Tom 27, № 137

© Хоанг В.Н., Провоторов В.В., 2022 DOI 10.20310/2686-9667-2022-27-137-80-94 УДК 517.929.4

Устойчивость трехслойной симметричной дифференциально-разностной схемы в классе суммируемых на сетеподобной области функций

Ван Нгуен ХОАНГ, Вячеслав Васильевич ПРОВОТОРОВ

ФГБОУ ВО «Воронежский государственный университет» 394018, Российская Федерация, г. Воронеж, Университетская площадь, 1

Аннотация. В работе получены условия устойчивости трехслойной симметричной дифференциально-разностной схемы с весовым параметром в классе функций, суммируемых на сетеподобной области. Для анализа устойчивости в пространстве допустимых решений H дифференциально-разностной системы вводится составная норма, имеющая структуру нормы пространства $H^2 = H \oplus H$. А именно, для $Y = \{Y_1, Y_2\} \in H^2$, $Y_\ell \in H$ ($\ell = 1, 2$), $\|Y\|_H^2 = \|Y_1\|_{1,H}^2 + \|Y_2\|_{2,H}^2$, где $\|\cdot\|_{1,H}^2 + \|\cdot\|_{2,H}^2$ — некоторые нормы H. Использование такой нормы при описании энергетического тождества открывает путь построения априорных оценок для слабых решений дифференциально-разностной системы, удобных при практической проверке в случае конкретных дифференциально-разностных схем. Полученные результаты могут быть использованы для анализа задач оптимизации, возникающих при моделировании сетеподобных процессов переноса формализмами дифференциально-разностных систем.

Ключевые слова: многомерная сетеподобная область, дифференциально-разностная система, устойчивость дифференциально-разностной схемы

Благодарности: Работа выполнена при поддержке Министерства образования и науки Республики Казахстан (проект AP05136197).

Для цитирования: *Хоанг В.Н., Провоторов В.В.* Устойчивость трехслойной симметричной дифференциально-разностной схемы в классе суммируемых на сетеподобной области функций // Вестник российских университетов. Математика. 2022. Т. 27. № 137. С. 80–94. DOI 10.20310/2686-9667-2022-27-137-80-94.

© V. N. Hoang, V. V. Provotorov, 2022 DOI 10.20310/2686-9667-2022-27-137-80-94

Stability of a three-layer symmetric differential-difference scheme in the class of functions summable on a network-like domain

Van N. HOANG, Vyacheslav V. PROVOTOROV

Voronezh State University 1 Universitetskaya pl., Voronezh 394018, Russian Federation

Abstract. In the paper, the stability conditions of a three-layer symmetric differential-difference scheme with a weight parameter in the class of functions summable on a network-like domain are obtained. To analyze the stability of the differential-difference system in the space of feasible solutions H, a composite norm is introduced that has the structure of a norm in the space $H^2 = H \oplus H$. Namely, for $Y = \{Y_1, Y_2\} \in H^2$, $Y_\ell \in H$ ($\ell = 1, 2$), $\|Y\|_H^2 = \|Y_1\|_{1,H}^2 + \|Y_2\|_{2,H}^2$, where $\|\cdot\|_{1,H}^2 = \|\cdot\|_{1,H}^2 = \|\cdot\|_{1,$

Keywords: multidimensional network-like domain, differential-difference system, stability of differential-difference scheme

Acknowledgements: The work is supported by the Ministry of Education and Science of the Republic of Kazakhstan (project AP05136197).

Mathematics Subject Classification: 49N10.

For citation: Hoang V.N., Provotorov V.V. Ustoychivost' trekhsloynoy simmetrichnoy differentsial'no-raznostnoy skhemy v klasse summiruyemykh na setepodobnoy oblasti funktsiy [Stability of a three-layer symmetric differential-difference scheme in the class of functions summable on a network-like domain]. Vestnik rossiyskikh universitetov. Matematika – Russian Universities Reports. Mathematics, 2022, vol. 27, no. 137, pp. 80–94. DOI 10.20310/2686-9667-2022-27-137-80-94. (In Russian, Abstr. in Engl.)

Введение

Настоящая работа является естественным продолжением исследований устойчивости дифференциальных систем на графе [1,2] в направлении увеличения размерности сетеподобной области изменения пространственной переменной при изучении устойчивости трехслойной дифференциально-разностной схемы с весами и оператором, определенным в соболевском пространстве. Представлены достаточные условия устойчивости, зависящие от выбора весовых параметров, и доказано основное энергетическое тождество. Получены основанные на энергетическом тождестве априорные оценки, гарантирующие устойчивость схемы к малым изменениям начальных данных и правой части. Рассмотрена связь устойчивости дифференциально-разностных схем со слабой разрешимостью эволюционных задач для уравнений математической физики с пространственной переменной, изменяющейся в сетеподобной области. Представленный анализ устойчивости дифференциально-разностных схем открывает путь аппроксимации дифференциальных систем уравнений математической физики при их численной реализации и алгоритмизации для решения задач оптимального управления.

