—— МАТЕМАТИКА **——**

УДК 510.67

СЧЕТНЫЙ СПЕКТР СЛАБО О-МИНИМАЛЬНЫХ ТЕОРИЙ КОНЕЧНОГО РАНГА ВЫПУКЛОСТИ

© 2024 г. Б. Ш. Кулпешов^{1,2,*}

Представлено академиком РАН А. Л. Семеновым Получено 28.04.2024 г. После доработки 31.04.2024 г. Принято к публикации 28.10.2024 г.

В настоящей статье мы представляем формулу, вычисляющую счетный спектр произвольной слабо о-минимальной теории конечного ранга выпуклости, имеющей менее чем 2^{ω} счетных попарно неизоморфных моделей.

Ключевые слова: слабая о-минимальность, ортогональность, Гипотеза Воота, счетная модель, ранг выпуклости.

DOI: 10.31857/S2686954324060072, EDN: KKVYCJ

1. ПРЕДВАРИТЕЛЬНЫЕ СВЕДЕНИЯ

Пусть L — счетный язык первого порядка. Всюду в данной статье мы рассматриваем L-структуры и предполагаем, что L содержит символ бинарного отношения <, который интерпретируется как линейный порядок в этих структурах. Открытым *интервалом* в такой структуре M является параметрически определимое подмножество структуры M вида $I = \{c \in M \mid M \models a < c < b\}$ для некоторых $a, b \in M \cup \{-\infty, \infty\}$ таких, что a < b. Аналогично мы можем определить замкнутые, полуоткрытыеполузамкнутые и т.п. интервалы в М. Произвольная точка $a \in M$ может быть также представлена в виде интервала [a, a]. Таким образом, под *интервалом* в M мы будем подразумевать любой из вышеприведенных интервалов в M. Подмножество A линейно упорядоченной структуры M называется выпуклым, если для любых $a, b \in A$ и $c \in M$ всякий раз когда a < c < b мы имеем $c \in A$. Очевидно, что любой интервал является выпуклым множеством. Обратное в общем случае неверно. Например, множество $J = \{c \in M \mid M \models -\sqrt{2} < c < \sqrt{2}\}$ в структуре $M = \langle \mathbb{Q}, < \rangle$, где \mathbb{Q} — множество рациональных чисел, является выпуклым, но не является интервалом.

Настоящая работа касается понятия *слабой о-минимальности*, первоначально исследованного в [1]. *Слабо о-минимальной структурой* называется линейно упорядоченная структура $M = \langle M, <, \ldots \rangle$

такая, что любое параметрически определимое подмножество структуры M является объединением конечного числа выпуклых множеств в M. Напомним, что такая структура M называется оминимальной, если любое параметрически определимое подмножество структуры M является объединением конечного числа интервалов и точек в M. Теория T называется о-минимальной (слабо о-минимальной), если каждая модель теории является о-минимальной), слабо о-минимальной). Таким образом, слабая о-минимальность обобщает понятие о-минимальности. Вещественно замкнутые поля с собственным выпуклым кольцом нормирования обеспечивают важный пример слабо о-минимальных (не о-минимальных) структур.

Пусть A, B — произвольные подмножества линейно упорядоченной структуры M. Тогда выражение A < B означает, что a < b всякий раз когда $a \in A$ и $b \in B$. Выражение A < b (соответственно b < A) означает, что $A < \{b\}$ ($\{b\} < A$). Через A^+ (и соответственно A^-) будем обозначать множество элементов $b \in M$ с условием A < b (b < A). Для произвольного типа p мы обозначаем через p(M) множество реализаций типа p в M. Если $B \subseteq M$ и E — отношение эквивалентности на B, то мы обозначаем через B/E множество представителей E—классов, лежащих в B. Если f — функция на M, то мы обозначаем через Dom(f) область определения функции f, а через Range(f) — ее область значений.

Всюду далее в статье, если не оговорено противное, мы рассматриваем произвольную полную теорию T, где M — достаточно насыщенная модель теории T.

¹ Институт математики и математического моделирования, Алматы, Казахстан

² Казахстанско-Британский технический университет, Алматы, Казахстан

^{*}E-mail: b.kulpeshov@kbtu.kz

Определение 1. Пусть T — слабо о-минимальная теория, $M \models T$, $A \subseteq M$, $p, q \in S_1(A)$ — неалгебраческие типы. Мы говорим, что тип p является ne слабо ортогональным типу q ($p \downarrow^w q$), если существуют L_A -формула H(x,y), $\alpha \in p(M)$ и $\beta_1, \beta_2 \in q(M)$ такие, что $\beta_1 \in H(M,\alpha)$ и $\beta_2 \notin H(M,\alpha)$.

Другими словами, тип p является слабо ортогональным типу q ($p \perp^w q$), если $p(x) \cup q(y)$ имеет единственное расширение до полного 2-типа над A.

Лемма 1. [2] Пусть T—слабо о-минимальная теория, $M \models T$, $A \subseteq M$. Тогда отношение не слабой ортогональности \downarrow^w является отношением эквивалентности на $S_1(A)$.

Определение ранга выпуклости одноместной формулы введено в [3] и расширено на произвольное множество в [4]:

Определение 2. [3, 4] Пусть T— слабо о-минимальная теория, $M \models T$, $A \subseteq M$. *Ранг выпуклости множества* A (RC(A)) определяется следующим образом:

- 1) RC(A) = -1, если $A = \emptyset$.
- 2) RC(A) = 0, если A конечно и непусто.
- 3) $RC(A) \ge 1$, если A бесконечно.
- 4) $RC(A) \ge \alpha + 1$, если существуют параметрически определимое отношение эквивалентности E(x,y) и $b_i \in A, i \in \omega$, удовлетворяющие следующим условиям:
- Для любых $i, j \in \omega$, всякий раз когда $i \neq j$ мы имеем $M \models \neg E(b_i, b_j)$;
- Для каждого $i \in \omega$ $RC(E(M, b_i)) \ge \alpha$ и $E(M, b_i)$ выпуклое подмножество множества A.
- 5) $RC(A) \ge \delta$, если $RC(A) \ge \alpha$ для всех $\alpha < \delta$ (б предельный).

Для ординала α положим $RC(A) = \alpha$, если $RC(A) \ge \alpha$ и $RC(A) \not \ge \alpha + 1$.

Если $RC(A) = \alpha$ для некоторого α , то мы говорим, что RC(A) определяется. В противном случае (т.е. если $RC(A) \ge \alpha$ для любого ординала α), мы полагаем $RC(A) = \infty$.

Ранг выпуклости формулы $\phi(x,\bar{a})$, где $\bar{a} \in M$, определяется как ранг выпуклости множества $\phi(M,\bar{a})$, т.е. $RC(\phi(x,\bar{a})) \coloneqq RC(\phi(M,\bar{a}))$. Ранг выпуклости 1-типа p определяется как ранг выпуклости множества p(M), т.е. $RC(p) \coloneqq RC(p(M))$.

Полная теория T является бинарной, если любая формула эквивалентна булевой комбинации формул самое большее от двух свободных переменных.

Теорема 1. [5] Любая слабо о-минимальная теория конечного ранга выпуклости, имеющая менее чем 2^{ω} счетных моделей, является бинарной.

Определение 3. [6, 7] Пусть T — полная теория, $p_1(x_1), \ldots, p_n(x_n) \in S_1(\varnothing)$. Будем говорить, что тип $q(x_1, \ldots, x_n) \in S_n(\varnothing)$ является (p_1, \ldots, p_n) -mилом, если $q(x_1, \ldots, x_n) \supseteq \bigcup_{i=1}^n p_i(x_i)$. Множество

всех (p_1, \ldots, p_n) -типов теории T будем обозначать через $S_{p_1, \ldots, p_n}(T)$. Счетная теория T называется no-ими ω -камегоричной, если для любых типов $p_1(x_1)$, ..., $p_n(x_n) \in S_1(\varnothing)$ существует лишь конечное число типов $q(x_1, \ldots, x_n) \in S_{p_1, \ldots, p_n}(T)$.

Теорема 2. [8] \tilde{J} нобая слабо о-минимальная теория конечного ранга выпуклости, имеющая менее чем 2^{ω} счетных моделей, является почти ω -категоричной.

Напомним некоторые понятия, первоначально введенные в [1]. Пусть $Y \subset M^{n+1} - \varnothing$ -определимое множество, $\pi: M^{n+1} \to M^n$ — проекция, которая отбрасывает последнюю координату, и $Z := \pi(Y)$. Для каждого $\bar{a} \in Z$ пусть $Y_{\bar{a}} := \{y: (\bar{a},y) \in Y\}$. Предположим, что для каждого $\bar{a} \in Z$ множество $Y_{\bar{a}}$ выпукло и ограничено сверху, но не имеет супремума в M. Пусть $\sim - \varnothing$ —определимое отношение эквивалентности на M^n , определяемое следующим образом:

 $ar{a} \sim ar{b}$ для всех $ar{a}, ar{b} \in M^n \backslash Z$, $ar{a} \not \sim ar{b}$ для любых $ar{a} \in Z$ и $ar{b} \in M^n \backslash Z$, и $ar{a} \sim ar{b} \Leftrightarrow \sup Y_{ar{a}} = \sup Y_{ar{b}}$, если $ar{a}, ar{b} \in Z$.

