olex2 [8].

Анализ заселённости позиций X1, X2, X3 и X4 (рис. 3) показал, что они полностью заняты атомами Са, как и в случае заселённости позиций Z исключительно атомами Si. Для 4-xсвязей У1-О6 тетрагональной пирамиды расчётная заселённость составляет ($Fe^{3+}_{0.88}Mn^{2+}_{0.12}$)_{1.00.} Октаэдрическая позиция У2 с учётом кратности позиции может быть представлена как $(Al_{5.20}Mg_{1.84}Fe_{0.96})$. Фактор рассеяния для тетраэдрической позиции T1 составляет (1.22 e^-), что соответствует заселённости ($\Box_{0.91}$ Al_{0.09}). Также в составе изученного везувиана выявлено присутствие атомов С1, локализованных в позиции О10, о чём свидетельствует соответствующий фактор рассеяния $10.3 \, \bar{e}$, а также увеличенные по сравнению с другими анионными позициями параметры атомных смещений.


По результатам рентгеноструктурного анализа и на основании химического состава везувиана из метасоматитов рудопроявления Хопунваара

можно записать следующую кристаллохимическую формулу:

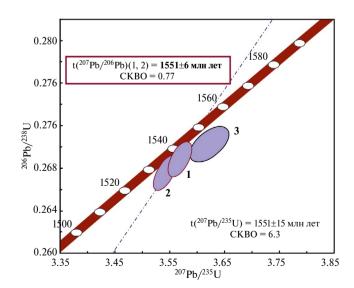

$${}^{X}Ca_{19.00}{}^{Y1}(Fe^{3+}_{0.88}Mn^{2+}_{0.12})_{1.00}{}^{Y2}(Al)_{4.00}{}^{Y3}(Al_{5.20}Mg_{1.84}Fe^{3+}_{0.96})_{8.00}{}^{T1}(Al)_{0.38}{}^{Z}Si_{18.00}O_{69}{}^{W}(OH_{7.31}Cl_{0.51}O_{1.18})_{9.00}.$$

Для проведения U—Pb (ID-TIMS)-геохронологических исследований отобрано три микронавески фрагментов зёрен везувиана из метасоматитов рудопроявления Хопунварара. Процедура предварительной обработки везувиана включала: ультразвуковую чистку в слабом растворе HCl и последующую кислотную обработку в 6—8 N HCl. Разложение и химическое выделение U и Pb осуществлялось в соответствии

с модифицированными методиками, описанными в работе [9]. Определение изотопного состава Рb и U выполнено на многоколлекторном масс-спектрометре Triton TI в статическом или динамическом режимах (при помощи счётчика ионов). Использовался изотопный индикатор $^{235}U-^{202}$ Pb. Точность определения U/Pb-отношений и содержаний U и Pb составила 0.5%. Холостое загрязнение не превышало 10 пг для Pb

Рис. 3. Кристаллическая структура везувиана из метасоматитов рудовпроявления Хопунваара. Проекция вдоль оси с (а) и вдоль оси b. Тетраэдры SiO_4 отмечены жёлтым, октаэдры $Y(3)O_6$ — синим и $Y(2)O_6$ — голубым, пирамиды $Y(1)O_5$ — коричневым, позиции Ca — отмечены синими сферами, а O — красными.

Рис. 4. Фрагменты кристаллической структуры везувиана из метасоматитов рудопроявления Хопунваара. Последовательность позиций Y1-X4, а также O10 в каналах структуры (а); локальное окружение позиции T1 (б), Расположение гидроксильных групп в структуре везувиана, в случае вакансии в позиции T1 (в).


