= МАТЕМАТИКА ==

УДК 517.275

О СУЩЕСТВОВАНИИ И ОЦЕНКАХ ОБРАТНЫХ ФУНКЦИЙ В ВЫРОЖДЕННОМ СЛУЧАЕ

© 2024 г. А. В. Арутюнов¹, С. Е. Жуковский^{1, *}

Представлено академиком РАН А.А. Шананиным Поступило 09.02.2024 г. После доработки 03.06.2024 г. Принято к публикации 03.06.2024 г.

В работе представлены условия существования решений в терминах λ -укорочений отображения F в окрестности точки \bar{x} .

Ключевые слова: обратная функция, λ-укорочение, анормальная точка

DOI: 10.31857/S2686954324030165, **EDN:** XZZTYE

1. ВВЕДЕНИЕ

Пусть заданы отображение $F: \mathbb{R}^n \to \mathbb{R}^m$ и точки $\overline{x} \in \mathbb{R}^n$ и $\overline{y} := F(\overline{x})$. Рассмотрим конечномерное уравнение F(x) = y относительно неизвестного x и параметра y. В настоящей статье исследуется следующий вопрос. При каких условиях при всех y близких к \overline{y} существует решение этого уравнения x(y) с априорными оценками на $(x(y) - \overline{x})$ через $(y - \overline{y})$, которые гарантируют, что $x(y) \to \overline{x}$ при $y \to \overline{y}$.

Если отображение F достаточно гладко, а исходная точка \bar{x} нормальна, т. е. $F'(\bar{x}) = \mathbb{R}^m$, то существование указанного решения гарантирует классическая теорема об обратной функции (см. например, [1, 2]). Аналогичное утверждение справедливо и в случае, когда F действует из одного бесконечномерного пространства в другое (см., например, [3]).

Если отображение F достаточно гладкое, но точка \bar{x} анормальна, т.е. $F'(\bar{x}) \neq \mathbb{R}^m$, то и в этом случае известны теоремы существования решения. Соответствующие результаты сформулированы в терминах первой и второй производных в точке \bar{x} . Точнее, если $F'(\bar{x})$ и $F''(\bar{x})$ удовлетворяют некоторым условиям невырожденности, то для всех y из некоторой окрестности точки \bar{y} искомое решение x(y) существует, причем при

весьма общих естественных предположениях оно непрерывно (см. например, [4] – [7] и т.д.).

В этой работе приведены условия существования решений в терминах λ -укорочений отображения F в окрестности точки \bar{x} . Эти условия применимы к рассматриваемому уравнению и в случае, когда упомянутые выше условия невырожденности в терминах первой или первой и второй производных нарушаются. Приводимые результаты являются естественным развитием [8], [9] и содержательны также и в предположении гладкости отображения F.

2. ПРЕДВАРИТЕЛЬНЫЕ СВЕДЕНИЯ

Координаты вектора $x \in \mathbb{R}^n$ будем обозначать нижними индексами, т.е. положим $x = (x_1, ..., x_n)$, а скалярное произведение в \mathbb{R}^n и \mathbb{R}^m — через $\langle \cdot, \cdot \rangle$.

Для $r \ge 0$ и $x \in \mathbb{R}^n$ через B(x,r) будем обозначать замкнутый шар радиуса r с центром в точке x. Эти же обозначения будем использовать и в пространстве \mathbb{R}^m . Под окрестностью заданной точки x будем понимать любое открытое непустое множество, которое ее содержит. Далее const — это положительные константы, конкретный вид которых нас не интересует.

Через D обозначим множество ненулевых n-мерных векторов d, у которых все координаты d_k неотрицательны, а через $\widehat{D} \subset D$ — множество всех ненулевых целочисленных векторов $z = (z_1, ..., z_n) \in D$.

