Application of the dynamic light scattering for assessing the content of large colloidal and suspended particles in river waters

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The value of the scattering intensity in the dynamic light scattering (DLS) method is proportional to the mass concentration of polymethylmethacrylate (PMMA) particles in water suspensions containing 1–100 mg/l of particles with a size of 0.08-2.0 μm determined gravimetrically, confirms this possibility. A significant correlation between the intensity of scattering of DLS in filtrates and the concentration of chemical elements Fe, Al, Ti, Th, and REEs in them, which are prone to migration in the coarse colloidal forms, is another proof of the dependence of the intensity of DLS filtrates on the content of large colloids in them. This makes it possible to characterize the initial concentration of large colloids and their losses during the clogging of filters, as well as to assess the role of large colloids in the balance of chemical elements in river waters.

作者简介

V. Shulkin

Pacific Geographical Institute Far Eastern Branch Russian Academy of Sciences

编辑信件的主要联系方式.
Email: shulkin@tigdvo.ru
Vladivostok, Russia

参考

  1. Gaillardet J., Viers J., Dupre B. Trace elements in river waters // Treatise on Geochemistry (Second Edition). V. 7. Amsterdam et al.: Elsevier, 2014. P. 195–235.
  2. Ilina S.M., Lapitsky S.A., Alekhin Y.V., Viers J., Benedetti M., Pokrovsky O.S. Speciation, size fractionation and transport of trace element in the continuum soil water–mire–lake– river–large oligotrophic lake of a subarctic watershed // Aquat. Geochem. 2016. 22(1). P. 65–95.
  3. Horowitz A.J., Lum K.R., Garbarino J.R., Hall G.E.M., Lemieux C., Demas C.R. Problems associated with using filtration to define dissolved trace element concentrations in natural water samples // Environ. Sci. Technol. 1996. V. 30. 954.
  4. Шулькин В.М., Богданова Н.Н., Еловский Е.В. Влияние кольматирования фильтров на определение концентрации истинно-растворенных и коллоидных форм миграции химических элементов в речных водах // Вод. ресурсы. 2022. Т. 49. № 1. С. 91–102.
  5. Pokrovsky O.S., Schott J. Iron colloids/organic matter associated transport of major and trace elements in small boreal rivers and their estuaries (NW Russia) // Chem. Geol. 2002. V. 190. P. 141–179.
  6. Schmitz K.S. An Introduction to Dynamic Light Scattering by Macromolecules. Boston: Academic Press, 1990. 472 p.
  7. Xu R. Light scattering: A review of particle characterization applications // Particuology. 2015. V. 18. P. 11–21.
  8. Anderson W., Kozak D., Coleman V.A., Jamting A.K., Trau M. A comparative study of submicron particle sizing platforms: Accuracy, precision and resolution analysis of polydisperse particle size distributions // J. Colloid and Interface Science. 2013. 405. P. 322–330.
  9. Filella M., Zhang J., Newman M.E., Buffle J. Analytical applications of photon correlation spectroscopy for size distribution measurements of natural colloidal suspensions: capabilities and limitations // Colloids Surfaces A: Physiсochem. Eng. Aspects. 1997. V. 120. P. 27–46.
  10. Шулькин В.М. Использование метода динамического рассеяния света для оценки эффективности разделения взвешенных и коллоидных частиц речных вод фильтрацией и центрифугированием // Известия Томского политехнического университета. Инжиниринг георесурсов. 2023. Т. 334. № 10. С. 88–97.
  11. Ingri J., Widerlund A., Land M., Gustafsson O., Andersson P., Ohlander B. Temporal variations in the fractionation of the rare earth elements in a boreal river; the role of colloidal particles // Chem. Geol. 2000. 166. P. 23–45.
  12. Cuss C.W., Donner M.W., Grant-Weaver I., Noernberg T., Pelletier R., Sinnatamby R.N., Shotyk W. Measuring the distribution of trace elements amongst dissolved colloidal species as a fingerprint for the contribution of tributaries to large boreal rivers // Sci. Total Environ. 2018. V. 642. P. 1242–1251.
  13. Савенко А.В., Савенко В.С., Ефимов В.А., Покровский О.С. Микроэлементный состав вод устьевого участка р. Колымы // Доклады РАН. Науки о Земле. 2023. Т. 509. № 2. С. 272–275.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».