Габлица 1. Результаты U-Pb-геохронологических исследований везувиана из метасоматитов рудопроявления Хопунваара

Номер	Номер Навеска, Рb, U, Рbс/	Pb,	u,	Pbc/		Изот	Изотопные отношения	зния		ā	Ā	Возраст, млн лет	Ĺ
п/п	ML	MKT/T	MKT/r MKT/r Pbt	Pbt	²⁰⁶ Pb/ ²⁰⁴ Pb	²⁰⁷ Pb/ ²⁰⁶ Pb ^a	$^{206}\text{Pb}/^{204}\text{Pb}$ $^{207}\text{Pb}/^{206}\text{Pb}^{a}$ $^{208}\text{Pb}/^{206}\text{Pb}^{a}$ $^{207}\text{Pb}/^{235}\text{U}$ $^{206}\text{Pb}/^{238}\text{U}$	$^{207}\text{Pb}/^{235}\text{U}$	²⁰⁶ Pb/ ²³⁸ U	Kho	$^{207} \text{Pb}/^{235} \text{U}$	²⁰⁷ Pb/ ²³⁵ U ²⁰⁶ Pb/ ²³⁸ U ²⁰⁷ Pb/ ²⁰⁶ Pb	²⁰⁷ Pb/ ²⁰⁶ Pb
1	1.64	2.75	5.36	1.64 2.75 5.36 0.50	71.62	0.0963±2	0.0963 ± 2 105.53 ± 20 3.569 ± 98 0.2688 ± 3 0.57 1543 ± 4	3.569±98	0.2688±3	0.57	1543±4	1535±2	1553±4
2	1.89	1.89 4.20 9.49 0.42	9.49	0.42	95.18	0.0960 ± 2	0.0960±2 183.91±3	3.542±10	3.542±10 0.2676±4 0.64 1537±4	0.64	1537±4	1528±2	1548±4
3	98.0	3.52	5.92	0.86 3.52 5.92 0.57	57.89	0.0972±7	0.0972±7 1.537±2	3.622±29	3.622 ± 29 0.2703 ± 5 0.56 1554 ± 12	0.56	1554±12	1542±3	1571±13
Примеча ляции оп	ние. ^а изот іибок ²⁰⁷ Рb	опные с ,/235U-20	отноше: 06 Р b/238	ния, скс ⁸ U; Pbc	Примечание. ^а изотопные отношения, скорректированные на бланк и изотопный состав Рb из когенетичных галенитов (ссылка); Rho – коэффициент корреляции ошибок ²⁰⁷ Pb/ ²³⁵ U- ²⁰⁶ Pb/ ²³⁸ U; Pbc – обычный Pb; Pbt – общий Pb. Величины ошибок (20) соответствуют последним значащим цифрам после запятой.	ные на бланк і ; Pbt - общий	и изотопный с Рb. Величины	остав Рb из к ошибок (20)	огенетичных і соответствуют	таленит послед	ов (ссылка); R ним значащим	ho – коэффиц и цифрам пос	мент корре- те запятой.

и 1 пг для U. Обработка полученных в ходе экспериментов данных осуществлялась в программах "PbDat" [10] и "ISOPLOT" [11]. При расчёте возраста использованы общепринятые значения констант распада U [12]. Для коррекции избыточного обычного Pb использованы опубликованные данные об изотопном составе свинца в когенетичных везувиану галенитов [5]. Все ошибки приведены на уровне 2σ.

Содержание U в изученном везувиане изменяется в пределах 5.36-9.49 мкг/г, доля обыкновенного свинца (Pb_c/Pb_t) не превышает 0.57 (табл. 1). Везувиан характеризуются незначительной (1.1-1.8%) возрастной дискордантностью, средняя величина его возраста $(^{207}\text{Pb}/^{206}\text{Pb})$ составляет 1551 ± 15 млн лет (CKBO = 6.3). Несколько более древнее значение возраста $(^{207}\text{Pb}/^{206}\text{Pb})$ везувиана одной из микронавесок (№ 3, табл. 1, рис. 3) указывает на возможное присутствие незначительной доли унаследованной древней компоненты свинца, влияние которой не удалось полностью "нивелировать" введением поправки на известный изотопный состав свинца сосуществующих галенитов. Среднюю величину возраста (207 Pb) 206 Pb) $^{1550\pm6}$ млн лет (CKBO = = 0.77), рассчитанную для везувиана, характеризующегося наименьшей дискордантностью (№ 1, 2, табл. 1, рис. 3) можно рассматривать в качестве оценки его возраста.