¹ Институт проблем управления РАН имени В.А. Трапезникова, Москва

^{*}E-mail: s-e-zhuk@vandex.ru

Для $x \in \mathbb{R}^n$, $z \in \widehat{D}$ и $d \in D$ положим

$$x^{z} = \prod_{k=1}^{n} x_{k}^{z_{k}}, |x|^{d} = \prod_{k=1}^{n} |x_{k}|^{d_{k}}.$$

При этом будем полагать, что если l=0, то $x_k^l=|x_k|^l=1$, включая также и $x_k=0$. Вектор $z=(z_1,...,z_n)$ — это мультииндекс монома x^z , а $z_1+...+z_n$ — его степень.

Пусть заданы натуральные числа $j_i,\ i=1,...,m$ и вектор $\lambda=(\lambda_1,...,\lambda_n)\geq 0$, где неотрицательность вектора означает неотрицательность всех его координат. Пусть для каждого номера i=1,...,m задано непустое конечное множество n-мерных векторов $s_{i,j}\in\widehat{D},\ j=1,...,j_i,$ которые попарно различны по j, т.е. если $l_1\neq l_2,$ то $s_{i,l_1}\neq s_{i,l_2}.$ Будем также предполагать, что существуют такие числа $\alpha_i>0$, что имеют место равенства

$$\langle \lambda, s_{i,j} \rangle = \alpha_i \quad \forall j = 1, ..., j_i, \quad i = 1, ..., m.$$
 (1)

Положим $S_i = \{s_{i,1},...,s_{i,j_i}\}$, а через $S = \{S_1,...,S_m\}$ обозначим семейство множеств S_i , i = 1,...,m.

Отметим, что из равенств (1) и неравенств $\alpha_i > 0$ вытекает, что $\lambda \neq 0$.

Пусть заданы вещественные числа $p_{i,j}$, которые все предполагаются неравными нулю. Множество этих чисел обозначим через P. Для S и P определим полиномиальное отображение $P = (P_1, ..., P_m) = P^{S,P} : \mathbb{R}^n \to \mathbb{R}^m$ так, что его i -ая координата $P_i(x)$ имеет следующий вид многочлена

$$P_i(x) = \sum_{j=1}^{j_i} p_{i,j} x^{s_{i,j}}, \ x \in \mathbb{R}^n.$$

Определение 1. Отображение $P = P^{S,P}$ называется λ -укорочением отображения $F = (F_1, ..., F_m) : \mathbb{R}^n \to \mathbb{R}^m$ в окрестности точки \overline{x} , если для каждого i = 1, ..., m существует такое конечное множество $D_i \subset D$, что

$$\langle \lambda, d \rangle > \alpha_i \quad \forall d \in D_i,$$
 (2)

u для $x \in \mathbb{R}^n$ для отображения F справедливо представление

$$F(x) = F(\overline{x}) + P(x - \overline{x}) + \Delta(x - \overline{x}). \tag{3}$$

При этом для каждой i -ой координаты Δ_i отображения $\Delta=(\Delta_1,...,\Delta_m)$ существует окрестность точки \overline{x} , в которой выполняется оценка

$$\left|\Delta_i(x-\overline{x})\right| \leq \operatorname{const} \sum_{d\in D_i} \left|x-\overline{x}\right|^d.$$

Из предположений о том, что S_i непусто, векторы $s_{i,j}$ попарно различны по j, а все числа $p_{i,j}$ не равны нулю вытекает, что любое λ -укорочение P является ненулевым полиномиальным отображением. Кроме того, очевидно, что P(0)=0.

Пусть задан вектор $h \in \mathbb{R}^n$.

Определение 2. Будем говорить, что λ -укорочение $P = P^{S,P}$ регулярно по направлению $h \in R^n$, если имеет место

$$P(h) = 0$$
, im $P'(h) = R^m$, (4)

u, кроме того, для любого номера k=1,...,n, если $\lambda_k=0$, то $h_k=0$.

Если оказалось, что $\lambda > 0$, то введенное определение несколько проще, и для регулярности по направлению h следует проверять лишь соотношения (4).

3. ОСНОВНЫЕ РЕЗУЛЬТАТЫ

Сформулируем достаточные условия существования решения уравнения F(x) = y в окрестности точки \bar{x} .

