STUDY OF THE MECHANISMS OF PENETRATION OF SOUND SHOCK INTO A ROOM

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

This paper presents the results of numerical modeling of the penetration of a sonic boom into a room through a building window. The calculation results are validated by field measurements of a sonic boom caused by a supersonic aircraft flying at cruising altitude. It is found that the main transmission mechanism is the displacement of the window frame in the window opening as a whole, and not the excitation of the first natural mode of the window. The influence of the stiffness and damping of the sealing of the window unit in the window opening on the passage of a sonic boom is studied. It is found that an increase in both of these parameters significantly reduces the amplitude of the sonic boom inside the room.

作者简介

A. Valishina

Lomonosov Moscow State University

Email: alya_valishina@bk.ru
Moscow, Russia

V. Vedeneev

Lomonosov Moscow State University

Email: vasily@vedeneev.ru
Moscow, Russia

L. Gareev

Lomonosov Moscow State University

Email: gareev@imec.msu.ru
Moscow, Russia

K. Zhidyaev

Lomonosov Moscow State University

Email: kirill.a.zhidyaev@imec.msu.ru
Moscow, Russia

参考

  1. Chernyshev S.L. Zvukovoi udar. M.: Nauka, 2011. 351 s.
  2. Newberry C. W. The response of buildings to sonic boom // J. Sound Vib. 1967. V. 6 (3). P. 406–418.
  3. Klos J., Buehrle R. D. Vibro-acoustic response of buildings due to sonic boom exposure: june 2006 field test. NASA report TM-2007–214900. 2007.
  4. Klos J. Vibro-acoustic response of buildings due to sonic boom exposure: july 2007 field test. NASA report TM-2008–215349. 2008.
  5. Norén-Cosgriff K., Belyaev I., Lovholt F. Building vibration induced by sonic boom – field test in Russia // Appl. Acoustics. 2022. V. 185. 108422.
  6. Rallabhandi S.K., Mavris D.N. Aircraft Geometry Design and Optimization for Sonic Boom Reduction // J. Aircraft. 2007. V. 44 (1). P. 35–47.
  7. Farhat C., Maute K., Argyow B., Nikbay M. Shape Optimization Methodology for Reducing the Sonic Boom Initial Pressure Rise // AIAA Journal. 2007. V. 45 (5). P. 1007–1018.
  8. Han Z., Qia J., Zhang L., Chen Q., Yang H., Ding Y., Zhang K., Song W., Son B. Recent progress of efficient low-boom design and optimization methods // Prog. Aerospace Sci. 2024. V. 146. 101007.
  9. Ishikawa H., Makino Y., Ueno A., Kanamori M. Sonic Boom Assessment in Primary Boom Carpet of Low-Boom Supersonic Airplane (NASA C25D) // AIAA Scitech 2019 Forum. 2019. AIAA 2019–0298.
  10. Kiselev A. F., Kovalenko V. V., Pritulo T. M. Issledovanie zvukovogo udara: raschet i eksperiment // Inzhenernyi zhurnal: nauka i innovatsii. 2017. № 8 (68).
  11. Rubenko O. V., Makov Yu. N. Zvukovoi udar: ot fiziki nelineinykh voln do akusticheskoi ekologii (obzor) // Akust. zhurn. 2021. T. 67. № 1. S. 3–30.
  12. Vadieiev Kh. F., Kraiko A. N., Tillaeva N. I. Ob uproshchenii chislennykh i analiticheskikh "instrumentov" opisaniia "zvukovogo udara" // ZhVMiMF. 2022. T. 62. № 4. S. 642–658.
  13. Chernyshev S. L. O rasprostranenii volny zvukovogo udara v turbulentnoi srede // Uch. zap. TsAGI. 2018. T. XXXVII. № 3. S. 52–61.
  14. Yudashev P. V., Karlova M. M., Khokhlova V. A., Blan-Belon F. Chislennoe modelirovanie nelineinogo parabolicheskogo uravneniia dlia analiza statistiki vospriinimaemogo urovnia shuma volny zvukovogo udara posle prokhozhdeniia turbulentnogo sloia atmosfery // Akust. zhurn. 2021. T. 67. № 1. S. 31–44.
  15. Remillieux M. C., Burdisso R. A., Reichard G. Transmission of sonic booms into a rectangular room with a plaster–wood wall using a modal–interaction model // J. Sound Vib. 2009. V. 327. P. 529–556.
  16. Sizov N.V., Plotkin K.J., Hobbs C.M. Predicting transmission of shaped sonic booms into a residential house structure // J. Acoust. Soc. Am. 2010. V. 127 (6). P. 3347–3355.
  17. Remillieux M.C., Corcoran J.M., Haac T.R., Burdisso R.A., Svensson U.P. Experimental and numerical study on the propagation of impulsive sound around buildings // Appl. Acoust. 2012. V. 73. P. 1029–1044.
  18. Remillieux M.C. External pressure loading, vibration, and acoustic responses at low frequencies of building components exposed to impulsive sound // Appl. Acoust. 2012. V. 73. P. 1059–1075.
  19. Ou D., Ming Mak C. The effects of elastic supports on the transient vibroacoustic response of a window caused by sonic booms // J. Acoust. Soc. Am. 2011. V. 130 (2). P. 783–790.
  20. Ou D., Ming Mak C. Minimizing the transient vibroacoustic response of a window to sonic booms by using stiffeners // J. Acoust. Soc. Am. 2014. V. 135 (4). P. 1672–1675.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».