1. Необходимые обозначения, понятия и определения

Везде ниже областью изменения аргументов функций является сетеподобная ограниченная область $\Im \subset \mathbb{R}^n$, $n \geq 2$ ($\partial \Im -$ граница \Im), состоящая из подобластей \Im_l , $l=\overline{1,N}$ ($\partial \Im_l$ — граница \Im_l), соединенных определенным образом между собой в Mузловых местах ω_j ($j = \overline{1, M}$, $1 \le M \le N - 1$): $\Im = \widehat{\Im} \bigcup \widehat{\omega}$, $\widehat{\Im} = \bigcup_{l=1}^N \Im_l$, $\widehat{\omega} = \bigcup_{i=1}^M \omega_j$, $\Im_l \cap \Im_{l'} = \emptyset \ (l \neq l'), \ \omega_j \cap \omega_{j'} = \emptyset \ (j \neq j'), \ \Im_l \cap \omega_j = \emptyset \ (l \neq j) \ [3-5].$ В каждом узловом месте ω_i (j=1,M) определенное число подобластей \Im_l имеют общие границы, образующие поверхность их примыкания S_j (meas $S_j > 0$). Поверхность примыкания связывает между собой примыкающие к ней $1+m_j$ области \Im_{l_0} и \Im_{l_s} ($s=\overline{1,m_j}$): $S_j=\bigcup_{s=1}^{m_j}S_{j\,s}$ (meas $S_{js} > 0$), $S_j \subset \partial \Im_{l_0}$, $S_{js} \subset \partial \Im_{l_s}$ ($s = \overline{1, m_j}$). Таким образом, каждое узловое место ω_i $(j=\overline{1,M})$ определяется своею поверхностью примыкания S_i , для которой каждая поверхность S_{js} ($s=\overline{1,m_j}$) также является поверхностью примыкания \Im_{ls} к \Im_{l_0} . Ясно, что при этом граница области \Im не содержит поверхности S_j ($j=\overline{1,M}$): $\partial \Im = \bigcup_{k=0}^{N} \partial \Im_k \setminus \bigcup_{j=0}^{M} S_j$. Следует отметить, что структура области \Im совпадает с геометрией графа-дерево с внутренними узлами (вершинами) ω [1,2], [6]. А именно, каждая область \Im_I примыкает к одному либо двум узловым местам и имеет не менее одной поверхности примыкания к другим областями (заметим для сравнения: хотя бы одна концевая точка произвольного ребра графа является местом сочленения с концевыми точками определенного числа других ребер). Очевидно также, что любая связная подобласть области 🕉 имеет структуру, аналогичную 🕃, и обладает своим числом узловых мест. Условимся считать, что поверхности S_j и S_{js} ($s=\overline{1,m_j},\ l=\overline{1,N}$) являются гладкими, а области \Im_l — звездными относительно некоторого шара, своего для каждой \Im_l .

Используются общепринятые обозначения пространств Лебега и Соболева, причем интеграл Лебега применительно к сетеподобной области \Im определяется соотношением $\int\limits_{\mathbb{R}} u(x)dx = \sum_{l=1}^{N} \int\limits_{\mathbb{R}} u(x)dx.$ Пусть $L_{2}(\Im)$ — гильбертово пространство действительных изме-

римых по Лебегу функций u(x), $x = (x_1, x_2, \dots, x_n)$, скалярное произведение и норма в $L_2(\Im)$ определены соответствующими равенствами:

$$(u,v)_{\Im} = \int_{\Im} u(x)v(x)dx, \quad ||u||_{\Im} = \sqrt{(u,u)}.$$
 (1.1)

Пусть, далее, $W_2^1(\Im)$ — гильбертово пространство функций u(x) из $L_2(\Im)$, для которых $u_{x_\kappa}(x) \in L_2(\Im)$, $\kappa = \overline{1,n}$; соотношения

$$(u,v)_{\Im}^{1} = \int_{\Im} \left(u(x)v(x) + \sum_{\kappa=1}^{n} \frac{\partial u(x)}{\partial x_{\kappa}} \frac{\partial v(x)}{\partial x_{\kappa}} \right) dx, \quad \|u\|_{\Im}^{1} = \sqrt{(u,u)_{\Im}^{1}}, \tag{1.2}$$

определяют скалярное произведение и норму в $W_2^1(\Im)$, соответственно. Символ \Im в обозначениях скалярного произведения и нормы в некоторых случаях для упрощения записи может опускаться. Представления пространств $L_2(\Im)$, $W_2^1(\Im)$ принимают следующий вид: $L_2(\Im) = \prod_{l=1}^N L_2(\Im_l)$, $W_2^1(\Im) = \prod_{l=1}^N W_2^1(\Im_l)$.

Введем другие пространства функций с носителем на сетеподобной области $\Im = \bigcup_{l=1}^N \Im_l$. При описании таких пространств необходимо продолжать элементы u(x) с области \Im на $\overline{\Im} = \bigcup_{l=1}^N \overline{\Im}_l$.

Вводя совокупность $C(\overline{\Omega})$ непрерывных функций в некоторой области $\overline{\Omega}$ (скалярное произведение и норму в $C(\overline{\Omega})$ определим соотношениями (1.1), в которых \Im следует заменить на $\overline{\Omega}$), условимся говорить, что элемент $u(x) \in C(\overline{\Omega})$ имеет производную, непрерывную в $\overline{\Omega}$, если эта производная для точек Ω , продолжается на $\overline{\Omega}$ по непрерывности (топология на $\overline{\Omega}$ индуцируется топологией Ω). Таким образом, можно определить и рассмотреть совокупность $C^1(\overline{\Omega})$, для элементов u(x) которой существуют непрерывные первые производные по переменным x_1, x_2, \ldots, x_n в $\overline{\Omega}$, причем скалярное произведение и норма для элементов $C^1(\overline{\Omega})$ определены соотношениями (1.2) (в которых \Im заменяется на $\overline{\Omega}$).

Сказанное приводит к возможности формирования следующих множеств для области \Im : множество $C(\overline{\Im})$ непрерывных в $\overline{\Im}$ функций u(x), множество $C^1(\overline{\Im}_l)$ ($l=\overline{1,N}$) функций из $C(\overline{\Im})$, которые при каждом фиксированном l в $\overline{\Im}_l$ имеют непрерывные частные производные $\frac{\partial u(x)}{\partial x_1}, \frac{\partial u(x)}{\partial x_2}, \ldots, \frac{\partial u(x)}{\partial x_n}$ и множество $C^1(\overline{\Im}) = \prod_{l=1}^N C^1(\overline{\Im}_l)$ со скалярным произведением и нормой, определяемыми формулами (1.2).