Для
$$\lambda = (\lambda_1, ..., \lambda_n) \ge 0$$
 положим

$$J = J(\lambda) := \{k \in \{1, ..., n\} : \lambda_k = 0\}.$$

Очевидно, что $J = \emptyset \Leftrightarrow \lambda > 0$.

Теорема 1. Пусть задан вектор $\lambda \geq 0$. Пусть задано непрерывное отображение F, а полиномиальное отображение $P = P^{S,\mathcal{P}}$ является его λ -укорочением в окрестности точки \overline{x} , которое регулярно по некоторому направлению $h \in \mathbb{R}^n$.

Тогда существуют такие число $\gamma>0$, окрестность O точки $\overline{y}=F(\overline{x})$ и число c>0, которые удовлетворяют следующим условиям. Для любых $y\in O$ и $p\in [0,\gamma]$ существует решение x=x(y,p) уравнения

$$F(x) = y$$

для которого имеют место априорные оценки

$$\left|x_k(y,p)-\overline{x}_k\right| \leq c\sum_{i=1}^m \left|y_i-\overline{y}_i\right|^{\frac{\lambda_k}{\alpha_i+p}}, \quad \text{при} \quad k \not\in J; (5)$$

$$\left|x_{k}(y,p)-\overline{x}_{k}\right| \leq c \sum_{i=1}^{m} \left|y_{i}-\overline{y}_{i}\right|^{\frac{p}{\alpha_{i}+p}}, \tag{6}$$

при
$$k \in J$$
 и $p > 0$;

$$\left|x_k(y,0) - \bar{x}_k\right| \le c$$
 при $k \in J$ и $p = 0$. (7)

Здесь числа $\alpha_i > 0$ взяты из равенств (1).

Пусть дополнительно предполагается, что $\lambda > 0$. Тогда оценки (6) и (7) в приведенной теореме не нужны, а оценка (5) эквивалентна тому,

что
$$|x_k(y,p) - \bar{x}_k| \le c \sum_{i=1}^m |y_i - \bar{y}_i|^{\frac{\lambda_k}{\alpha_i}}$$
 для всех k .

Без дополнительного предположения $\lambda > 0$ усилить теорему 1, взяв p = 0 в правой части неравенства (5), уже нельзя.

В теореме 1 предполагается регулярность по некоторому направлению h, но в утверждении теоремы оно не присутствует.

В силу оценок (5) и (6), фиксируя число p > 0 получаем, что все степени, стоящие в правых частях этих неравенств, положительны. Кроме того, при p > 0 функция $x(\cdot, p)$ непрерывна в точке \overline{y} . Следующее утверждение гарантирует существование непрерывного решения $x(\cdot, p)$ и, более того, дает асимптотическое представление решения x(y, p) при $y \to \overline{y}$.

Обозначим через $\mathcal{F}_{n,m}(\overline{x})$ множество отображений $F:\mathbb{R}^n \to \mathbb{R}^m$, удовлетворяющих следующему условию: для любого $N \in \mathbb{N}$ существует окрестность $O_N(\overline{x}) \subset \mathbb{R}^n$ точки \overline{x} такая, что отображение F является N раз непрерывно дифференцируемым на $O_N(\overline{x})$. Класс $\mathcal{F}_{n,m}(\overline{x})$ шире класса бесконечно дифференцируемых в окрестности точки \overline{x} отображений, т.к. окрестности $O_N(\overline{x})$ могут стремиться к точке \overline{x} при $N \to \infty$.

Теорема 2. Пусть задан целочисленный вектор $\lambda \geq 0$. Пусть задано отображение $F \in \mathcal{F}_{n,m}(\overline{x})$, а полиномиальное отображение $P = P^{S,\mathcal{P}}$ является его λ -укорочением в окрестности заданной точки \overline{x} , которое регулярно по некоторому направлению $h \in \mathbb{R}^n$.

