Подавление спекл шумов в медицинских изображениях путем сегментации-группирования 3D объектов на основе дисперсного контуролет представления

Обложка

Цитировать

Полный текст

Аннотация

Впервые обоснована и реализована процедура фильтрации ультразвуковых и магнитно-резонансных изображений (УЗИ, МРИ), искаженных мультипликативным (спекл) шумом. Процедура включает следующие этапы: сегментация изображения в ряд однородных регионов, формирование сходных структур в трехмерном пространстве (3D), голоморфное преобразование, пороговая фильтрация изображения в пространстве контуролет преобразования (CLT) с оценкой на основе группирования 3D структур по информационной степени близости и обратное гомоморфное преобразование. Дана физическая интерпретация процедуры фильтрации изображений в условиях спекл шумов и разработана структурная схема подавления шумов. Моделирование предложенного подхода подтвердило преимущество новой процедуры фильтрации изображений в терминах общепризнанных критериев: оценки структурного индекса схожести, пикового отношения сигнал/шум, индекса сохранения контуров и индекса разрешения альфа, а также и при визуальном сравнении профильтрованных изображений.

Об авторах

В. Ф. Кравченко

Институт радиотехники и электроники им. В.А. Коте-льникова Российской академии наук; Московский государственный технический университет им. Н.Э. Баумана

Автор, ответственный за переписку.
Email: kvf-ok@mail.ru
Россия, Москва; Россия, Москва

Ю. В. Гуляев

Институт радиотехники и электроники им. В.А. Коте-льникова Российской академии наук

Автор, ответственный за переписку.
Email: gulyaev@cplire.ru
Россия, Москва

В. И. Пономарев

Национальный Политехнический институт Мексики (Instituto Politecnico Nacional)

Автор, ответственный за переписку.
Email: vponomar@ipn.mx
Мексика, Мехико

Г. Аранда-Бохоргес

Национальный Политехнический институт Мексики (Instituto Politecnico Nacional)

Автор, ответственный за переписку.
Email: gibran.aranda.bionics@gmail.com
Мексика, Мехико

Список литературы

  1. Кравченко В.Ф., Пономарев В.И., Пустовойт В.И., Аранда-Бохоргес Г. // Доклады РАН. Математика, информатика, процессы управления. 2021. Т. 499. № 2. С. 67–72.
  2. Aranda-Bojorges G., Ponomaryov V., Reyes-Reyes R., Cruz-Ramos C., Sadovnychiy S. // IEEE Geosci. Rem. Sens. Lett. 2020. V. 19, art. 4018005. https://doi.org/10.1109/LGRS.2021.3108774
  3. Reyes-Reyes R., Aranda-Bojorges G., Garcia-Salgado B., Ponomaryov V., Cruz-Ramos C., Sadovnychiy S. // Sensors. 2022. V. 22. 5113. https://doi.org/10.3390/s22145113
  4. Kravchenko V., Perez H., Ponomaryov V. Adaptive Signal Processing of Multidimensional Signals with Applications. Moscow: Fizmatlit, 2009.
  5. Dabov K., Foi A., Katkovnik V., Egiazarian K. // IEEE Trans. Image Process. 2007. V. 16. № 8. P. 2080–2095.
  6. Santos C.A.N., Martins D.L.N., Mascarenhas N.D.A. // IEEE Trans. Image Process. 2017. V. 26. 2632–2643. https://doi.org/10.1109/TIP.2017.2685339
  7. Sameera V.M.S., Sudhish N.G. // Sensing Imaging. 2017. V. 18. P. 1–28. https://doi.org/10.1007/s11220-017-0181-8
  8. Jubairahmed L., Satheeskumaran S., Venkatesan C. // Clust. Comput. 2019. V. 22. P. 11237–11246.
  9. Jaburalla M.Y., Lee H.N. // Appl. Sci. 2018. V. 8. 903. P. 1–17. https://doi.org/10.3390/app8060903
  10. Achanta R., Shaji A., Smith K., Lucchi A., Fua P., Süsstrunk S. // IEEE Trans. Pattern Anal. Mach. Intell. 2012. V. 34. P. 2274–2282.
  11. Jensen J.A. // Med. Biol. Eng. Comput. 1996. V. 34. P. 351–352.
  12. Wang Z., Bovik A. // IEEE Signal Process. Mag. 2009. V. 26. № 1. P. 98–117.
  13. https://openfmri.org/dataset/ (accessed: June21, 2022).
  14. http://splab.cz/en/download/databaze/ultrasound (accessed: June 19, 2022).

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2.

Скачать (375KB)
3.


© В.Ф. Кравченко, Ю.В. Гуляев, В.И. Пономарев, Г. Аранда-Бохоргес, 2023

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».