Пусть $\overline{Z} \coloneqq Z/\sim$, и для каждого кортежа $\bar{a} \in Z$ мы обозначаем через $[\bar{a}] \sim$ -класс кортежа \bar{a} . Сушествует естественный ∅-определимый линейный порядок на $M \cup \overline{Z}$, определяемый следующим образом. Пусть $\bar{a} \in Z$ и $c \in M$. Тогда $[\bar{a}] < c$ тогда и только тогда когда w < c для всех $w \in Y_{\bar{a}}$. Мы также определяем, что $c < [\bar{a}]$ тогда и только тогда когда $\neg([\bar{a}] < c)$, т.е. существует $w \in Y_{\bar{a}}$ такой, что $c \leqslant w$. Если $\bar{a}, \bar{b} \in Z$ и $\bar{a} \not \sim \bar{b}$, то существует некоторый $x \in M$ такой, что $[\bar{a}] < x < [\bar{b}]$ или $[\bar{b}] < x < [\bar{a}]$, и поэтому < индуцирует линейный порядок на $M \cup \overline{Z}$. Мы называем такое множество \overline{Z} сортом (в данном случае, \varnothing -определимым сортом) в \overline{M} , где \overline{M} – дедекиндово пополнение структуры M, и обозреваем \overline{Z} как естественно вложенную в \overline{M} . Аналогично мы можем получить сорт в \overline{M} , рассматривая инфимумы вместо супремумов.

Пусть E-A-определимое отношение эквивалентности на D. Мы говорим, что f-строго возрастающая (убывающая) на D/E, если для любых $a,b\in D$ с условием a < b и $\neg E(a,b)$ мы имеем f(a) < f(b) (f(a) > f(b)).

Далее нам понадобится следующий результат о поведении определимой функции во множестве реализаций неалгебраического 1-типа.

Теорема 3. [4] Пусть T- слабо о-минимальная теория, $M \models T$, $A \subseteq M$, $p \in S_1(A)$ — неалгебраический тип. Предположим, что существует A-определимая функция f в A-определимый сорт такая, что $p(M) \subseteq Dom(f)$ и f не является константой на p(M). Тогда существует A-определимое отношение эквивалентности E(x,y), разбивающее p(M) на бесконечное число выпуклых классов, так что f является строго монотонной на p(M)/E.

Лаура Майер в [9] подтвердила гипотезу Воота для о-минимальных теорий:

Теорема 4. [9] Пусть T-o-минимальная теория в счетном языке. Тогда либо T имеет 2^{ω} счетных моделей, либо T имеет $3^m 6^l$ счетных моделей для некоторых неотрицательных целых чисел $m, l < \omega$.

В работе [10] была подтверждена гипотеза Воота для вполне о-минимальных теорий, в том числе установлено, что счетный спектр таких теорий совпадает со счетным спектром о-минимальных теорий. В работе [11] была подтверждена гипотеза Воота для слабо о-минимальных теорий ранга выпуклости 1, и установлено, что счетный спектр таких теорий отличается от счетного спектра оминимальных теорий. Наконец, в работе [5] была подтверждена гипотеза Воота для слабо оминимальных теорий конечного ранга выпуклости. В недавней работе [12] построена счетная линейно упорядоченная теория, имеющая то же число счетных попарно неизоморфных моделей, что и исходная счетная теория (необязательно линейно упорядоченная). В работе [13] установлено, что вопрос уменьшения числа счетных моделей с континуума до счетного числа с помощью константного обогащения исходной теории остается открытым. В недавней работе [14] исследованы возможные значения счетного спектра для теории плотного дерева встреч. В настоящей работе мы представляем формулу, вычисляющую счетный спектр произвольной слабо о-минимальной теории конечного ранга выпуклости, имеющей менее чем 2^{ω} счетных попарно неизоморфных моделей.

2. (p,q)-СЕКАТОРЫ

Понятие (p,q)-секатора было введено в [15]. Пусть $A\subseteq M$, $p,q\in S_1(A)$ — неалгебраические типы, $p\not\perp^w q$. Будем говорить, что L_A -формула $\varphi(x,y)$ является (p,q)-секатором, если существует $a\in p(M)$ такой, что $\varphi(a,M)\cap q(M)\neq\varnothing$, $\neg\varphi(a,M)\cap q(M)\neq\varnothing$, $\varphi(a,M)\cap q(M)=[q(M)]^-$. Если $\varphi(x,y)$, $\varphi(x,y)-(p,q)$ -секаторы, то мы говорим, что $\varphi(x,y)$ не больше чем $\varphi(x,y)$, если существует $\varphi(x,y)$ такой, что $\varphi(x,y)$ пакой, что $\varphi(x,y)$ пакой,

Будем говорить, что (p,q)-секаторы $\phi_1(x,y)$ и $\phi_2(x,y)$ эквивалентны $(\phi_1(x,y) \sim \phi_2(x,y))$, если $\phi_1(a,M) \cap q(M) = \phi_2(a,M) \cap q(M)$ для некоторого (любого) $a \in p(M)$.

Очевидно, что если $p,q \in S_1(A)$ — неалгебраические типы и $p \not \perp^w q$, тогда существует (p,q)секатор и для любого (p,q)-секатора $\phi(x,y)$ функция $f(x) \coloneqq \sup \phi(x,M)$ не является константой на p(M).

Лемма 2. Пусть T - cлабо o-минимальная теория, $M \models T$, $A \subseteq M$, $p, q \in S_1(A)$ — неалгебраические, $p \downarrow^w q$. Предположим, что существуют (p,q)-секаторы $\phi_1(x,y)$, $\phi_2(x,y)$ такие, что $\phi_1(a,M) \cap q(M) \subseteq \phi_2(a,M) \cap q(M)$ для некоторого $a \in p(M)$. Тогда $\phi_1(a,M) \cap q(M) \subseteq \phi_2(a,M) \cap q(M)$ для любого $a \in p(M)$.

Доказательство леммы 2. Поскольку $\phi_1(a, M) \cap q(M) \subseteq \phi_2(a, M) \cap q(M)$, существует выпуклая формула $\theta(y) \in q$ такая, что $M \models K_{\phi_1, \phi_2, \theta}(a)$, где

$$K_{\phi_1,\phi_2,\theta}(x) := \forall y [\phi_1(x,y) \land \theta(y) \rightarrow \phi_2(x,y)].$$

Очевидно, что $K_{\phi_1,\phi_2,\theta}(x)$ является L_A -формулой и $K_{\phi_1,\phi_2,\theta}(x)\in p.$

Допустим противное: существует $a_1 \in p(M)$ такой, что

$$\phi_1(a_1, M) \cap q(M) \not\subseteq \phi_2(a_1, M) \cap q(M)$$
.

Тогда очевидно, что

$$\phi_2(a_1, M) \cap q(M) \subset \phi_1(a_1, M) \cap q(M)$$
,

откуда существует $b \in q(M)$ такой, что $M \models \varphi_1(a_1, b) \land \neg \varphi_2(a_1, b)$, т.е. $M \models \neg K_{\varphi_1, \varphi_2, \theta}(a_1)$. Противоречие.

Таким образом, множество всех (p,q)-секаторов разбивается на линейно упорядоченное множество классов эквивалентности относительно \sim .

Лемма 3. Пусть T-слабо o-минимальная теория конечного ранга выпуклости, $M \models T$, $p,q \in S_1(\varnothing)$ — неалгебраические, $p \downarrow^w q$. Предположим, что существует (p,q)-секатор U(x,y) такой, что $f(x) \coloneqq \sup U(x,M)$ — строго возрастающая (убывающая) на $p(M)/E_p$, где $E_p(x,y)$ — наибольшее \varnothing -определимое отношение эквивалентности, разбивающее p(M) на бесконечное число выпуклых классов. Тогда для любого секатора U'(x,y) функция $f'(x) \coloneqq \sup U'(x,M)$ является строго возрастающей (убывающей) на $p(M)/E_p$.

Доказательство леммы 3. Не умаляя общности, предположим, что f — строго возрастающая на $p(M)/E_p$. Допустим противное: существует (p,q)-секатор U'(x,y) такой, что f' не является строго

возрастающей на $p(M)/E_p$. Тогда f' является строго убывающей на $p(M)/E_p$.

Случай 1. f(a) = f'(a) для некоторого $a \in p(M)$. Рассмотрим произвольный $a_1 \in p(M)$ такой, что $a < a_1$ и $\neg E_p(a, a_1)$. Тогда получаем, что $f'(a_1) < f'(a) = f(a) < f(a_1)$. Противоречие.

Случай 2. f(a) < f'(a) для некоторого $a \in p(M)$. Поскольку функция f возрастает на $p(M)/E_p$, то существует $a_1 \in p(M)$ такой, что $a < a_1$, $\neg E_p(a, a_1)$ и $f'(a) \le f(a_1)$. Но тогда получаем, что $f'(a_1) < f'(a) \le f(a_1)$. Противоречие.

Случай 3. f(a) > f'(a) для некоторого $a \in p(M)$. Рассмотрим произвольный $a_1 \in p(M)$ такой, что $a < a_1$ и $\neg E_p(a, a_1)$. Очевидно, что $f(a) < f(a_1)$. Поскольку функция f' убывает на $p(M)/E_p$, то существует $a_2 \in p(M)$ такой, что $a_2 < a$, $\neg E_p(a, a_2)$ и $f(a_1) \leqslant f'(a_2)$. Но тогда получаем, что $f(a_2) < f'(a_2)$. Противоречие.

