Oxygen exchange and mechanism of oxygen intake by complex oxides with a swedenborgite structure
- 作者: Turkin D.I.1, Reznitskikh O.G.1, Kozhevnikov V.L.1
-
隶属关系:
- Institute of Solid State Chemistry of the Ural Branch of the Russian Academy of Sciences
- 期: 卷 520, 编号 1 (2025)
- 页面: 23-32
- 栏目: CHEMISTRY
- URL: https://journal-vniispk.ru/2686-9535/article/view/294514
- DOI: https://doi.org/10.31857/S2686953525010036
- EDN: https://elibrary.ru/AWJMSS
- ID: 294514
如何引用文章
详细
The kinetics of oxygen sorption from air by Y0.8Ca0.2BaCo4-xFexO7+δ (x = 0, 1) is studied by nonisothermal thermogravimetric measurements. The activation energy is calculated by model-free methods of Friedman, Starink and Vyazovkin. The master plot and Coates–Redfern methods are applied to determine the mechanism of oxygen intake. The results show the activation energies and frequency factors are 189 and 197 kJ mol–1 and 4.7 × 1013 and 2.3 × 1014 min–1 in Y0.8Ca0.2BaCo4O7+δ and Y0.8Ca0.2BaCo3FeO7+δ, respectively. The arguments are given in proof of oxygen sorption determined by the volume random nucleation and growth of the oxygen-rich nuclei.
全文:

作者简介
D. Turkin
Institute of Solid State Chemistry of the Ural Branch of the Russian Academy of Sciences
编辑信件的主要联系方式.
Email: turkin@ihim.uran.ru
俄罗斯联邦, 620077 Ekaterinburg
O. Reznitskikh
Institute of Solid State Chemistry of the Ural Branch of the Russian Academy of Sciences
Email: turkin@ihim.uran.ru
俄罗斯联邦, 620077 Ekaterinburg
V. Kozhevnikov
Institute of Solid State Chemistry of the Ural Branch of the Russian Academy of Sciences
Email: turkin@ihim.uran.ru
Academician of the RAS
俄罗斯联邦, 620077 Ekaterinburg参考
- Vieten J., Bulfin B., Call F., Lange M., Schmücker M., Francke A., Roeb M., Sattler C. // J. Mater. Chem. A. 2016. V. 4. P. 13652–13659. https://doi.org/10.1039/C6TA04867F
- Tescari S., Agrafiotis C., Breuer S., de Oliveira L., Neisesvon Puttkamer M., Roeb M., Sattler C. // Energy Procedia. 2014. V. 49. P. 1034–1043. https://doi.org/10.1016/j.egypro.2014.03.111
- Kodama T., Gokon N. // Chem. Rev. 2007. V. 107. P. 4048–4077. https://doi.org/10.1021/cr050188a
- Karppinen M., Yamauchi H., Otani S., Fujita T., Motohashi T., Huang Y.-H., Valkeappa M., Fjellvag H. // Chem. Mater. 2006. V. 18. P. 490–494. https://doi.org/10.1021/cm0523081
- Hao H., Cui J., Chen C., Pan L., Hu J., Hu X. // Solid State Ion. 2006. V. 177. P. 631–637. https://doi.org/10.1016/j.ssi.2006.01.030
- Chen T., Hasegawa T., Asakura Y., Kakihana M, Motohashi T., Yin S. // ACS Appl. Mater. Interfaces. 2021. V. 13. P. 51008–51017. https://doi.org/10.1021/acsami.1c15419
- Nagai Y., Yamamoto T., Tanaka T., Youhida S., Nonaka T., Okamoto T., Suda A., Suqiura M. // Catal. Today. 2002. V. 74. P. 225–234. https://doi.org/10.1016/S0920-5861(02)00025-1
- Kaspar J., Fornasiero P. // J. Solid State Chem. 2003. V. 171. P. 19–29. https://doi.org/10.1016/S0022-4596(02)00141-X