Далее, пусть $\widetilde{C}^1(\overline{\Im})$ — множество функций $u(x) \in C^1(\overline{\Im})$, для которых имеют место условия (ниже — условия примыкания в узловых местах ω_i)

$$\int_{S_i} a(x)_{S_j} \frac{\partial u(x)_{S_j}}{\partial \mathbf{n}_j} ds + \sum_{i=1}^{m_j} \int_{S_{ii}} a(x)_{S_{ji}} \frac{\partial u(x)_{S_{ji}}}{\partial \mathbf{n}_{ji}} ds = 0, \quad x \in S_{ji}, \ i = \overline{1, m_j}, \tag{1.3}$$

на поверхностях $S_j,\ S_{j\,i}\ (i=\overline{1,m_j})$ всех узловых мест $\omega_j,\ j=\overline{1,M}$. Здесь $a(x)\in L_2(\Im)$ и $a(x)_{S_j},\ u(x)_{S_j},\ u(x)_{S_{j\,i}}$, $u(x)_{S_{j\,i}}$ — сужения функций $a(x),\ u(x)$ на S_j и $S_{j\,i};\ \mathbf{n}_j$ и $\mathbf{n}_{j\,i}$ — внешние нормали к S_j и $S_{j\,i},\$ соответственно, $i=\overline{1,m_j},\ j=\overline{1,M}$. В дальнейшем

для упрощения записи индексы, означающие сужение, могут не использоваться. Вместе с $\widetilde{C}^1(\overline{\Im})$ введем множество $\widetilde{C}^1_0(\Im)$, элементы u(x) которого имеют компактный носитель в области \Im и принадлежат $\widetilde{C}^1(\overline{\Im})$; последнее означает, что $u(x)|_{\partial \Im} = 0$.

Определение 1.1. $\widetilde{W}^1(\Im)$ — замыкание $\widetilde{C}^1(\overline{\Im})$ в норме (1.2); $\|\cdot\|_{\widetilde{W}^1(\Im)} = \|\cdot\|_{\Im}^1$.

Определение 1.2. $\widetilde{W}_0^1(\Im)$ — замыкание $\widetilde{C}_0^1(\Im)$ в норме (1.2); $\widetilde{W}_0^1(\Im)$ является подпространством $\widetilde{W}^1(\Im)$.

Заметим, что представление $C^1(\overline{\Im}) = \prod_{l=1}^N C^1(\overline{\Im}_l)$ определяет очевидное свойство элементов u(x) пространств $\widetilde{W}^1(\Im)$ и $\widetilde{W}^1_0(\Im)$: сужения $u(x)_{\Im_l}$ для любого $l=\overline{1,N}$ принадлежат этим пространствам. Заметим также, что из $\Im_l \subset \Im$ ($l=\overline{1,N}$) и существования обобщенных производных $\frac{\partial u(x)}{\partial x_l}$ ($\iota=\overline{1,n}$) в области \Im следует существование обобщенных производных $\frac{\partial u(x)}{\partial x_l}$ в \Im_l . Отсюда и из определений 1.1 и 1.2 вытекает: элементы пространств $\widetilde{W}^1(\Im)$ и $\widetilde{W}^1_0(\Im)$ обладают свойством (1.3), являющимся условиями примыкания границ поверхностей \Im_l в узловых местах ω_j , $j=\overline{1,M}$. Таким образом мы остаемся в рамках классической теории дифференциальных уравнений в банаховых пространствах, если только обобщенная производная определена \Im_l . Последнее учтено в представлениях (1.2) скалярного произведения и нормы.

2. Дифференциально-разностная схема, устойчивость

На отрезке [0,T] введем равномерную сетку

$$\omega_{\tau} = \{t_k = k\tau, k = 1, \dots, K\}$$

с шагом $\tau = \frac{T}{K}$; $\overline{\omega}_{\tau} = \{0\} \cup \omega_{\tau}$. Будем рассматривать абстрактные функции (отображения) $y_{\tau}(t)$, $f_{\tau}(t)$ дискретного аргумента $t = k\tau \in \overline{\omega}_{\tau}$ со значениями в пространстве $L_2(\Im)$, так что $y_{\tau}(t) \in \widetilde{W}_0^1(\Im) \subset L_2(\Im)$. В дальнейшем индекс τ будем опускать и писать $y(k) := y(x;k) = y_{\tau}(x;k\tau)$, $f(k) := f(x;k) = f_{\tau}(x;k\tau)$ ($k = 0,1,\ldots,K$).

Рассмотрим семейство дифференциально-разностных уравнений

$$\frac{1}{2\tau}[y(k+1) - y(k-1)] = \mathbf{L}y^{(\sigma)} + f(k), \quad k = 1, 2, \dots, K-1,
y(0) = y_0(x), \quad y(1) = y_1(x),$$
(2.1)

зависящих от параметра σ , где $y^{(\sigma)} = \sigma y(k+1) + (1-2\sigma)y(k) + \sigma y(k-1)$, с операторным коэффициентом \mathbf{L} , который является линейным оператором $\mathbf{L}u = \sum_{\kappa,\iota=1}^n \frac{\partial}{\partial x_\kappa} \left(a_{\kappa\iota}(x)\frac{\partial u}{\partial x_\iota}\right)$,

действующим из пространства $\widetilde{W}_0^1(\Im)$ в $L_2(\Im)$. Семейство дифференциально-разностных уравнений (2.1) будем называть трехслойной симметричной дифференциально-разностной системой уравнений. Пространство $\widetilde{W}_0^1(\Im)$ определяется посредством замыкания множества $\widetilde{C}^1(\overline{\Im})$, где $a(x)=a_{\kappa\iota}(x)$ (см. соотношение (1.3)). Уравнение в системе (2.1) связывает значения искомых функций $y(k),\ k=2,3,\ldots,K$, на трех слоях $t_{k+1},\ t_k,\ t_{k-1}$; функции $y_0(x),\ y_1(x)$ определяют начальные данные, значения $f(k),\ k=1,2,\ldots,K$, как и начальные функции, полагаем заданными.

При фиксированных k ($k=1,2,\ldots,K-1$) и параметре σ функция $y(k+1)\in \widetilde{W}_0^1(\Im)$ определена как решение (2.1) с краевым условием

$$y(k)\mid_{x\in\partial\Im}=0. \tag{2.2}$$

Дифференциально-разностную систему уравнений (2.1) с краевыми условиями (2.2) при $k=2,3,\ldots,K$ назовем трехслойной симметричной дифференциально-разностной схемой (2.1), (2.2).