Определение 4. [16, 17] Пусть T — слабо оминимальная теория, M
in T, $A \subseteq M$, $p,q \in S_1(A)$ — неалгебраические типы. Будем говорить, что тип p не почти вполне ортогонален типу q ($p
pmu^{aq} q$), если существуют (p,q)-секатор U(x,y) и A-определимое отношение эквивалентности $E_q(x,y)$, разбивающее q(M) на бесконечное число выпуклых классов, так что для любого $a \in p(M)$ существует $b \in q(M)$ такой, что $\sup U(a,M) = \sup E_q(b,M)$.

Будем говорить, что T является *почти вполне о-минимальной*, если понятия слабой и почти вполне ортогональности 1-типов совпадают.

Очевидно, что если существует A-определимая биекция между p(M) и q(M), то p не почти вполне ортогонален q.

Пример 1. Пусть $M = \langle M; <, P_1^1, P_2^1, E^2, R^2 \rangle$ – линейно упорядоченная структура такая, что M есть непересекающееся объединение интерпретаций унарных предикатов P_1 и P_2 , при этом $P_1(M) < P_2(M)$. Мы отождествляем интерпретацию P_2 с множеством рациональных чисел \mathbb{Q} , упорядоченном как обычно, а P_1 с $\mathbb{Q} \times \mathbb{Q}$, упорядоченном лексикографически. Символ бинарного отношения E определяется следующим образом: для любых $(a_1,b_1), (a_2,b_2) \in P_1(M)$ имеет место $E((a_1,b_1), (a_2,b_2)) \Leftrightarrow a_1 = a_2$. Символ бинарного отношения R интерпретируется следующим образом: для любых $(a_1,a_2) \in P_1(M), b \in P_2(M)$ имеет место $R((a_1,a_2),b) \Leftrightarrow b < a_1 + \sqrt{2}$.

Может быть установлено, что Th(M) — слабо о-минимальная теория. Отношение E(x,y) является отношением эквивалентности, разбивающим $P_1(M)$ на бесконечное число бесконечных выпуклых классов. Пусть $p(x) \coloneqq \{P_1\}, q(x) \coloneqq \{P_2\}$. Очевидно, что $p, q \in S_1(\emptyset), p \downarrow^w q$, но $p \perp^{aq} q$, т.е. Th(M) не является почти вполне о-минимальной.

Лемма 4. [17] Пусть T — слабо о-минимальная теория, $M \models T$, $A \subseteq M$. Тогда отношение не почти

вполне ортогональности (\downarrow^{aq}) является отношением эквивалентности на $S_1(A)$.

Далее нам понадобится понятие *p*-сохраняющей выпуклой вправо (влево) формулы.

Определение 5. [18] Пусть T— слабо о-минимальная теория, $M \models T$, $A \subseteq M$, $p \in S_1(A)$ — неалгебраический.

(1) L_A -формула F(x, y) называется p-сохраняющей, если существуют $\alpha, \gamma_1, \gamma_2 \in p(M)$ такие, что

$$[F(M,\alpha)\setminus\{\alpha\}]\cap p(M)\neq\varnothing$$
 и $\gamma_1< F(M,\alpha)\cap p(M)<\gamma_2$.

(2) p-сохраняющая формула F(x,y) называется выпуклой вправо (влево), если существует $\alpha \in p(M)$ такой, что $F(M,\alpha) \cap p(M)$ выпукло, α — левая (правая) концевая точка множества $F(M,\alpha) \cap p(M)$ и $\alpha \in F(M,\alpha)$.

Определение 6. [19] Пусть F(x, y) - p-сохраняющая выпуклая вправо (влево) формула. Мы говорим что F(x, y) является эквивалентность-генерирующей, если для любых $\alpha, \beta \in p(M)$ таких, что $M \models F(\beta, \alpha)$ имеет место следующее:

$$M \models \forall x [x \geqslant \beta \rightarrow [F(x,\alpha) \leftrightarrow F(x,\beta)]],$$

$$(M \models \forall x [x \leqslant \beta \rightarrow [F(x,\alpha) \leftrightarrow F(x,\beta)]]).$$

Лемма 5. [19] Пусть T-слабо о-минимальная теория, $M \models T$, $A \subseteq M$, $p \in S_1(A)$ — неалгебраический. Предположим что F(x,y)— p-сохраняющая выпуклая вправо (влево) формула, являющаяся эквивалентность-генерирующей. Тогда $E(x,y) \coloneqq F(x,y) \vee F(y,x)$ — отношение эквивалентности, разбивающее p(M) на бесконечное число бесконечных выпуклых классов.

Предложение 1. [10] Пусть T- слабо o-минимальная теория, имеющая менее чем 2^{ω} счетных моделей, $p \in S_1(\varnothing)$ — неалгебраический. Тогда любая ресохраняющая выпуклая вправо (влево) формула является эквивалентность-генерирующей.

Предложение 2. Пусть T— слабо о-минимальная теория конечного ранга выпуклости, имеющая менее чем 2^{ω} счетных моделей, $M \models T$, $p,q \in S_1(\emptyset)$ — неалгебраические, $p \downarrow^w q$, $p \perp^{aq} q$. Тогда существует единственный (p,q)-секатор.

Доказательство предложения 2. Допустим противное: существуют (p,q)-секаторы $U_1(x,y)$ и $U_2(x,y)$ такие, что $U_1(a,M) \cap q(M) \subset U_2(a,M) \cap q(M)$ для любого $a \in p(M)$. Тогда возьмем произвольный $b \in q(M)$ такой, что $M \models U_2(a,b) \land \neg U_1(a,b)$, и рассмотрим следующую формулу:

$$F(x,b) := b \leqslant x \land \exists y [\neg U_1(y,b) \land U_2(y,b) \land \land \exists y_1 (E_p(y,y_1) \land U_2(y_1,x))].$$

Нетрудно установить, что F(x,y)-q-сохраняющая выпуклая вправо формула. Тогда

в силу предложения 1 F(x,y) является эквивалентность-генерирующей, и в силу леммы 5 отношение $E(x,y) \coloneqq F(x,y) \lor F(y,x)$ есть \varnothing -определимое отношение эквивалентности, разбивающее q(M) на бесконечное число бесконечных выпуклых классов. При этом имеем, что inf $E(b,M) < \sup U_2(a,M) \leqslant \sup E(b,M)$, откуда получаем, что $p \downarrow^{aq} q$. Противоречие.

3. ЧИСЛО СЧЕТНЫХ МОДЕЛЕЙ

Пусть T- полная счетная теория. Тогда $I(T,\omega)$ обозначает число счетных попарно неизоморфных моделей теории T. Пусть $\{p_1,p_2,\ldots,p_n\}$ — произвольное семейство типов над \varnothing . Будем обозначать через $I(T,\omega)_{\{p_1,p_2,\ldots,p_n\}}$ число счетных моделей теории T, ограничения которых на объединение множеств реализаций каждого типа из $\{p_1,p_2,\ldots,p_n\}$ попарно не изоморфны. Иными словами, $I(T,\omega)_{\{p_1,p_2,\ldots,p_n\}}$ — это вклад семейства типов $\{p_1,p_2,\ldots,p_n\}$ в счетный спектр теории T.

Определение 7. [2] Пусть M —слабо о-минимальная структура, $A \subseteq M$, $p \in S_1(A)$ — неалгебраический тип. Мы говорим, что p — κ вазирациональный вправо (влево), если существует выпуклая L_A формула $U_p(x) \in p$ такая, что для любой достаточной насыщенной модели N > M выполняется $U_p(N)^+ = p(N)^+$ ($U_p(N)^- = p(N)^-$). Неизолированный 1-тип называется κ вазирациональным, если он является либо квазирациональным вправо, либо квазирациональный вправо. Неквазирациональный неизолированный 1-тип называется $uppaquohanbhhhh}$

Очевидно, что 1-тип, будучи одновременно квазирациональным вправо и квазирациональным влево, является *изолированным*.

Предложение 3. [2] Пусть T- слабо o-минимальная теория, $M \models T$, $A \subseteq M$, $p,q \in S_1(A)$ — неалгебраические типы, $p \downarrow^w q$. Тогда:

- (1) p иррациональный $\Leftrightarrow q$ иррациональный
- (2) p- квазирациональный $\Leftrightarrow q-$ квазирациональный

Пусть $p_1, \ldots, p_s \in S_1(\varnothing)$ — неалгебраические. Будем говорить, что семейство 1-типов $\{p_1, \ldots, p_s\}$ является *слабо ортогональным над* \varnothing , если каждый s-кортеж $\langle a_1, \ldots, a_s \rangle \in p_1(M) \times \ldots \times p_s(M)$ удовлетворяет одному и тому же типу над \varnothing .

Предложение 4. [5] Пусть T—слабо о-минимальная теория конечного ранга выпуклости, имеющая менее чем 2^{ω} счетных моделей, $M \models T$, и пусть $p_1, \ldots, p_s \in S_1(\varnothing)$ — неалгебраические попарно слабо ортогональные 1-типы. Тогда семейство $\{p_1, \ldots, p_s\}$ слабо ортогонально над \varnothing .