Тогда существуют числа $\varepsilon \in (0,1]$, $\gamma \in (0,1]$ и отображение $\omega = (\omega_1,...,\omega_n)$, которое определено и непрерывно дифференцируемо в некоторой окрестности компактного множества $[-\varepsilon,\varepsilon] \times B(0,\varepsilon) \subset R \times \mathbb{R}^m$ и принимает значения в \mathbb{R}^n такие, что $\omega(0,0) = 0$, $\omega \in \mathcal{F}_{1+m,n}(0)$ и имеет место следующее утверждение.

Пусть $v_i \geq \alpha_i$, i=1,...,m, где как и выше, числа $\alpha_i > 0$ взяты из равенств (1). Тогда существует такая окрестность O точки $\overline{y} = F(\overline{x})$, что для любых $y \in O$ и $p \in [0,\gamma]$ существует такое решение $x(y,p) = (x_1(y,p),...,x_n(y,p))$ удовлетворяющее уравнению

$$F(x) = y$$
,

что при k = 1,...,n справедливо представление

$$x_{k}(y,p) = \overline{x}_{k} + \left(d\sum_{i=1}^{m} |y_{i} - \overline{y}_{i}|^{\frac{1}{|v_{i} + p|}}\right)^{\lambda_{k}} \times \left(h_{k} + \omega_{k}\left(d\sum_{i=1}^{m} |y_{i} - \overline{y}_{i}|^{\frac{1}{|v_{i} + p|}}, g(y - \overline{y}, p)\right)\right).$$

$$(8)$$

Здесь d > 0 это фиксированное достаточно большое число, для которого выполняются неравенства $md \ge 1$ и $d^{\alpha_i} \ge m / \varepsilon$, i = 1,...,m. При этом $g = (g_1,...,g_m)$, где

$$g_{i}(y - \overline{y}, p) := (y_{i} - \overline{y}_{i}) \left(d \sum_{l=1}^{m} |y_{l} - \overline{y}_{l}|^{\frac{1}{|v_{l} + p|}} \right)^{-\alpha_{i}}$$

$$npu \quad v \neq \overline{v}$$

 $u g(0, p) \equiv 0.$

Доказательство теоремы 1 проводится сведением исходного уравнения при каждом y достаточно близком к \overline{y} к задаче о неподвижной точке и последующем применении теоремы Брауэра. Доказательство теоремы 2 проводится с помощью классической теоремы о неявной функции, примененной к некоторому вспомогательному отображению в точке h.

Пусть выполнены предположения теоремы 2. Тогда для множества O и числа $\gamma \in (0,1]$ для любых $y \in O$ и $p \in [0,\gamma]$ справедливы неравенства

$$d\sum_{i=1}^{m} |y_i - \overline{y}_i|^{\frac{1}{v_i + p}} \le \varepsilon, \quad |g(y - \overline{y}, p)| \le \varepsilon,$$
$$|y_i - \overline{y}_i| < 1, i = 1, ..., m.$$

Поэтому в представлении (8) все композиции $\omega_k(t(y,p),g(y-\bar{y},p))$ определены корректно и непрерывны при $y = \bar{y}$.

В связи с теоремой 1 и 2 представляется важным получение достаточных условий, при которых заданное полиномиальное отображение P автоматически является λ -укорочением себя, которое регулярно по некоторому направлению h. Но это тема последующих исследований.

4. ОБСУЖДЕНИЯ И ПРИМЕРЫ

Теорема 1 имеет следующие преимущества в сравнении с известными результатами. В ней, во-первых, некоторые координаты неотрицательного вектора λ могут быть нулевыми. Это приводит к качественному изменению, в частности, к появлению в формулировке неотрица-

тельного параметра $p \in [0, \gamma]$. Это, в свою очередь, приводит не к одной, а уже к трём оценкам (5) — (7), полученным в зависимости от значения параметра p.