Во всех рассмотрениях считаем выполненными условия эллиптичности оператора \mathbf{L} , его коэффициенты $a_{\iota\kappa}(x)$ — ограниченные измеримые функции, т. е. имеют место условия

$$a_*\xi^2 \leqslant a_{\kappa\iota}(x)\xi_{\kappa}\xi_{\iota} \leqslant a^*\xi^2,$$

$$a_{\kappa\iota}(x) = a_{\iota\kappa}(x), \quad a_{\kappa\iota}(x)\xi_{\kappa}\xi_{\iota} = \sum_{\kappa\iota=1}^n a_{\kappa\iota}(x)\xi_{\kappa}\xi_{\iota}, \quad \xi^2 = \sum_{\kappa=1}^n \xi_{\kappa}^2,$$

$$(2.3)$$

с фиксированными положительными постоянными a_*, a^*, β и произвольными параметрами $\xi_1, \xi_2, \ldots, \xi_n$, кроме того

$$y_0(x), y_1(x) \in \widetilde{W}_0^1(\Im), \quad f(k) \in L_2(\Im), \quad k = 1, 2, \dots, K.$$
 (2.4)

О пределение 2.1. Совокупность $\{y(2),y(3),\ldots,y(K)\}$ функций $y(k)\in \widetilde{W}_0^1(\Im)$ ($k=\overline{2,K}$) является слабым решением дифференциально-разностной системы (2.1), (2.2), если функции y(k) ($k=\overline{2,K}$) удовлетворяют тождествам

$$\int\limits_{\Im} y(k)_{\overset{\circ}{t}} \, \eta(x) dx + \ell(y^{(\sigma)}, \eta) = \int\limits_{\Im} f(k) \eta(x) dx \quad \forall \eta(x) \in \widetilde{W}_0^1(\Im)$$

при $k=1,2,\ldots,K-1;\ y(k)_{\stackrel{\circ}{t}}=\frac{1}{2\tau}[y(k+1)-y(k-1)];$ билинейная форма $\ell(y^{(\sigma)},\eta)$ определена соотношением

$$\ell(y^{(\sigma)}, \eta) = \int_{\mathfrak{R}} \sum_{\kappa, \iota = 1}^{n} a_{\kappa \iota}(x) \frac{\partial y^{(\sigma)}}{\partial x_{\iota}} \frac{\partial \eta(x)}{\partial x_{\kappa}} dx.$$

З а м е ч а н и е 2.1. Из определения 2.1 следует, что для y(k) и каждого фиксированного $k=2,3,\ldots,K-1$ соотношения (2.1), (2.2) задают в пространстве $\widetilde{W}_0^1(\Im)$ краевую задачу в слабой постановке для эллиптического уравнения (2.1).

Введем понятие корректности (корректно поставленной) дифференциально-разностной схемы (2.1). Для этого в пространстве $\widetilde{W}_0^1(\Im)$ будем использовать составную норму вида

$$||Y(k+1)||^{2} = \frac{1}{4}||y(k+1) + y(k)||_{(1)}^{2} + ||y(k+1) - y(k)||_{(2)}^{2},$$

$$||Y(1)||^{2} = \frac{1}{4}||y_{1} + y_{0}||_{(1)}^{2} + ||y_{1} - y_{0}||_{(2)}^{2},$$
(2.5)

где $\|\cdot\|_{(1)}$ и $\|\cdot\|_{(2)}$ — некоторые нормы пространства $\widetilde{W}^1_0(\Im)$

О пределение 2.2. Дифференциально-разностная схема (2.1) называется корректной, если при достаточно малых $\tau \leq \tau_0$

- 1) решение задачи (2.1), (2.2) существует и единственно при любых начальных данных $y_0(x), y_1(x) \in \widetilde{W}_0^1(\Im)$ и правых частях $f(k) \in L_2(\Im)$ для всех $k = 1, 2, \dots, K$;
- 2) существуют такие положительные постоянные C_1 и C_2 , не зависящие от τ и от выбора $y_0(x), y_1(x), f(k)$, что при любых $y_0(x), y_1(x) \in \widetilde{W}_0^1(\Im)$ и $f(k) \in L_2(\Im)$ $(k=1,2,\ldots,K)$ справедлива оценка

$$||Y(k+1)|| \le C_1 ||Y(1)||_{(1^0)} + C_2 ||f(k)||_{(1^1)},$$
 (2.6)

где $\|Y(1)\|_{(1^0)}, \|f(k)\|_{(1^1)}$ — нормы пространств $\widetilde{W}^1_0(\Im)$ и $L_2(\Im),$ соответственно.

Неравенство (2.6) (совместно с представлением (2.5) составной нормы) выражает свойство равномерной по τ непрерывной зависимости решения задачи (2.1), (2.2) от входных данных $y_0(x)$, $y_1(x)$, f(k) (k = 1, 2, ..., K) и определяет свойство ycmoйчивости дифференциально-разностной cxemu (2.1).

Теорема 2.1. Пусть для функций $a_{\kappa\iota}(x)$, $y_0(x)$, $y_1(x)$ и f(x) выполнены условия (2.3), (2.4). Функции y(k) (k = 1, 2, ..., K), определяющие слабое решение системы (2.1), (2.2), при достаточно малых τ и $\sigma > 0$ однозначно определяются как элементы пространства $\widetilde{W}_0^1(\Im)$.

Доказательство. Рассуждениями, аналогичными рассуждениям из работы [7], можно установить свойство базисности в $\widetilde{W}_0^1(\Im)$ и $L_2(\Im)$ множества обобщенных собственных функций оператора L, определенного в $\widetilde{W}_0^1(\Im)$. При выполнении условий (2.3) оператор L обладает вещественными и отрицательными собственными значениями конечной кратности. Эти собственные значения допускают нумерацию по неубыванию модулей: $\{\lambda_i\}_{i\geq 1}$; обобщенные собственные функции нумеруются соответственно, при этом учитывается кратность каждого собственного значения: $\{\phi_i(x)\}_{i\geq 1}$.

Задача $\mathbf{L}\phi = \lambda\phi + g$, $g \in L_2(\Gamma)$, фредгольмово разрешима в пространстве $\widetilde{W}_0^1(\Im)$. Исходя из этого, положив k=1, получаем однозначную разрешимость относительно y(2) при $\sigma>0$ краевой задачи

$$\sigma \mathbf{L} y(2) = \frac{1}{2\tau} y(2) - (1 - 2\sigma) \mathbf{L} y_1 - \sigma \mathbf{L} y_0 - \frac{1}{2\tau} y(0) - f(1)$$

в $\widetilde{W}^1_0(\Im)$ для $\tau < \tau_0$ при достаточно малом $\tau_0 > 0$. Это же справедливо для y(3), $y(4),\dots,y(K)$ в силу соотношений

$$\sigma \mathbf{L} y(k+1) = \frac{1}{2\tau} y(k+1) - (1-2\sigma) \mathbf{L} y(k) - \sigma \mathbf{L} y(k-1) - \frac{1}{2\tau} y(k-2) - f(k)$$

при k = 2, 3, ..., K - 1, что завершает доказательство теоремы.