Предложение 5. [5] Пусть T—слабо о-минимальная теория конечного ранга выпуклости, имеющая менее чем 2^{ω} счетных моделей, $M \models T$, $p \in S_1(\varnothing)$ — неизолированный. Предположим, что

E(x,y) — наибольшее \varnothing -определимое отношение эквивалентности, разбивающее p(M) на бесконечное число выпуклых классов. Тогда

1. Если p — иррациональный, то для каждой из следующих шести возможностей существует счетная модель M_1 теории T, в которой она в точности реализуется:

1.1. $p(M_1) = \emptyset$.

1.2. $|p(M_1)/E| = 1$.

1.3. $p(M_1)/E$ порядково изоморфна $(0,1) \cap \mathbb{Q}$.

1.4. $p(M_1)/E$ порядково изоморфна $[0,1) \cap \mathbb{Q}$.

1.5. $p(M_1)/E$ порядково изоморфна $(0,1] \cap \mathbb{Q}$.

1.6. $p(M_1)/E$ порядково изоморфна $[0,1] \cap \mathbb{Q}$.

2. Если р — квазирациональный вправо (влево), то для каждой из следующих трех возможностей существует счетная модель M_1 теории T, в которой она в точности реализуется:

2.1. $p(M_1) = \emptyset$.

2.2. $p(M_1)/E$ порядково изоморфна $(0,1) \cap \mathbb{Q}$.

 $2.3.\ p(M_1)/E$ порядково изоморфна $[0,1)\cap \mathbb{Q}$ $((0,1]\cap \mathbb{Q}).$

Предложение 6. [5] Пусть T-слабо о-минимальная теория конечного ранга выпуклости, имеющая менее чем 2^{ω} счетных моделей. Если M и N-счетные модели теории T такие, что p(M) порядково изоморфно p(N) для любого $p \in S_1(\varnothing)$, то M и N изоморфны.

Факт 1. Пусть T- слабо о-минимальная теория, $M \models T$, $A \subseteq M$, $p,q \in S_1(A)$ — неалгебраические. Тогда $p \not\perp^w q$ и $p \perp^{aq} q \Leftrightarrow q \not\perp^w p$ и $q \perp^{aq} p$.

Пример 2. Пусть $M:=\langle M; <, P^1, E_1^2, ..., E_{n-1}^2, \varepsilon_1^2, ..., \varepsilon_{n-1}^2, \varepsilon_1^2, ..., \varepsilon_{m-1}^2, U^2, c_i \rangle_{i \in \omega}$ — линейно упорядоченная структура такая, что M есть непересекающееся объединение интерпретаций унарных предикатов P и $\neg P$, при этом $P(M) < \neg P(M)$. Мы отождествляем интерпретацию P с $\mathbb{Q}^n = \mathbb{Q} \times ... \times \mathbb{Q}$, упорядоченной лексикографически, а интерпретацию $\neg P$ с \mathbb{Q}^m , также упорядоченной лексикографически. Интерпретации бинарных предикатов $E_1^2, ..., E_{n-1}^2$ — это отношения эквивалентности на P(M) такие, что для всех $x = (x_1, x_2, ..., x_n), y = (y_1, y_2, ..., y_n) \in \mathbb{Q}^n$ и для любого $1 \leq i \leq n-1$

$$E_i(x, y) \Leftrightarrow x_1 = y_1 \wedge x_2 = y_2 \wedge \ldots \wedge x_i = y_i$$
.

Аналогично, интерпретации бинарных предикатов $\varepsilon_1^2, \dots, \varepsilon_{n-1}^2$ — это отношения эквивалентности на $\neg P(M)$ такие, что для всех $x = (x_1, x_2, \dots, x_m)$, $y = (y_1, y_2, \dots, y_m) \in \mathbb{Q}^m$ и для любого $1 \le j \le m-1$

$$\varepsilon_j(x,y) \Leftrightarrow x_1 = y_1 \wedge x_2 = y_2 \wedge \ldots \wedge x_j = y_j.$$

Символ U интерпретирует бинарное отношение, определяемое следующим образом: для любых $a = (x_1, x_2, ..., x_n) \in P(M)$ и $b = (y_1, y_2, ..., y_m) \in P(M)$

$$U(a,b) \Leftrightarrow v_1 < x_1 + \sqrt{2}$$
.

Константы c_i интерпретируют бесконечную строго возрастающую последовательность на P(M) такую, что $\lim_{i\to\infty} c_i = \infty_{P(M)}$ и для любых $i\neq j$ имеет место $\neg E(c_i,c_i)$.

Рассмотрим следующие множества формул:

$$p(x) \coloneqq \{x > c_i \mid i \in \omega\} \cup \{P(x)\},\$$

$$q(y) \coloneqq \{ \forall t [U(c_i, t) \to t < y] \mid i \in \omega \} \cup \{ \neg P(y) \}.$$

Нетрудно установить, что $p, q \in S_1(\varnothing)$ — квазирациональные вправо, RC(p) = n, RC(q) = m, причем $p \perp^w q$, но $p \perp^{aq} q$. Следовательно, Th(M) не является почти вполне о-минимальной.

Пусть $f(x) := \sup U(x,M)$. Очевидно, что f является локально константой на P(M) и f является строго возрастающей на $P(M)/E_{n-1}$. Мы утверждаем, что Th(M) имеет в точности четыре счетные попарно неизоморфные модели: первый случай — p и q не реализуются; второй случай — $p(M)/E_{n-1}$ и $q(M)/\varepsilon_{m-1}$ имеют порядковые типы $(0,1)\cap \mathbb{Q}$ (насыщенный случай); третий случай — $p(M)/E_{n-1}$ имеет порядковый тип $[0,1)\cap \mathbb{Q}$, а $q(M)/\varepsilon_{m-1}$ имеет порядковый тип $(0,1)\cap \mathbb{Q}$; четвертый случай — $p(M)/E_{n-1}$ имеет порядковый тип $(0,1)\cap \mathbb{Q}$, а $q(M)/\varepsilon_{m-1}$ имеет порядковый тип $(0,1)\cap \mathbb{Q}$.

Пример 3. Пусть $M:=\langle M; <, P_1^1, P_2^1, S_1^1, S_2^1, S_3^1, U_1^2, U_2^2, U_3^2, f^1, g^1, c_i^1, c_j^2 \rangle_{i,j\in\omega}$ — линейно упорядоченная структура такая, что M есть непересекающееся объединение интерпретаций унарных предикатов P_1, P_2, S_1, S_2, S_3 с условием $P_1(M) < \langle P_2(M) < S_1(M) < S_2(M) < S_3(M)$. Мы отождествляем каждую из интерпретаций P_i, S_j с множеством рациональных чисел \mathbb{Q} , упорядоченном как обычно.

Символы $U_j, 1 \le j \le 3$, интерпретируют бинарные отношения следующим образом: для всех $a, b \in M$

$$M \models U_1(a,b) \Leftrightarrow M \models P_1(a) \land P_2(b)$$
 и $\langle \mathbb{R}; <, + \rangle \models b < a + \sqrt{2},$
 $M \models U_2(a,b) \Leftrightarrow M \models S_1(a) \land S_2(b)$ и $\langle \mathbb{R}; <, + \rangle \models b < a + \sqrt{2},$
 $M \models U_3(a,b) \Leftrightarrow M \models S_1(a) \land S_3(b)$ и $\langle \mathbb{R}; <, + \rangle \models b < a + \sqrt{3}.$

Константы c_i^1 интерпретируют бесконечную строго возрастающую последовательность на $P_1(M)$, так что $\lim_{i\to\infty} c_i^1 = \infty_{P_1(M)}$. Аналогично, константы c_j^2 интерпретируют бесконечную строго возрастающую последовательность на $S_1(M)$, так что $\lim_{j\to\infty} c_j^2 = \infty_{S_1(M)}$.

Символ f интерпретирует строго возрастающую биекцию между $P_1(M)$ и $S_1(M)$, так что $f(c_i^1) = c_i^2$ для всех $i \in \omega$. Аналогично, символ g интерпретирует строго возрастающую биекцию между $P_2(M)$ и $S_2(M)$.

Может быть установлено, что Th(M) — слабо оминимальная теория ранга выпуклости 1. Пусть

$$p_1(x) := \{x > c_i^1 \mid i \in \omega\} \cup \{P_1(x)\},\$$

$$p_{2}(x) := \{x > c_{j}^{2} \mid j \in \omega\} \cup \{S_{1}(x)\},$$

$$q_{1}(x) := \{\forall t [U_{1}(c_{i}^{1}, t) \to t < x] \mid i \in \omega\} \cup \{P_{2}(x)\},$$

$$q_{2}(x) := \{\forall t [U_{2}(c_{j}^{2}, t) \to t < x] \mid j \in \omega\} \cup \{S_{2}(x)\},$$

$$q_{3}(x) := \{\forall t [U_{3}(c_{i}^{2}, t) \to t < x] \mid j \in \omega\} \cup \{S_{3}(x)\}.$$

Очевидно, что $p_1, p_2, q_1, q_2, q_3 \in S_1(\emptyset)$ — квазирациональные вправо, $p_1 \not\perp^{aq} p_2, q_1 \not\perp^{aq} q_2, p_1 \not\perp^{w} q_1, p_1 \perp^{aq} q_1, p_2 \not\perp^{w} q_2, p_2 \perp^{aq} q_2, p_2 \not\perp^{w} q_3, p_2 \perp^{aq} q_3.$ Нетрудно установить, что $\{q_2,q_3\}$ — максимальное попарно почти вполне ортогональное семейство квазирациональных 1-типов над Ø, являющихся не слабо ортогональными, но почти вполне ортогональными типу p_1 . Мы утверждаем, что Th(M)имеет в точности 5 счетных попарно неизоморфных моделей: первый случай – ни один из типов p_1, p_2, q_1, q_2, q_3 не реализуется; второй случай множество реализаций каждого из типов $p_1, p_2, q_1,$ q_2, q_3 имеет порядковый тип $(0,1) \cap \mathbb{Q}$ (насыщенный случай); третий случай — $p_1(M), p_2(M)$ имеют порядковый тип $[0,1) \cap \mathbb{Q}$, а $q_1(M)$, $q_2(M)$, $q_3(M)$ имеют порядковый тип $(0,1) \cap \mathbb{Q}$; четвертый случай — $p_1(M)$, $p_2(M)$, $q_3(M)$ имеют порядковый тип $(0,1) \cap \mathbb{Q}$, а $q_1(M)$, $q_2(M)$ имеют порядковый тип $[0,1) \cap \mathbb{Q}$; пятый случай — $p_1(M)$, $p_2(M)$, $q_1(M)$, $q_2(M)$ имеют порядковый тип $(0,1) \cap \mathbb{Q}$, а $q_3(M)$ имеет порядковый тип $[0,1) \cap \mathbb{Q}$.