Если отображение F непрерывно дифференцируемо в некоторой окрестности точки \bar{x} и эта точка нормальна, то предположения теоремы 1 выполняются. Чтобы это показать (см. [9, §3]), надо взять $P(x) \equiv F'(\bar{x})x$, в качестве вектора λ -вектор, все n компонент которого равны единице, а в качестве h — нулевой вектор. Таким образом, из теоремы 1 вытекает классическая теорема об обратной функции, но без ее непрерывности в окрестности, которая легко проверяется другим методом.

Теорема 1 остается содержательной и в случае, когда точка \bar{x} анормальна, но, самое главное, квадратичное отображение $F''(\bar{x})$ не имеет ни одного регулярного нуля. Это демонстрируют, в частности, примеры из [8].

Сравним теорему 1 с теоремой 1 из [8]. Напомним её.

Теорема 3. Пусть $\lambda > 0$, а отображение F непрерывно в окрестности точки \overline{x} , и $P^{S,P}$ является его λ -укорочением в окрестности точки \overline{x} , которое регулярно по некоторому направлению $h \in \mathbb{R}^n$. Тогда существуют такая окрестность O точки \overline{y} , что для любого $y \in O$ существует решение x = x(y) уравнения F(x) = y, для которого справедливы оценки

$$|x_k(y) - \overline{x}_k| \le \operatorname{const} |y - \overline{y}|^{\lambda_k/\alpha}, \quad k = 1, ..., n.$$

 $3 \partial ecb \ \alpha := \max\{\alpha_1,...,\alpha_m\} > 0, \ a$ числа $\alpha_i > 0$ взяты из равенств (I).

Пусть выполнены все предположения теоремы 1 и дополнительно $\lambda > 0$. Тогда $J = \emptyset$ и, значит, неравенства (6), (7) следует опустить. При этом из оценки (5) следует, что

$$\left| x_k(y,0) - \overline{x}_k \right| \le \operatorname{const} \sum_{i=1}^m \left| y_i - \overline{y}_i \right|^{\lambda_k}_{\alpha_i},$$

$$k \in \{1, \dots, n\}, \forall y \in O.$$

Поэтому теорема 3 вытекает из теоремы 1.

Даже если $\lambda>0$ и p=0, то оценки в теоремах 1 и 2 вообще говоря лучше, чем в теореме 3, если только $m\geq 2$ и существует номер i, для которого $\max\{\alpha_1,\ldots,\alpha_m\}>\alpha_i$. Приведем соответствующий пример. Пусть

$$n = 3$$
, $m = 2$, $\bar{x} = 0$, $\bar{y} = 0$,

$$F(x) = (x_1 - x_2, x_1^3 - x_2^2 x_3), \lambda = (1, 1, 1), h = (1, 1, 1).$$

Тогда при $\alpha_1 = 1, \alpha_2 = 3$ выполнены все предположения теоремы 1. Поэтому из оценки (5) этой теоремы при p=0 вытекает следующее. Для всех $y=(y_1,y_2)$ достаточно близких к нулю и таких, что выполнено дополнительное условие $\mid y_2 \mid \leq \text{const} \mid y_1 \mid^3$, система уравнений $F_1(x) = y_1$, $F_2(x) = y_2$ имеет решения x(y), для которых справедлива линейная оценка $\mid x(y) \mid \leq \text{const} \mid y_1 \mid$. В то же время из теоремы 3 вытекает всего лишь корневая оценка $\mid x(y) \mid \leq \text{const} \sqrt[3]{y} \mid$.

Приведем пример отображения F, к которому применимы теоремы 1 и 2, но уже неприменима теорема 3. Пусть n=3, m=1, $\bar{x}=0\in\mathbb{R}^3$, $\bar{y}=0\in\mathbb{R}^1$, $F:\mathbb{R}^3\to\mathbb{R}^1$,

$$F(x) = x_1^4 - x_1^3 x_2 - x_1 x_2^3 + x_2^4 + x_1^4 x_3, \quad x = (x_1, x_2, x_3).$$
 Положим $P := F$ и $\lambda := (1,1,0)$. Тогда $\alpha_1 = 4$. Непосредственно проверяется, что P является λ -укорочением отображения F в окрестности нуля, которое регулярно по направлению $h = (1,1,0)$. Поэтому отображение F в нуле удовлетворяет всем предположениям теорем 1 и 2. Можно также показать, что для любого $\lambda > 0$ соответствующее λ -укорочение не регулярно ни по какому направлению h . Следовательно, терема h неприменима h этому отображению h нуле.