В дальнейшем изложении используются следующие обозначения, учитывающие границы изменения индекса k (см. [8, с. 350]):

$$y = y(k), \quad \hat{y} = y(k+1), \quad \check{y} = y(k-1),$$

$$y_t = \frac{1}{\tau}(\hat{y} - y), \quad y_{\bar{t}} = \frac{1}{\tau}(y - \check{y}), \quad y_{\hat{t}} = \frac{1}{2\tau}(\hat{y} - \check{y}), \quad y_{\bar{t}t} = \frac{1}{\tau^2}(\hat{y} - 2y + \check{y}),$$

в которых схема (2.1) примет вид

$$\frac{1}{2\tau}(\hat{y} - \check{y}) = \mathbf{L}y^{(\sigma)} + f(k), \quad y^{(\sigma)} = \sigma\hat{y} + (1 - 2\sigma)y + \sigma\check{y}. \tag{2.7}$$

Заметим, что при любых значениях $y,\ \hat{y}$ и \check{y} имеют место соотношения

$$(\hat{y} - \check{y})y^{(\sigma)} = \left[\frac{1}{2}(\hat{y}^2 + y^2) + (\sigma - \frac{1}{2})(\hat{y} - y)^2\right] - \left[\frac{1}{2}(y^2 + \check{y}^2) + (\sigma - \frac{1}{2})(y - \check{y})^2\right],$$
$$\frac{1}{2}(\hat{y}^2 + y^2) = \frac{1}{4}(\hat{y} + y)^2 + \frac{1}{4}(\hat{y} - y)^2.$$

и вытекающее из них

$$(\hat{y} - \check{y})y^{(\sigma)} = \left[\frac{1}{4}(\hat{y} + y)^2 + (\sigma - \frac{1}{4})(\hat{y} - y)^2\right] - \left[\frac{1}{4}(y + \check{y})^2 + (\sigma - \frac{1}{4})(y - \check{y})^2\right].$$

В пространстве $\widetilde{W}_0^1(\Im)$ введем новую (составную) норму соотношениями

$$||Y(k+1)||^2 = \frac{1}{4}||y(k+1) + y(k)||_{\Im}^2 + (\sigma - \frac{1}{4})||y(k+1) - y(k)||_{\Im}^2,$$
$$||Y(1)||^2 = \frac{1}{4}||y_1 + y_0||_{\Im}^2 + (\sigma - \frac{1}{4})||y_1 - y_0||_{\Im}^2,$$

считая $\sigma > \frac{1}{4}$, и получим представление

$$(\hat{y} - \check{y})y^{(\sigma)} = ||Y(k+1)||^2 - ||Y(k)||^2, \tag{2.8}$$

при этом

$$||Y(k+1)||^2 \ge \frac{1}{4}||y(k+1) + y(k)||_{\Im}^2$$

Умножая уравнение (2.7) скалярно на $2\tau y^{(\sigma)}$ и учитывая соотношение (2.8), получим основное энергетическое тождество для трехслойной схемы (2.1):

$$||Y(k+1)||^2 + 2\tau \int_{\Im} \sum_{\kappa=1}^n a_{\kappa,\kappa}(x) \left(\frac{\partial y^{(\sigma)}}{\partial x_{\kappa}}\right)^2 dx = ||Y(k)||^2 + 2\tau (f(k), y^{(\sigma)}).$$
 (2.9)

Используя соотношения (2.3), аналог неравенства Пуанкаре-Фридрихса (см., например, [9, с. 62])

$$\int_{\Omega} \sum_{\kappa=1}^{n} a_{\kappa,\kappa}(x) \left(\frac{\partial y^{(\sigma)}}{\partial x_{\kappa}} \right)^{2} dx \ge 4c_{1} \|y^{(\sigma)}\|_{\Im}^{2}$$

в пространстве $\widetilde{W}_0^1(\Im)$ (здесь c_0 , c_1 — произвольные положительные постоянные, зависящие только от meas \Im , a_*) и очевидное неравенство

$$2\tau(f(k), y^{(\sigma)}) \le \tau c_0 \|y^{(\sigma)}\|_{\Im}^2 + \frac{\tau}{c_0} \|f(k)\|_{\Im}^2,$$

из соотношения (2.9) приходим к неравенству

$$||Y(k+1)||^2 + 8c_1||y^{(\sigma)}||_{\Im}^2 \le ||Y(k)||^2 + c_0||y^{(\sigma)}||_{\Im}^2 + \frac{\tau}{c_0}||f(k)||_{\Im}^2.$$

Выбирая в последнем $c_0 = 8c_1$, окончательно получаем оценку

$$||Y(k+1)||^2 \le ||Y(k)||^2 + \frac{\tau}{8c_1}||f(k)||_{\Im}^2.$$
 (2.10)

Суммируя (2.10) по $k^{'}=1,2,\ldots,k$ ($k\leq K-1$), приходим к неравенству

$$||Y(k+1)|| \le ||Y(1)|| + \frac{1}{\sqrt{8c_1}} \left(\sum_{k'=1}^k \tau ||f(k')||_{\Im}^2 \right)^{1/2}$$

и следующему утверждению.

Теорема 2.2. Дифференциально-разностная схема (2.1) устойчива к малым изменениям начальных условий $y_0(x)$, $y_1(x)$ и правой части f(k) k = 1, 2, ..., K, если выполнены условия (2.3), (2.4) и $\sigma > \frac{1}{4}$. Для слабого решения дифференциально-разностной системы (2.1), (2.2) справедлива априорная оценка

$$||Y(k+1)|| \le \frac{1}{2} ||y_1 + y_0||_{\Im} + \sqrt{\sigma - \frac{1}{4}} ||y_1 - y_0||_{\Im} + \frac{1}{\sqrt{8c_1}} \left(\sum_{k'=1}^k \tau ||f(k')||_{\Im}^2 \right)^{1/2}$$
(2.11)

 $npu\ ecex\ k = 1, 2, \dots, K - 1.$

З а м е ч а н и е 2.2. Оценка (2.11) показывает сходимость дифференциально-разностной схемы (2.1) для $\sigma > \frac{1}{4}$ со скоростью $O(\tau^2)$.