Лемма 6. Пусть T- слабо о-минимальная теория, имеющая менее чем 2^{ω} счетных моделей, $p,q \in S_1(\varnothing) - \kappa$ вазирациональные, $p \not\perp^w q$. Тогда $p(M) = \varnothing \Leftrightarrow q(M) = \varnothing$ для каждой $M \models T$.

Доказательство леммы 6. Пусть M — счетная насыщенная модель для T. Поскольку p
extstyle updates <math>p — p

Рассмотрим следующую формулу:

$$K_{\phi,\psi}(x) \coloneqq \phi(x) \land \exists y_1 \exists y_2 [\psi(y_1) \land \psi(y_2) \land y_1 < y_2 \land U(x,y_1) \land \neg U(x,y_2)].$$

Очевидно, что $M \models K_{\phi,\psi}(a)$ для любого $a \in p(M)$ и любых $\phi(x) \in p$, $\psi(y) \in q$.

Возьмем произвольную счетную модель $M_1 \leq M$. Предположим, что $p(M_1) \neq \emptyset$. Тогда $M_1 \models K_{\varphi,\psi}(a)$ для любого $a \in p(M_1)$. Но тогда получаем, что $q(M_1) \neq \emptyset$.

Предложение 7. Пусть T- слабо о-минимальная теория конечного ранга выпуклости, имеющая менее чем 2^{ω} счетных моделей, $p_1, p_2, \ldots, p_n \in S_1(\varnothing) -$ квазирациональные, $p_i \perp^w p_j, p_i \perp^{aq} p_j$ для любых $1 \leq i < j \leq n$. Тогда $I(T, \omega)_{\{p_1, p_2, \ldots, p_n\}} = n + 2$.

Доказательство предложения 7. Пусть $M \models T$ —счетная насыщенная модель. Поскольку T имеет конечный ранг выпуклости, то существуют наибольшие \varnothing -определимые отношения эквивалентности $E_1(x,y), E_2(x,y), ..., E_n(x,y)$, разбивающие $p_1(M), p_2(M), ..., p_n(M)$ соответственно на бесконечное число выпуклых классов.

Поскольку T имеет малое число счетных моделей, то существует простая модель $M_0 \models T$, в которой все типы $p_1, p_2, ..., p_n$ опускаются. Также заметим, что в счетной насыщенной модели M все множества $p_1(M)/E_1, p_2(M)/E_2, ..., p_n(M)/E_n$ имеют порядковый тип $(0,1) \cap \mathbb{Q}$.

Предположим теперь, что существует $1\leqslant i\leqslant n$ такой, что $p_i(M_1)/E_i$ имеет порядковый тип $[0,1)\cap\mathbb{Q}$ для некоторой $M_1 \prec M$. Откуда в силу предложения 5 следует, что p_i — квазирациональный вправо. В силу леммы 6 $p_j(M_1)\neq\varnothing$ для каждого $1\leqslant j\leqslant n$. Поймем, что $p_j(M_1)/E_j$ имеет порядковый тип $(0,1)\cap\mathbb{Q}$ для каждого $1\leqslant j\leqslant n$ с условием $j\neq i$. Допустим противное: существует $1\leqslant j\leqslant n$ такой, что $j\neq i$ и $p_j(M_1)/E_j$ имеет порядковый тип $[0,1)\cap\mathbb{Q}$ или $(0,1]\cap\mathbb{Q}$. Не умаляя общности, предположим первое. Тогда p_j также является квазирациональным вправо.

Так как $p_i
pli^w p_j$, то существует (p_i, p_j) -секатор U(x, y) такой, что для любого $a \in p_i(M)$ найдутся $b_1, b_2 \in p_j(M)$ с условиями $b_1 < b_2$ и $M \models U(a, b_1) \land \neg U(a, b_2)$.

Пусть $f(x) \coloneqq \sup U(x, M)$. В силу теоремы 3 f является строго монотонной на $p_i(M)/E_i$. Если f — строго возрастающая на $p_i(M)/E_i$, то рассмотрим следующую формулу:

$$S(x,y) := \exists x_1(E_j(x,x_1) \land \forall y_1[E_i(y_1,y) \to \neg U(y_1,x_1)]).$$

Пусть $g(x) \coloneqq \sup S(x, M)$. Нетрудно установить, что $S(x, y) - (p_j, p_i)$ -секатор и g — строго возрастающая на $p_j(M)/E_j$.

Если же f — строго убывающая на $p_i(M)/E_i$, то рассмотрим следующую формулу:

$$S(x, y) := \forall x_1(E_i(x, x_1) \to \exists y_1 [E_i(y_1, y) \land U(y_1, x_1)]).$$

Аналогично устанавливается, что $S(x,y) - (p_j,p_i)$ -секатор и g — строго убывающая на $p_j(M)/E_j$.

Поскольку оба типа p_i и p_j — квазирациональные вправо, обе f и g являются строго возрастающими на $p_i(M)/E_i$ и $p_i(M)/E_i$ соответственно.

Возьмем произвольный элемент $a \in p_i(M_1)$, лежащий в крайнем левом E_i -классе, а также произвольный элемент $b \in p_j(M_1)$, лежащий в крайнем левом E_j -классе. Очевидно, что c < f(a) для любого $c \in M$ с условием $c < p_j(M)$. Если $\inf E_j(b,M) \leqslant f(a) \leqslant \sup E_j(b,M)$, то получаем противоречие с тем, что $p_i \perp^{aq} p_j$. Если же $f(a) > \sup E_j(b,M)$, то $g(b) = \inf E_i(a,M)$, откуда $p_j \perp^{aq} p_i$. Снова получаем

противоречие. Таким образом, $p_j(M_1)/E_j$ должно иметь порядковый тип $(0,1) \cap \mathbb{Q}$.

Таким образом, возможны следующие случаи счетных попарно неизоморфных моделей теории T: все типы из $\{p_1, p_2, \ldots, p_n\}$ опускаются (простая модель); для каждого $1 \le i \le n$ множество $p_i(M)/E_i$ порядково изоморфно $(0,1) \cap \mathbb{Q}$ (счетно-насыщенная модель); существует $1 \le i \le n$ такой, что $p_i(M)/E_i$ имеет порядковый тип $[0,1] \cap \mathbb{Q}$ или $(0,1] \cap \mathbb{Q}$ (в зависимости от того, является ли p_i квазирациональным вправо или квазирациональным влево), а все остальные $p_j(M)/E_j$ имеют порядковый тип $(0,1) \cap \mathbb{Q}$.

Предложение 8. Пусть T — слабо o-минимальная теория конечного ранга выпуклости, имеющая менее чем 2^ω счетных моделей, $p_1, p_2, \ldots, p_n \in S_1(\varnothing)$ — иррациональные, $p_i \not \perp^w p_j$, $p_i \perp^{aq} p_j$ для любых $1 \leqslant i < j \leqslant n$. Тогда $I(T, \omega)_{\{p_1, p_2, \ldots, p_n\}} = n^2 + 3n + 2$.

Доказательство предложения 8. Пусть $M \models T$ — счетная насыщенная модель. Поскольку T имеет конечный ранг выпуклости, то существуют наибольшие \varnothing -определимые отношения эквивалентности $E_1(x,y), E_2(x,y), ..., E_n(x,y)$, разбивающие $p_1(M), p_2(M), ..., p_n(M)$ соответственно на бесконечное число выпуклых классов.

Поскольку T имеет малое число счетных моделей, то существует простая модель $M_0 \models T$, в которой все типы p_1, p_2, \ldots, p_n опускаются. Также заметим, что в счетной насыщенной модели M все множества $p_1(M)/E_1, p_2(M)/E_2, \ldots, p_n(M)/E_n$ имеют порядковый тип $(0,1) \cap \mathbb{Q}$.

Случай 1. Существует $1 \le i \le n$ такой, что $|p_i(M_1)/E_i| = 1$ для некоторой $M_1 \prec M$.

Поймем, что $p_j(M_1) = \emptyset$ для любого $1 \le j \le n$ с условием $j \ne i$. Допустим противное: существует $1 \le j \le n$ такой, что $j \ne i$ и $p_j(M_1) \ne \emptyset$.