- Rasanen S., Yamauchi H., Karppinen M. // Chem. Lett. 2008. V. 37. P. 638–639. https://doi.org/10.1246/cl.2008.638
- Parkkima O., Yamauchi H., Karppinen M. // Chem. Mater. 2013. V. 25. P. 599–604. https://doi.org/10.1021/cm3038729
- Parkkima O., Karppinen M. // Eur. J. Inorg. Chem. 2014. V. 2014. № 25. P. 4056–4067. https://doi.org/10.1002/ejic.201402135
- Motohashi T., Kadota S., Fjellvag H., Karppinen M., Yamauchi H. // Mater. Sci. Eng. B. 2008. V. 148. P. 196–198. https://doi.org/10.1016/j.mseb.2007.09.052
- Turkin D.I., Yurchenko M.V., Tolstov K.S., Shalamova A.M., Suntsov A.Yu., Kozhevnikov V.L. // J. Solid State Chem. 2023. V. 326. P. 124194. https://doi.org/10.1016/j.jssc.2023.124194
- Turkin D.I., Tolstov K.S., Yurchenko M.V., Suntsov A.Yu., Kozhevnikov V.L. // Inorg. Mater. 2023. V. 59. P. 1104–1110. https://doi.org/10.1134/S0020168523100126
- Rodríguez-Carvajal J. // Physica B. 1993. V. 192. P. 55–59. https://doi.org/10.1016/0921-4526(93)90108-I
- Vyazovkin S., Burnham A.K., Criado J.M., Pérez-Maqueda L.A., Popescu C., Sbirrazzuoli N. // Thermochim. Acta. 2011. V. 520. P. 1–19. https://doi.org/10.1016/j.tca.2011.03.034
- Alekseev A.V., Kameneva M.Y., Kozeeva L.P., Lavrov A.N., Podberezskaya N.V., Smolentsev A.I., Shmakov A.N. // Bull. Russ. Acad. Sci.: Phys. 2013. Т. 77. № 2. С. 151–154. https://doi.org/10.3103/S1062873813020044
- Cuartero V., Blasco J., Subías G., García J., Rodríguez-Velamazán J.A., Ritter C. // Inorg. Chem. 2018. V. 57. P. 3360–3370. https://doi.org/10.1021/acs.inorgchem.8b00112
- Brown M.E., Dollimore D., Galwey A.K. Reactions in the Solid State. Amsterdam: Elsevier, 1980. 339 c.
- Senum G., Yang R. // J. Thermal Anal. 1977. V. 11. P. 445–447. https://doi.org/10.1007/BF01903696
- Pérez-Maqueda L.A., Criado J.M. // J. Therm. Anal. Calorim. 2020. V. 60. P. 909–915. https://doi.org/10.1023/A:1010115926340
- Friedman H.L. // J. Polym. Sci., Part C: Polym. Lett. 1964. V. 6. P.183–195. https://doi.org/10.1002/polc.5070060121
- Starink M.J. // Thermochim. Acta. 2003. V. 404. P. 163–176. https://doi.org/10.1016/S0040-6031(03)00144-8
- Vyazovkin S., Dollimore D. // J. Chem. Inf. Comp. Sci. 1996. V. 36. P. 42–45. https://doi.org/10.1021/ci950062m
- Hou L., Yu Q., Wang T., Wang K., Qin Q., Qi Z. // Korean J. Chem. Eng. 2018. V. 35. P. 626–636. https://doi.org/10.1007/s11814-017-0332-6
- Vyazovkin S. // Molecules. 2021. V. 26. P. 3077. https://doi.org/10.3390/molecules26113077
- Coats A.W., Redfern J.P. // Nature. 1964. V. 201. P. 68–69. https://doi.org/10.1038/201068a0
- Gotor F.J., Criado J.M., Malek J., Koga N. // J. Phys. Chem. A. 2000. V. 104. P. 10777–10782. https://doi.org/10.1021/jp0022205
- De Bruijn T.J.W., De Jong W.A., Van Den Berg P.J. // Thermochim. Acta. 1981. V. 45. P. 315–325. https://doi.org/10.1016/0040-6031(81)85091-5
补充文件