З а м е ч а н и е $\ 2.3.$ Утверждение теоремы $\ 2.2$ справедливо и для $\ \sigma \geq \frac{1}{4}$, тогда $\|Y\|$ является полунормой.

Полученные результаты переносятся на другую симметричную дифференциально-разностную схему в пространстве $\widetilde{W}^1_0(\Im)$:

$$\frac{1}{\tau^2}[y(k+1) - 2y(k) + y(k-1)] = \mathbf{L}y^{(\sigma)} = f(k), \quad k = 1, 2, \dots, K-1,
y(0) = y_0(x), \quad y(1) = y_1(x),$$
(2.12)

Подставляя в (2.12) $y^{(\sigma)} = \sigma \hat{y} + (1-2\sigma)y + \sigma \check{y} = y + \sigma \tau^2 y_{\bar{t}t}$ и учитывая равенство $y_{\bar{t}t} = \frac{1}{\tau^2}[y(k+1) - 2y(k) + y(k-1)]$, получим

$$(E + \sigma \tau^2 \mathbf{L}) y_{\bar{t}t} + \mathbf{L} y = f(k)$$

и, окончательно, при $y = \frac{1}{2}(\hat{y} + \check{y}) - \frac{\tau^2}{2}y_{\bar{t}t}$

$$\mathbf{R}y_{\bar{t}t} + \frac{1}{2}\mathbf{L}(\hat{y} + \check{y}) = f(k), \quad \mathbf{R} = E + (\sigma - \frac{1}{2})\tau^2\mathbf{L}.$$
 (2.13)

Умножим соотношение (2.13) скалярно на $2\tau y_{\stackrel{\circ}{t}}= au(y_t+y_{\bar{t}})=\hat{y}-\check{y}$:

$$(\mathbf{R}(\hat{y} - \check{y}), \hat{y} + \check{y}) + \frac{1}{2}(\mathbf{L}(\hat{y} + \check{y}), \hat{y} - \check{y}) = 2\tau(f(k), y_{\hat{t}}). \tag{2.14}$$

Лемма 2.1. Имеют место следующие соотношения:

1) $(\mathbf{R}(\hat{y} - \check{y}), \hat{y} + \check{y}) = (\mathbf{R}\hat{y}, \hat{y}) - (\mathbf{R}\check{y}, \check{y}),$

2)
$$(\mathbf{L}(\hat{y}+\check{y}),\hat{y}-\check{y}) = \frac{1}{2}[(\mathbf{L}(\hat{y}+y),\hat{y}+y) + \tau^2(\mathbf{L}y_t,y_t)] - \frac{1}{2}[(\mathbf{L}(y+\check{y}),y+\check{y}) + \tau^2(\mathbf{L}y_{\bar{t}},y_{\bar{t}})].$$

 \mathcal{A} о к а з а т е л ь с т в о. Первое соотношение есть прямое следствие самосопряженности линейного оператора \mathbf{R} . Второе вытекает из следующих преобразований. Так как $\mathbf{R} = \mathbf{R}^*$, то

$$(\mathbf{L}(v+z), v+z) + (\mathbf{L}(v-z), v-z) = [(\mathbf{L}v, v) + 2(\mathbf{L}v, z) + (\mathbf{L}z, z)] + [(\mathbf{L}v, v) - 2(\mathbf{L}v, z) + (\mathbf{L}z, z)] = 2[(\mathbf{L}v, v) + (\mathbf{L}z, z)]$$

для любых элементов $v,z\in \widetilde{W}^1_0(\Im)$. Отсюда

$$(\mathbf{L}v, v) + (\mathbf{L}z, z) = \frac{1}{2}(\mathbf{L}(v+z), v+z) + \frac{1}{2}(\mathbf{L}(v-z), v-z).$$
 (2.15)

Положив в (2.15) $v = \hat{y}, z = y$, получим

$$(\mathbf{L}(\hat{y} + \check{y}), \hat{y} - \check{y}) = \frac{1}{2}[(\mathbf{L}(\hat{y} + y), \hat{y} + y) + (\mathbf{L}(\hat{y} - y), \hat{y} - y)] - \frac{1}{2}[(\mathbf{L}(y + \check{y}), y + \check{y}) + (\mathbf{L}(y - \check{y}), y - \check{y})].$$

Подставив в полученное соотношение выражения

$$(\mathbf{L}(\hat{y}-y), \hat{y}-y) = \tau^2(\mathbf{L}y_t, y_t), \quad (\mathbf{L}(y-\check{y}), y-\check{y}) = \tau^2(\mathbf{L}y_{\bar{t}}, y_{\bar{t}}),$$

получим второе соотношение, чем завершается доказательство леммы.

Соотношение (2.14) в силу утверждений леммы 2.1 преобразуется к виду

$$\frac{1}{4}[(\mathbf{L}(\hat{y}+y), \hat{y}+y) + \tau^{2}((\mathbf{R} + \frac{\tau^{2}}{4}\mathbf{L})y_{t}, y_{t})]
-\frac{1}{4}[(\mathbf{L}(y+\check{y}), y+\check{y}) + \tau^{2}((\mathbf{R} + \frac{\tau^{2}}{4}\mathbf{L})y_{\bar{t}}, y_{\bar{t}})] = 2\tau(f(k), y_{\hat{\tau}})$$

или, учитывая $\mathbf{R} = E + (\sigma - \frac{1}{2})\tau^2 \mathbf{L}$,

$$\frac{1}{4}[(\mathbf{L}(\hat{y}+y), \hat{y}+y) + \tau^{2}((E+(\sigma-\frac{1}{4})\tau^{2}\mathbf{L})y_{t}, y_{t})]
-\frac{1}{4}[(\mathbf{L}(y+\check{y}), y+\check{y}) + \tau^{2}((E+(\sigma-\frac{1}{4})\tau^{2}\mathbf{L})y_{\bar{t}}, y_{\bar{t}})] = 2\tau(f(k), y_{2}).$$
(2.16)

Вводя составную норму

$$||Y(k+1)||^2 = \frac{1}{4} [(\mathbf{L}(y(k+1) + y(k)), y(k+1) + y(k)) + \tau^2((E + (\sigma - \frac{1}{4})\tau^2 \mathbf{L})y_{t,k}, y_{t,k})],$$

из соотношения (2.16) получаем энергетическое тождество

$$||Y(k+1)||^2 = ||Y(k)||^2 + 2\tau(f(k), y_{\downarrow})$$

для трехслойной дифференциально-разностной схемы (2.12). Для схемы (2.12) остаются справедливыми утверждения теоремы 2.2: имеет место устойчивость для $\sigma > \frac{1}{4}$ и имеет место оценка, аналогичная (2.11).