Так как $p_i
place{+}^w p_j$, то существует (p_i, p_j) -секатор U(x, y) такой, что для любого $a \in p_i(M)$ найдутся $b_1, b_2 \in p_j(M)$ с условиями $b_1 < b_2$ и $M \models U(a, b_1) \land \land \neg U(a, b_2)$. Пусть $f(x) \coloneqq \sup U(x, M)$. Тогда c < f(a) < c' для любых $a \in p_i(M)$, $c, c' \in M$ с условиями $c < p_j(M)$ и $p_j(M) < c'$. Здесь также $g(x) \coloneqq \sup S(x, M)$, где формула S(x, y) определена в предложении 7.

Возьмем произвольные $a \in p_i(M_1)$ и $b \in p_j(M_1)$. Тогда получаем: $\inf E_i(a, M_1) \leqslant g(b) \leqslant \sup E_i(a, M_1)$, откуда $p_j \not\perp^{aq} p_i$, что противоречит условию предложения.

Случай 2. Существует $1 \le i \le n$ такой, что $p_i(M_1)/E_i$ имеет порядковый тип $[0,1] \cap \mathbb{Q}$ для некоторой $M_1 \prec M$.

Поймем, что для любого $1 \le j \le n$ с условием $j \ne i$ множество $p_j(M_1)/E_j$ имеет порядковый тип $(0,1) \cap \mathbb{Q}$.

Возьмем произвольные $a_1,a_2\in p_i(M_1)$, лежащие в самом левом E_i -классе и самом правом E_i -классе соответственно. Тогда для любого $1\leqslant j\leqslant n$ с условием $j\neq i$ либо $c< f(a_1)< f(a_2)< c'$, либо $c< f(a_2)< f(a_1)< c'$ для любых $c,c'\in M_1$ с условиями $c< p_j(M_1)$ и $p_j(M_1)< c'$, откуда $p_j(M_1)\neq\varnothing$. Согласно Случаю $1\mid p_j(M_1)/E_j\mid\neq 1$. Но тогда согласно предложению 5 множество $p_j(M_1)/E_j$ имеет один из следующих порядковых типов: $(0,1)\cap\mathbb{Q}, [0,1]\cap\mathbb{Q}, [0,1]\cap\mathbb{Q}$

Не умаляя общности, предположим, что $p_j(M_1)/E_j$ имеет порядковый тип $[0,1)\cap \mathbb{Q}$. Возьмем произвольный $b\in p_j(M_1)$, лежащий в самом левом E_j -классе. Тогда получаем: либо $\inf E_i(a_1,M_1)\leqslant g(b)\leqslant \sup E_i(a_1,M_1)$, либо $\inf E_i(a_2,M_1)\leqslant g(b)\leqslant \sup E_i(a_2,M_1)$, откуда $p_j \downarrow^{aq} p_i$.

Аналогично рассматриваются случаи, когда $p_j(M_1)/E_j$ имеет порядковый тип $(0,1] \cap \mathbb{Q}$ или $[0,1] \cap \mathbb{Q}$. Таким образом, для любого $1 \leqslant j \leqslant n$ с условием $j \neq i$ множество $p_j(M_1)/E_j$ имеет порядковый тип $(0,1) \cap \mathbb{Q}$.

Случай 3. Существует $1\leqslant i\leqslant n$ такой, что $|p_i(M)/E_i|>1$ и $p_i(M)/E_i$ имеет наименьший элемент для некоторой $M_1 \prec M$.

Возьмем произвольный $1 \le j \le n$ с условием $j \ne i$ и рассмотрим $p_j(M_1)/E_j$.

Предположим, что f — строго возрастающая на $p_i(M_1)/E_i$. Тогда утверждаем, что $p_j(M_1)/E_j$ не имеет наименьшего элемента. Допустим противное: $p_j(M_1)/E_j$ имеет наименьший элемент. Пусть $a \in p_i(M_1)$ лежит в самом левом E_i -классе, и пусть $b \in p_j(M_1)$ лежит в самом левом E_j -классе. Тогда если $f(a) = \inf E_j(b, M_1)$, то получаем $p_i/\bot^{aq} p_j$, что противоречит условиям предложения. Следовательно, $f(a) > \sup E_j(b, M_1)$. Но тогда $g(b) = \inf E_i(a, M_1)$, откуда $p_j \not \downarrow^{aq} p_i$. Противоречие.

Аналогично устанавливается, что если f является строго убывающей на $p_i(M_1)/E_i$, то множество $p_i(M_1)/E_i$ не имеет наибольшего элемента.

Таким образом, если $p_i(M_1)/E_i$ имеет порядковый тип $[0,1)\cap \mathbb{Q}$ для некоторой $M_1 \prec M$, то в случае когда f — строго возрастающая на $p_i(M_1)/E_i$, $p_j(M_1)/E_j$ имеет две возможности: $(0,1]\cap \mathbb{Q}$ и $(0,1)\cap \mathbb{Q}$. Если же f — строго убывающая на $p_i(M_1)/E_i$, то также имеем две возможности для $p_j(M_1)/E_j$: $[0,1)\cap \mathbb{Q}$ и $(0,1)\cap \mathbb{Q}$.

Аналогично, если $p_i(M_1)/E_i$ имеет порядковый тип $(0,1] \cap \mathbb{Q}$ для некоторой $M_1 \prec M$, то в случае когда f — строго возрастающая на $p_i(M_1)/E_i$, $p_j(M_1)/E_j$ имеет две возможности: $[0,1) \cap \mathbb{Q}$ и $(0,1) \cap \mathbb{Q}$. Если же f — строго убывающая на $p_i(M_1)/E_i$, то также имеем две возможности для $p_i(M_1)/E_i$: $(0,1] \cap \mathbb{Q}$ и $(0,1) \cap \mathbb{Q}$.

Предположим теперь, что существуют $1 \le i < j \le n$ такие, что $p_i(M_1)/E_i$ и $p_j(M_1)/E_j$ имеют один из следующих порядковых типов:

 $[0,1) \cap \mathbb{Q}$ или $(0,1] \cap \mathbb{Q}$. Покажем в этом случае, что $p_l(M_1)/E_l$ должно иметь порядковый тип $(0,1) \cap \mathbb{Q}$ для любого $1 \leq l \leq n$ с условиями $l \neq i$ и $l \neq j$.

Возможны следующие четыре подслучая:

Подслучай 1. $p_i(M_1)/E_i$ имеет порядковый тип $[0,1)\cap\mathbb{Q}, p_j(M_1)/E_j$ имеет порядковый тип $[0,1]\cap\mathbb{Q}$.

Подслучай 2. $p_i(M_1)/E_i$ и $p_j(M_1)/E_j$ оба имеют порядковый тип $[0,1) \cap \mathbb{Q}$.

Подслучай 3. $p_i(M_1)/E_i$ имеет порядковый тип $(0,1] \cap \mathbb{Q}$, $p_j(M_1)/E_j$ имеет порядковый тип $[0,1) \cap \mathbb{Q}$.

Подслучай 4. $p_i(M_1)/E_i$ и $p_j(M_1)/E_j$ оба имеют порядковый тип $(0,1] \cap \mathbb{Q}$.

Поскольку $p_i
end{pmatrix}^w p_j$, существует (p_i, p_j) -секатор U(x, y) такой, что $f(x) := \sup U(x, M_1)$ является строго монотонной на $p_i(M_1)/E_i$. Аналогично, поскольку $p_i
end{pmatrix}^w p_l$, существует (p_i, p_l) -секатор R(x, y) такой, что $s(x) := \sup R(x, M_1)$ является строго монотонной на $p_i(M_1)/E_i$.

Подслучай 1. В этом случае f является строго возрастающей на $p_i(M_1)/E_i$.

Если s является строго возрастающей на $p_i(M_1)/E_i$, то тогда $p_l(M_1)/E_l$ может иметь порядковый тип $(0,1] \cap \mathbb{Q}$ или $(0,1) \cap \mathbb{Q}$. Рассмотрим следующую формулу:

$$\Psi(x,y) := \exists t [\neg U(t,x) \land R(t,y)].$$

Очевидно, что $\Psi(x,y)$ является (p_j,p_l) -секатором, причем $g(x) \coloneqq \sup \Psi(x,M_1)$ является строго возрастающей на $p_j(M_1)/E_j$. Тогда $p_l(M_1)/E_l$ может иметь порядковый тип $[0,1)\cap \mathbb Q$ или $(0,1)\cap \mathbb Q$. Откуда заключаем, что $p_l(M_1)/E_l$ имеет порядковый тип $(0,1)\cap \mathbb Q$.

Если же *s* является строго убывающей на $p_i(M_1)/E_i$, то тогда $p_i(M_1)/E_l$ может иметь порядковый тип $[0,1) \cap \mathbb{Q}$ или $(0,1) \cap \mathbb{Q}$. Рассмотрим следующую формулу:

$$\Psi(x,y)\coloneqq \exists t \big[U(t,x) \land R(t,y) \big].$$

Также устанавливаем, что $\Psi(x,y)$ является (p_j,p_l) -секатором, причем g является строго убывающей на $p_j(M_1)/E_j$. Тогда $p_l(M_1)/E_l$ может иметь порядковый тип $(0,1] \cap \mathbb{Q}$ или $(0,1) \cap \mathbb{Q}$. Откуда заключаем, что $p_l(M_1)/E_l$ имеет порядковый тип $(0,1) \cap \mathbb{Q}$.