Кратко сравним теоремы 1 и 2. Пусть выполнены предположения теоремы 2, а числа $\varepsilon \in (0,1]$, $\gamma \in (0,1]$ и отображение ω отвечают утверждению этой теоремы. Можно показать, что из частного случая теоремы 2, т. е. при $v_i = \alpha_i \, \forall i$, в ее предположениях вытекает утверждение теоремы 1 и ее оценки (5)—(7). Предположения гладкости теоремы 2 сильнее, чем в теореме 1, но в ней и утверждается большее.

Зафиксируем в теореме 2 числа $v_i \ge \alpha_i$, $p \in [0,\gamma]$ и предположим, что выполнено хотя бы одно из трех дополнительных условий: либо $\lambda > 0$, либо $v_i > \alpha_i$ для всех номеров i = 1,...,m, либо p > 0. Тогда в представлении (8) значения функций ω_k стремятся к нулю при $y \to \overline{y}$. Это дает асимптотическое представление решения $x_k(y)$ при $y \to \overline{y}$. Отсюда следует, что отображение $x(\cdot,p)$ непрерывно по переменной $y \in O$.

Теорема 1 и результаты § 3 получены первым автором при поддержке гранта Российского научного фонда (проект № 20-11-20131, https://rscf.ru/project/20-11-20131/). Теорема 2 получена вторым автором при поддержке гранта Российского научного фонда (проект № 22-11-00042, https://rscf.ru/project/22-11-00042/).

СПИСОК ЛИТЕРАТУРЫ

- 1. *Архипов Г.И.*, *Садовничий В.А.*, *Чубариков В.И.* Лекции по математическому анализу. М.: Высш. шк., 2004.
- Dontchev A.L., Rockafellar R.T. Implicit Functions and Solution Mappings. 2nd edn. N.Y.: Springer, 2014.
- 3. *Bartle R.G., Graves L.M.* Mappings between function spaces // Trans. Amer. Math. Soc. 1952. V. 72. № 3. P. 400–413.
- 4. *Измаилов А.Ф., Третьяков А.А.* 2-регулярные решения нелинейных задач. М.: Физматлит, 1999.
- 5. *Аваков Е.Р.* Теоремы об оценках в окрестности особой точки отображения // Матем. заметки. 1990. Т. 47. № 5. С. 3—13.

- 6. *Арутнонов А.В.* Гладкие анормальные задачи теории экстремума и анализа // Успехи математических наук. 2012. Т. 67. № 3 (405). С. 3—62.
- 7. *Измаилов А.Ф.* Теоремы о представлении семейств нелинейных отображений и теоремы о неявной функции // Матем. заметки. 2000. Т. 67. № 1. С. 57—68.
- 8. *Арутнонов А.В.* Существование вещественных решений нелинейных уравнений без априорных предположений нормальности // Матем. заметки. 2021. Т. 109. № 1. С. 3—18.
- 9. *Арутнонова А.В., Жуковский С.Е.* Устойчивость вещественных решений нелинейных уравнений и ее приложения. Труды МИРАН им. В.А. Стеклова. 2023. Т. 323. С. 1–12.

ON THE EXISTENCE AND ESTIMATES OF INVERSE FUNCTIONS IN THE DEGENERATE CASE

A. V. Arutyunov^a, S. E. Zhukovsky^a

Presented by RAS Academician A.A. Shananin

^aV.A. Trapeznikov Institute of Control Sciences, Moscow, Russia

The paper presents conditions for the existence of solutions in terms of λ -shortenings of the mapping F in a neighborhood of the point \bar{x} .

Keywords: inverse function, λ -truncation, abnormal point.