Подход, представленный утверждениями теоремы 2.2, используется при получении условий существования и построения слабого решения эволюционных дифференциальных систем математической физики, соответствующих дифференциально-разностным схемам (2.1) и (2.12).

Введем пространства состояний $\widetilde{W}_{0}^{1,0}(\Im_{T})$ и $\widetilde{W}_{0}^{1}(\Im_{T})$, $\Im_{T}=\Im\times(0,T)$, $T<\infty$, для эволюционных дифференциальных систем.

Определение 2.3. Замыкание в норме

$$||u||_{\Im_T}^{1,0} = \left(\sum_{k=1}^N \int_{\Im_k \times (0,T)} \left(u^2 + \sum_{\iota=1}^n \left(\frac{\partial u}{\partial x_{\iota}}\right)^2\right) dx dt\right)^{1/2}$$

функций $u(x,t) \in L_2(\Im)$ со следами $u(x,t_0) \in \widetilde{W}_0^1(\Im), t_0 \in (0,T),$ непрерывно зависящими от t_0 в норме $W_2^1(\Im),$ назовем пространством $\widetilde{W}_0^{1,0}(\Im_T).$

Определение 2.4. Замыкание в норме

$$||u||_{\Im_T}^1 = \Big(\sum_{k=1}^N \int_{\Im_k \times (0,T)} \Big(u^2 + \Big(\frac{\partial u}{\partial t}\Big)^2 + \sum_{\iota=1}^n \Big(\frac{\partial u}{\partial x_\iota}\Big)^2\Big) dx dt\Big)^{1/2}$$

функций $u(x,t) \in L_2(\Im)$ со следами $u(x,t_0) \in \widetilde{W}_0^1(\Im)$, $t_0 \in (0,T)$, непрерывно зависящими от t_0 в норме $W_2^1(\Im)$, назовем пространством $\widetilde{W}_0^1(\Im_T)$, $\widetilde{W}_0^1(\Im_T) \subset \widetilde{W}_0^{1,0}(\Im_T)$.

Учитывая условия (2.9) и (2.10), рассмотрим в $\widetilde{W}_0^{1,0}(\Im_T)$ эволюционную дифференциальную систему

$$\frac{\partial u}{\partial t} - \frac{\partial}{\partial x_{\kappa}} \left(a_{\kappa \iota}(x) \frac{\partial u}{\partial x_{\iota}} \right) = F(x, t), \tag{2.17}$$

$$u \mid_{t=0} = \varphi_0(x),$$
 (2.18)

а в пространстве $\widetilde{W}^1_0(\Im_T)$ рассмотрим эволюционную дифференциальную систему

$$\frac{\partial^2 u}{\partial t^2} - \frac{\partial}{\partial x_{\kappa}} \left(a_{\kappa \iota}(x) \frac{\partial u}{\partial x_{\iota}} \right) = F(x, t), \tag{2.19}$$

$$u\mid_{t=0} = \varphi_0(x), \quad \frac{\partial u}{\partial t}\mid_{t=0} = \varphi_1(x).$$
 (2.20)

Здесь $F(x,t) \in L_{2,1}(\Im_T)$ (элементы $v(x,t) \in L_{2,1}(\Im_T)$ принадлежат $L_1(\Im_T)$, $\|v\|_{L_{2,1}(\Im_T)} = \|v\|_{2,1,\Im_T} = \int\limits_0^T (\int\limits_{\Im} v^2(x,t) dx)^{1/2} dt$); $\varphi_0(x) = y_0(x)$, $\varphi_1(x) = y_1(x)$ в силу (2.4) и (2.15); F(x,t) определяется по f(x;k) ($k=1,2,\ldots,K$) из (2.1) или (2.12) соотношениями $f(x;k) = \frac{1}{\tau} \int\limits_{(k-1)\tau}^{k\tau} F(x,t) dt \in L_2(\Im)$, $k=1,2,\ldots,K$.

Обозначим через
$$\ell_T(u,\eta) = \int_{\Im_T} \sum_{\kappa,\iota=1}^n a_{\kappa\iota}(x) \frac{\partial u(x,t)}{\partial x_\iota} \frac{\partial \eta(x,t)}{\partial x_\kappa} dx dt.$$

О пределение 2.5. Функция $u(x,t) \in \widetilde{W}_{0}^{1,0}(\Im_{T})$ называется слабым решением эволюционной дифференциальной системы (2.17), (2.18), если для нее справедливо тождество

$$\begin{split} &-\int\limits_{\Im_T} u(x,t) \frac{\partial \eta(x,t)}{\partial t} dx dt + \ell_T(u,\eta) \\ &= \int\limits_{\Im} \varphi_0(x) \eta(x,0) dx + \int\limits_{\Im_T} F(x,t) \eta(x,t) dx dt \quad \forall \eta(x,t) \in \widetilde{W}^1_0(\Im_T), \quad \eta(x,T) = 0. \end{split}$$

О п р е д е л е н и е $\ 2.6$. Функция $u(x,t) \in \widetilde{W}_0^1(\Im_T)$, равная почти всюду $\varphi_0(x)$ при t=0, называется слабым решением эволюционной дифференциальной системы (2.19), (2.20), если для нее справедливо тождество

$$-\int_{\Im_T} \frac{\partial u(x,t)}{\partial t} \frac{\partial \eta(x,t)}{\partial t} dx dt + \ell_T(u,\eta)$$

$$= \int_{\Im} \varphi_1(x) \eta(x,0) dx + \int_{\Im_T} F(x,t) \eta(x,t) dx dt \quad \forall \eta(x,t) \in \widetilde{W}_0^1(\Im_T), \quad \eta(x,T) = 0.$$

Приведем условия слабой разрешимости системы (2.17), (2.18). Затем аналогичное утверждение сформулируем для системы (2.19), (2.20).