Подслучай 2. В этом случае f является строго убывающей на $p_i(M_1)/E_i$.

Если s является строго возрастающей на $p_i(M_1)/E_i$, то тогда $p_l(M_1)/E_l$ может иметь порядковый тип $(0,1] \cap \mathbb{Q}$ или $(0,1) \cap \mathbb{Q}$. Рассмотрим следующую формулу:

$$\Psi(x,y) := \exists t [U(t,x) \land R(t,y)].$$

Очевидно, что формула $\Psi(x,y)$ является (p_j,p_l) -секатором, причем g является строго убывающей

на $p_j(M_1)/E_j$. Тогда $p_l(M_1)/E_l$ может иметь порядковый тип $[0,1)\cap\mathbb{Q}$ или $(0,1)\cap\mathbb{Q}$. Откуда заключаем, что $p_l(M_1)/E_l$ имеет порядковый тип $(0,1)\cap\mathbb{Q}$.

Если же *s* является строго убывающей на $p_i(M_1)/E_i$, то тогда $p_l(M_1)/E_l$ может иметь порядковый тип $[0,1) \cap \mathbb{Q}$ или $(0,1) \cap \mathbb{Q}$. Рассмотрим следующую формулу:

$$\Psi(x,y) := \exists t [\neg U(t,x) \land R(t,y)].$$

Также устанавливаем, что $\Psi(x,y)$ является (p_j,p_l) -секатором, причем g является строго возрастающей на $p_j(M_1)/E_j$. Тогда $p_l(M_1)/E_l$ может иметь порядковый тип $(0,1]\cap \mathbb{Q}$ или $(0,1)\cap \mathbb{Q}$. Откуда заключаем, что $p_l(M_1)/E_l$ имеет порядковый тип $(0,1)\cap \mathbb{Q}$.

Подслучаи 3 и 4 рассматриваются аналогично.

Таким образом, возможны следующие случаи счетных попарно неизоморфных моделей теории Т: все типы из $\{p_1, p_2, ..., p_n\}$ опускаются (простая модель); для каждого $\leq i \leq n$ множество $p_i(M)/E_i$ порядково изоморфно $(0,1) \cap \mathbb{Q}$ (счетно-насыщенная модель); существует $1 \le i \le n$ такой, что $|p_i(M)/E_i| = 1$, а все остальные типы из $\{p_1, p_2, ..., p_n\}$ опускаются; существует $1 \le i \le n$ такой, что $p_i(M)/E_i$ порядково изоморфно $[0,1] \cap \mathbb{Q}$ и для любого $1 \leq j \leq n$ с условием $j \neq i$ множество $p_i(M)/E_i$ порядково изоморфно $(0,1) \cap \mathbb{Q}$; существует $1 \le i \le n$ такой, что $p_i(M)/E_i$ порядково изоморфно $[0,1) \cap \mathbb{Q}$ или $(0,1] \cap \mathbb{Q}$, и для любого $1 \le j \le n$ с условием $j \neq i$ множество $p_i(M)/E_i$ порядково изоморфно $(0,1) \cap \mathbb{Q}$; существуют $1 \le i < j \le n$ такие, что $p_i(M)/E_i$ и $p_j(M)/E_j$ порядково изоморфны $[0,1) \cap \mathbb{Q}$ или $(0,1] \cap \mathbb{Q}$ (в зависимости от поведения (p_i, p_i) -секатора на $p_i(M)/E_i$), и для любого $1 \le l \le n$ с условиями $l \ne i$ и $l \ne j$ множество $p_l(M)/E_l$ порядково изоморфно (0,1) ∩ \mathbb{Q} .

Итак, имеем: $2+4n+2C_n^2=2+4n+n(n-1)=$ $=n^2+3n+2$, где C_n^2 обозначает биномиальный коэффициент, т.е. $C_n^2=\frac{n!}{(n-2)!\cdot 2!}$.

Теорема 5. Пусть T — слабо о-минимальная теория конечного ранга выпуклости, имеющая менее чем 2^{ω} счетных моделей. Тогда либо T — ω -категоричная, либо существуют $\Gamma_1 = \{p_1, p_2, \ldots, p_m\}$, $\Gamma_2 = \{q_1, q_2, \ldots, q_l\}$ — максимальные попарно слабо ортогональные семейства квазирациональных и иррациональных I-типов над \varnothing соответственно для некоторых $m, l < \omega$ такие, что $m^2 + l^2 \neq 0$ и

$$I(T,\omega) = \prod_{i=1}^{m} (\kappa_i + 3) \cdot \prod_{j=1}^{l} (\lambda_j^2 + 5\lambda_j + 6) npu m, l \ge 1;$$

$$I(T,\omega) = \prod_{j=1}^{l} (\lambda_j^2 + 5\lambda_j + 6) npu \ m = 0;$$

$$I(T, \omega) = \prod_{i=1}^{m} (\kappa_i + 3) npu l = 0,$$

где $0 \leqslant \kappa_i \leqslant \omega$ и κ_i — максимальное число неалгебраических попарно почти вполне ортогональных 1-типов над \varnothing , являющихся не слабо ортогональными, но почти вполне ортогональными типу p_i для каждого $1 \leqslant i \leqslant m$; $0 \leqslant \lambda_j \leqslant \omega$ и λ_j — максимальное число неалгебраических попарно почти вполне ортогональных 1-типов над \varnothing , являющихся не слабо ортогональными, но почти вполне ортогональными типу q_j для каждого $1 \leqslant j \leqslant l$.

Замечание 1. Если T-o-минимальная теория, имеющая менее чем 2^ω счетных моделей, то $\kappa_i=0$ для любого $1\leqslant i\leqslant m$ и $\lambda_j=0$ для любого $1\leqslant j\leqslant l$, поскольку для любых $p,q\in S_1(\varnothing)$ таких, что $p\downarrow^w q$, следует существование \varnothing -определимой биекции между множествами реализаций этих типов, откуда $p\downarrow^{aq}q$.

Доказательство теоремы 5. Замечаем, что в силу теоремы 1 теория Т является бинарной. Из предложения 3 следует, что если $p, q \in S_1(\emptyset), p$ – квазирациональный, q — иррациональный, то $p \perp^w q$. Тогда в силу предложения 4 семейство $\{p,q\}$ слабо ортогонально над Ø, т.е. каждый 2-кортеж $\langle a,b\rangle \in p(M) \times q(M)$ удовлетворяет одному и тому же типу над \emptyset , откуда с учетом бинарности T следует независимость реализаций этих типов друг от друга. Теперь в общем случае, если возьмем произвольные попарно слабо ортогональные 1-типы $p_1, ..., p_s \in S_1(\emptyset)$, то также в силу предложения 4 семейство $\{p_1, ..., p_s\}$ будет слабо ортогональным над \varnothing , откуда также с учетом бинарности T имеем независимость реализаций этих типов друг от друга.

Cлучай 1. m = 0 и l = 0.

В этом случае не существует квазирациональных и иррациональных 1-типов над Ø, т.е. любой 1-тип над Ø является изолированным. Также получаем, что $\kappa_i = 0$ и $\lambda_i = 0$ для любых i, j, т.е. $I(T, \omega) =$ $= 3^m 6^l = 1$, откуда T является ω -категоричной. Действительно, поскольку не существует неизолированных 1-типов над Ø, то мы заключаем, что различных 1-типов над Ø лишь конечное число (если бы их было бесконечно, то получили бы хотя бы один неизолированный 1-тип над Ø). Поскольку T бинарная в силу теоремы 1, то осталось понять что 2-типов над Ø также конечное число. Но поскольку T почти ω -категоричная в силу теоремы 2, то из конечного числа 1-типов над Ø можно образовать лишь конечное число 2-типов над Ø. Таким образом, $T - \omega$ -категоричная, откуда $I(T, \omega) = 1$.

Случай 2. $m \neq 0$ или $l \neq 0$.

Случай 2а. T — почти вполне о-минимальная.

Тогда для любых $1 \le i \le m$, $1 \le j \le l$ мы имеем $\kappa_i = 0$ и $\lambda_j = 0$, т.е. нам надо доказать, что $I(T, \omega) = 3^m 6^l$.

Пусть M— счетная насыщенная модель теории T. Возьмем произвольный $1\leqslant i\leqslant m$ и рассмотрим тип p_i . Поскольку T имеет конечный ранг выпуклости, то $RC(p_i)=n$ для некоторого $n<\omega$. Пусть $E^i(x,y)$ — наибольшее \varnothing -определимое отношение эквивалентности, разбивающее $p_i(M)$ на бесконечное число выпуклых классов. Если $p_i\perp^w p$ для любого квазирационального $p\in S_1(\varnothing)$, то в силу предложения S имеется в точности S возможности для множества реализаций типа S0, S1, S2, S3, S3, S4, S5, S5, S6, S6, S7, S8, S8, S9, S

Предположим теперь, что $p_i
primer p'$ для некоторого $p' \in S_1(\varnothing)$. В силу почти вполне о-минимальности $p_i
primer p'$. Следовательно, существует (p_i,p') -секатор U(x,y) такой, что для любых $a \in p_i(M)$ и $a' \in E^i(a,M)$ выполняется $\sup U(a',M) = \sup E(b,M)$ для некоторого $b \in p'(M)$, где E(x,y) — наибольшее \varnothing -определимое отношение эквивалентности, разбивающее p'(M) на бесконечное число выпуклых классов; при этом функция $f(x) := \sup U(x,M)$ является строго монотонной на $p_i(M)/E^i$.