Данные рентгеноструктурного анализа (обнаружено 28 слабых рефлексов, нарушающих правила погасания пр. гр. P4/nnc)

Рис. 5. Диаграмма с конкордией для везувиана из метасоматитов рудопроявления Хопунваара. Номера точек соответствуют порядковым номерам в таблице 1.

везувиана из рудопроявления Хопунваара свидетельствуют о высокотемпературном режиме его образования 550-800°C [13, 14]. Это также подтверждается наличием замещения по схеме $Cl- \leftrightarrow OH-$ в позиции O10 (рис. 4 а) в каналах структуры [15] и внедрением Al³⁺ втетраэдрическую позицию T1 за счёт замещения ОН групп (рис. 4 б). Возможность вхождения Ве в $M\Gamma B$ наиболее ожидаемо в T1-позицию, в таком случае заселённость данной позиции составит ($\square_{0.66}$ Ве_{0.44}), что соответствует 1.76 к.ф. или 1.60 мас. %. Для низкотемпературного везувиана с температурой кристаллизации ниже 400°C эта позиция вакантна (рис. 4 в). Таким образом, температурный интервал 550-800°C соответствует условиям режима процессов скарнообразования [16].

Полученная в результате U-Pb (ID-TIMS)-геохронологических исследований оценка возраста везувиана из метасоматитов рудопроявления Хопунваара (1550 ± 6 млн лет) в пределах погрешности совпадает с возрастом образования скарновых пород Питкярантского рудного района — 1539 ± 9 млн лет [17] и согласуется с интервалом проявления трёх первых магматических импульсов внедрения Салминского батолита — $1538\pm1-1547\pm2$ млн лет [18].

Это свидетельствует о надёжности геохронологических данных, полученных с помощью везувиана, и указывают на его высокий потенциал в качестве нового минерала-геохронометра для рудоносных контактово-реакционных пород.

ИСТОЧНИК ФИНАНСИРОВАНИЯ

Исследования выполнены при финансовой поддержке РНФ № 23-77-01051.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Rolf L*. Romer Vesuvianite New Tool for the U—Pb Dating of Skarn Ore Deposits // Mineralogy and Petrology. 1992. 46: 331–341.
- Qin-Di Wei, Ming Yang, Rolf L. Romer, Hao Wang, Yue-Heng Yang, Zi-Fu Zhao, Shi-Tou Wu, Lie-Wen Xie, Chao Huang, Lei Xu, Jin-Hui Yang, Fu-Yuan Wu. In situ U-Pb geochronology of vesuvianite by La-SF-ICP-MS // Journal of Analytical Atomic Spectrometry. 2022. 37. P. 69-81.
- 3. Yu Zhang, Shuling Song, Pete Hollings, Dengfeng Li, Yongjun Shao, Huayong Chen, Lianjie Zhao, Sandra Kamo, Tingting Jin, Lingling Yuan, Qingquan Liu, Schaocong Chen. In-situ U—Pb geochronology of