Предположим для определенности, что p_i — квазирациональный вправо (влево). Тогда если f является строго возрастающей на $p_i(M)/E^i$, то p' также является квазирациональным вправо (влево), и для любой счетной модели $M_1 \models T$ порядковые типы множеств $p_i(M_1)/E^i$ и $p'(M_1)/E$ совпадают. Если же f является строго убывающей на $p_i(M)/E^i$, то p' является квазирациональным влево (вправо), и для любой счетной модели $M_1 \models T$ порядковые типы множеств $p_i(M_1)/E^i$ и $p'(M_1)/E$ совпадают в случае когда $p_i(M_1) = \emptyset$ или $p_i(M_1)/E^i$ порядково изоморфна $(0,1) \cap \mathbb{Q}$. Также имеем следующее:

 $p_i(M_1)/E^i$ порядково изоморфна $[0,1)\cap \mathbb{Q}\Leftrightarrow \Leftrightarrow p'(M_1)/E$ порядково изоморфна $(0,1]\cap \mathbb{Q}.$

Таким образом, и в этом случае имеются в точности 3 возможности для множества реализаций типа p_i .

Далее рассмотрим произвольный $1 \le j \le l$. Если $\lambda_j = 1$, то в силу предложения $t_j = 6$. Предположим теперь, что $t_j > 1$. Этот случай рассматривается аналогично случаю с квазирациональными типами, и также может быть установлено, что $t_j = 6$.

Следовательно, получаем, что $I(T, \omega) = 3^m 6^l$.

Случай 2b. T — не почти вполне о-минимальная. Тогда существуют неизолированные p', $p'' \in S_1(\emptyset)$ такие, что $p' \not\perp^w p''$, но $p' \perp^{aq} p''$, т.е. $\kappa_i > 0$ для некоторого $1 \leqslant i \leqslant m$ или $\lambda_j > 0$ для некоторого $1 \leqslant j \leqslant l$.

Если $\kappa_i > 0$ для некоторого $1 \le i \le m$, то существуют $p_1', \dots, p_{\kappa_i}' \in S_1(\emptyset)$ — неалгебраические по-

парно почти вполне ортогональные 1-типы, являющиеся не слабо ортогональными, но почти вполне ортогональными типу p_i , и согласно предложению 7 $I(T,\omega)_{\{p_i,p'_1,\ldots,p'_{\kappa_i}\}}=(\kappa_i+1)+2=\kappa_i+3.$

Если $\lambda_j > 0$ для некоторого $1 \leqslant j \leqslant l$, то существуют $q_1', \ldots, q_{\lambda_j}' \in S_1(\varnothing)$ — неалгебраические попарно почти вполне ортогональные 1-типы, являющиеся не слабо ортогональными, но почти вполне ортогональными типу q_j , и согласно предложению $\{I(T, \omega)\}_{\{q_j,q_1',\ldots,q_{\lambda_j}'\}} = (\lambda_j + 1)^2 + 3(\lambda_j + 1) + 2 = \lambda_j^2 + 5\lambda_j + 6$. \square

Следствие 1. [16, 17] Пусть T- слабо о-минимальная теория конечного ранга выпуклости, имеющая менее чем 2^{ω} счетных моделей, $\Gamma_1 = \{p_1, p_2, \ldots, p_m\}$, $\Gamma_2 = \{q_1, q_2, \ldots, q_l\}$ — максимальные попарно слабо ортогональные семейства квазирациональных и иррациональных 1-типов над \varnothing соответственно для некоторых $m, l < \omega$. Тогда T имеет в точности $3^m 6^l$ счетных моделей $\Leftrightarrow T$ — почти вполне о-минимальная.

Следствие 2. [17] Пусть T — слабо оминимальная теория конечного ранга выпуклости, имеющая менее чем 2^{ω} счетных моделей, $\Gamma_1 = \{p_1, p_2, \dots, p_m\}, \ \Gamma_2 = \{q_1, q_2, \dots, q_l\}$ — максимальные попарно слабо ортогональные семейства квазирациональных и иррациональных 1-типов над \varnothing соответственно для некоторых $m,l < \omega$. Тогда $I(T,\omega) = \omega \Leftrightarrow$ существует $p \in \Gamma_1 \cup \Gamma_2$, являющийся не слабо ортогональным счетному числу попарно почти вполне ортогональных неалгебраических 1-типов над \varnothing .

ИСТОЧНИК ФИНАНСИРОВАНИЯ

Настоящее исследование поддержано Комитетом науки Министерства науки и высшего образования Республики Казахстан, грант AP19677434.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Macpherson H. D., Marker D., Steinhorn C.* Weakly o-minimal structures and real closed fields // Transactions of the American Mathematical Society. 2000. V. 352. № 12. P. 5435–5483.
- 2. *Baizhanov B. S.* Expansion of a model of a weakly o-minimal theory by a family of unary predicates // The Journal of Symbolic Logic. 2001. V. 66. № 3. P. 1382–1414.
- 3. *Kulpeshov B. Sh.* Weakly o-minimal structures and some of their properties // The Journal of Symbolic Logic. 1998. № 63. P. 1511–1528.
- 4. *Кулпешов Б. Ш.* Критерий бинарности почти ω-категоричных слабо о-минимальных теорий // Сибирский математический журнал. 2021. Т. 62. № 6. С. 1313—1329.
- 5. *Кулпешов Б. Ш.* Гипотеза Воота для слабо оминимальных теорий конечного ранга выпук-

- лости // Известия РАН, серия математическая. 2020. Т. 84. № 2. С. 126—151.
- 6. *Ikeda K., Pillay A., Tsuboi A.* On theories having three countable models // Mathematical Logic Quarterly. 1998. V. 44. № 2. P. 161–166.
- 7. *Судоплатов С. В.* Классификация счетных моделей полных теорий, НГТУ, Новосибирск, части 1 и 2, 2018.
- 8. *Altayeva A. B., Kulpeshov B. Sh.* On almost omegacategoricity of weakly o-minimal theories // Siberian Electronic Mathematical Reports. 2021. V. 18. № 1. P. 247–254.
- 9. *Mayer L. L.* Vaught's conjecture for o-minimal theories // The Journal of Symbolic Logic. 1988. V. 53. P. 146–159.
- 10. *Kulpeshov B. Sh.*, *Sudoplatov S. V.* Vaught's conjecture for quite o-minimal theories // Annals of Pure and Applied Logic. 2017. V. 168. № 1. P. 129–149.
- 11. Alibek A., Baizhanov B. S., Kulpeshov B. Sh., Zambarnaya T. S. Vaught's conjecture for weakly o-minimal theories of convexity rank 1 // Annals of Pure and Applied Logic. 2018. V. 169. № 11. P. 1190–1209.
- 12. Замбарная Т. С., Байжанов Б. С. Счетные модели полных упорядоченных теорий // Доклады Российской академии наук. Математика, информатика, процессы управления. 2023. Т. 513. С. 5–8.
- 13. *Baizhanov B., Umbetbayev O.* Constant expansion of theories and the number of countable models //

- Siberian Electronic Mathematical Reports. 2023. V. 20. № 2. P. 1037–1051.
- 14. Dauletiyarova A. B., Verbovskiy V. V. On the number of countable models of constant and unary predicates expansions of the dense meettree theory // Siberian Electronic Mathematical Reports. 2024. V. 21. № 2. P. 755–770.
- 15. *Kulpeshov B. Sh.* Criterion for binarity of ℵ₀-categorical weakly o-minimal theories // Annals of Pure and Applied Logic. 2007. V. 45. P. 354–367.
- 16. *Kulpeshov B. Sh., Sudoplatov S. V.* Almost quite orthogonality of 1-types in weakly o-minimal theories // Logic Colloquium 2023, European Summer Meeting of ASL, University of Milan, Italy, 5–9 June 2023, book of abstracts, p. 128.
- 17. *Kulpeshov B. Sh., Sudoplatov S. V.* On new variant of orthogonality of 1-types in weakly o-minimal theories, preprint, 2022.
- 18. Baizhanov B. S. Orthogonality of one-types in weakly o-minimal theories // Algebra and Model Theory II, (A. G. Pinus and K. N. Ponomaryov, editors), Novosibirsk State Technical University. 1999. P. 3–28.
- 19. *Baizhanov B. S., Kulpeshov B. Sh.* On behaviour of 2-formulas in weakly o-minimal theories // Mathematical Logic in Asia, Proceedings of the 9th Asian Logic Conference (editors S. Goncharov, R. Downey, H. Ono), Singapore, World Scientific. 2006. P. 31–40.

THE COUNTABLE SPECTRUM OF WEAKLY O-MINIMAL THEORIES OF FINITE CONVEXITY RANK

B. Sh. Kulpeshov^{a,b}

^a Institute of Mathematics and Mathematical Modeling, Almaty, Kazakhstan
^b Kazakh-British Technical University, Almaty, Kazakhstan

Presented by Academician of the RAS A. L. Semenov

Here we present a formula counting the countable spectrum of an arbitrary weakly o-minimal theory of finite convexity rank having less than 2^{ω} pairwise non-isomorphic countable models.

Keywords: weak o-minimality, orthogonality, Vaught's conjecture, countable model, convexity rank.