- vesuvianite in skarn deposits // Chemical Geology. 2022. 612. 121136.
- 4. Langzhang Xing, Jintang Peng, Yuanjun Lv, Yanwen Tang, Jianfeng Gao. Vesuvianite: A potential U—Pb geochronometer for skarn mineralization case study of tunsten and tin deposits in South China // Chemical Geology. 2022. 607. 121017.
- 5. *Ларин А. М.* Граниты рапакиви и ассоциирующие породы. СПб.: Наука, 2011. 402 с.
- 6. Agilent Technologies. CrysAlis CCD and CrysAlis RED // Oxford Diffr. Ltd, Yarnton, Oxfordsh. 2014
- 7. Sheldrick G. M. Crystal structure refinement with SHELXL // Acta Crystallogr. Sect. C Struct. Chem. 2015. V. 71. № 1. P. 3–8.
- 8. Dolomanov O. V., Bourhis L. J., Gildea R. J, Howard J. A. K., Puschmann H. OLEX2: a complete structure solution, refinement and analysis program // J. Appl. Cryst. 2009. 42. 339–341.
- 9. Стифеева М. В., Сальникова Е. Б., Арзамасцев А. А., Котов А. Б., Гроздев В. Ю. Кальциевые гранаты как источник информации о возрасте щелочно-ультраосновных интрузий Кольской магматической провинции // Петрология. 2020. Т. 28. № 1. С. 72—84.
- Ludwig K. R. PbDat for MS-DOS, version 1.21 U.S. Geological Survey Open-File Report 88–542. 1991. 35 p.
- 11. *Ludwig K. R.* Isoplot 3.70. A Geochronological Toolkit for Microsoft Excel // Berkeley Geochronology Center Special Publications. 2003. V. 4. 70 p.
- 12. *Steiger R. H.*, Jäger E. Subcommission on geochronology: 865 conventions of the use of decay constants in geo- and cosmochronology // Earth and Planetary Science Letters. 1977. V. 36. P. 359–362.
- 13. *Allen F. M., Burnham C. W.* A comprehensive structure-model for vesuvianite: symmetry variations and crystal growth // Can. Mineral. 1992. V. 30. P. 1–18.
- 14. *Паникоровский Т. Л., Яковенчук В. Н., Кривовичев С. В.* Рентгенодифракционный метод оценки температуры кристаллизации везувиана // Записки РМО. 2023. Т. 152. № 2. https://doi.org/10.31857/S0869605523020041
- 15. *Galuskin E. V., Galuskina I. O., Dzierżanowski P.* Chlorine in vesuvianites // Miner. Pol. 2005. 36. 51–61.
- 16. Britvin S. N., Antonov A. A., Krivovichev S. V., Armbruster T., Burns P. C., Chukanov N. V. Fluorvesuvianute, Ca₁₉(Al,Mg,Fe²⁺)₁₃[SiO₄]₁₀[Si₂O7]4O(F,OH)9, a new mineral species from Pitkaranta, Karelia, Russia: Description and crystal structure // Can. Mineral. 2003. V. 41. P. 1371–1380.
- 17. Amelin Yu., Larin A. U-Pb and Sm-Nd zircon and garnet geochronology of skarn formation associated

with rapakivi granite magmatism: an example of the Pitkaranta ore district, south-eastern Karelia / Anorthosites, Rapakivi Granites and Related Rocks. IGCP 290 and 315. Abstr. Montreal. Canada. 1994. P 1 18. Amelin Yu., Larin A. M., Tucker R. D. Chronology of multiphase emplacement of the Salmi rapakivi granite-anorthosite complex, Baltic Shield: implications of magmatic evolution // Contrib. Mineral. Petrol. 1997. 127. P. 353–368.

VESUVIANITE — A NEW MINERAL FOR U-PB DATING OF ORE DEPOSITES

M. V. Stifeeva^{a,#}, T. L. Panikorovskii^b, A.M. Larin^a, E. B. Salnikova^a, Corresponding Member of the RAS A. B. Kotov^a, V. V. Bortnikov^a

^aInstitute of Precambrian Geology and Geochronology, Russian Academy of Sciences,
Saint-Peterburg, Russian Federation

^bKola Science Center of the Russian Academy of Sciences,
Apatity, Russian Federation

[#]E-mail: stifeeva.maria@yandex.ru

The results of U–Pb (ID-TIMS) geochronological studies of vesuvianite from ore-bearing metasomatites of Khopunvaara (Pitkyaranta ore district, Northern Ladoga region) are presented. The resulting age estimate (1550 ± 6 MA) within the error in agreement with the age of formation of ore-bearing skarns genetically related to the rapakivi granites of the Salma batholith. This indicates the possibility of using vesuvianite as a U–Pb mineral-geochronometer, including for ore-bearing contact-reaction rocks.

Keywords: Pitkyaranta Ore Disctrict, U-Pb (ID-TIMS), vesuvianite, rapakivi, Salma batholith