Теорема 2.3. При выполнении условий (2.3), (2.4) эволюционная дифференциальная система (2.17), (2.18) слабо разрешима в пространстве $\widetilde{W}_{0}^{1,0}(\Im_{T})$.

Доказательство. Рассуждения основаны на представлении приближенного решения дифференциальной системы (2.17), (2.18) функциями y(k), $k=2,\ldots,K$, определяющими решение дифференциально-разностной системы (2.1) совместно с начальными данными

$$y(0) = y_0(x)$$
 и $y(1) = y_1(x)$.

Отметим, прежде всего, что дифференциально-разностная схема (2.1) является разностным аналогом эволюционной дифференциальной системы (2.17), (2.18). Определим функцию $u_K(x,t)$ следующими соотношениями:

$$u_K(x,t) = y(k), \quad t \in ((k-1)\tau, k\tau], \quad k = 1, 2, \dots, K.$$
 (2.21)

Ясно, что функция $u_K(x,t)$ является элементом пространства $\widetilde{W}_0^{1,0}(\mathfrak{S}_T)$, для нее справедливы оценки (2.11) в терминах составной нормы пространства $\widetilde{W}_0^1(\mathfrak{S})$ из чего, как следствие, вытекает ограниченность $\|u_K\|_{\mathfrak{S}_T} + \|\frac{\partial u_K}{\partial x}\|_{\mathfrak{T}}$ в совокупности:

$$||u_K||_{\mathfrak{I}_T} + ||\frac{\partial u_K}{\partial x}||_{\mathfrak{I}_T} \le C^*,$$

$$||\frac{\partial u_K}{\partial x}||_{\mathfrak{I}_T} = \left(\int_{\mathfrak{I}_T} \sum_{\iota=1}^n \left(\frac{\partial u_K(x,t)}{\partial x_\iota}\right)^2 dx\right)^{1/2},$$
(2.22)

постоянная $C^* > 0$ не зависит от выбора τ .

Оценка (2.22) означает, что последовательность $\{u_K(x,t)\}$ содержит подпоследовательность $\{U_K(x,t)\}$, слабо сходящуюся к элементу $u(x,t) \in \widetilde{W}_0^{1,0}(\Im_T)$. Покажем, что функция u(x,t) есть слабое решение эволюционной системы (2.17), (2.18), т. е. u(x,t) удовлетворяет равенству в определении 2.5.

Подобно представлению (2.21) функции $u_K(x,t)$, определим функцию F(x,t) соотношением

$$F_K(x,t) = f(x;k), \quad t \in ((k-1)\tau, k\tau], \quad k = 1, 2, \dots, K.$$

Далее заметим, что в качестве произвольных функций $\eta(x,t)$, используемых в интегральном уравнении из определения 2.5, можно взять функции, принадлежащие пространству $C^1(\Im_{T+\tau})$ и удовлетворяющие соотношениям

$$\eta|_{\partial\Gamma_T} = 0, \quad \eta|_{t\in[T,T+\tau]} \equiv 0$$

(множество таких функций всюду плотно в $\widetilde{W}^1_0(\Im_T)$). По таким $\eta(x,t)$ определяются $\eta(k)=\eta(x,k\tau)$ ($k=1,2,\ldots,K$) и $\eta_K(x,t)$ подобно $u_K(x,t),\ F_K(x,t)$:

$$\eta_K(x,t) = \eta(k), \quad t \in ((k-1)\tau, k\tau], \quad k = 1, 2, \dots, K,$$

очевидно $\eta_K(x,t) \in \widetilde{W}^1_0(\Im_T)$. Аналогично определяются производные $\frac{\partial \eta_K(x,t)}{\partial x}$ и $\frac{\partial \eta_K(x,t)}{\partial t}$ функции $\eta_K(x,t)$, которые, как нетрудно убедиться, сходятся вместе с $\eta_K(x,t)$ к $\frac{\partial \eta(x,t)}{\partial x}$,

 $\frac{\partial \eta(x,t)}{\partial t}$ и $\eta(x,t)$ равномерно в $\overline{\Gamma}_T$ при $K \to \infty$. Техническая часть доказательства осуществляется заменой в уравнении из определения 2.5 функций $u(x,t), \ F(x,t), \ \eta(x,t)$ на $u_K(x,t), \ F_K(x,t), \ \eta_K(x,t),$ доказательство завершается предельным переходом по подпоследовательности $\{U_K(x,t)\}$ в полученном уравнении.

Аналогичные рассуждения приводят к следующему утверждению.

Теорема 2.4. При выполнении условий (2.3), (2.4) эволюционная дифференциальная система (2.19), (2.20) слабо разрешима в пространстве $\widetilde{W}_0^1(\Im_T)$.

3. Заключение.

В соболевском пространстве $\widetilde{W}_0^1(\Im)$ функций с носителем в сетеподобной области из \mathbb{R}^n рассмотрено однопараметрическое семейство симметричных трехслойных дифференциально-разностных схем. Установлены условия на параметр, правую часть и начальные данные дифференциально-разностных схем (2.1), при которых в терминах составных норм пространства $\widetilde{W}_0^1(\Im)$ гарантировано свойство устойчивости слабых решений этих схем и для решений справедливы априорные оценки. Такие оценки полезны, прежде всего, при доказательстве теорем существования слабых решений эволюционных дифференциальных систем для параболического и гиперболического уравнений с пространственными переменными, изменяющимися в сетеподобной области, с последующим установлением условий единственности и непрерывной зависимости этих решений от начальных данных и правых частей систем. Последнее является также обоснованием известного в численном анализе метода полу-дискретизации по временной переменной (метод Е. Rothe [10]) для построения приближений слабых решений эволюционных систем. Полученные результаты эффективны в анализе задач оптимального управления [11, 12], стабилизации и устойчивости [13, 14].

References

- [1] В. Н. Хоанг, "Дифференциально-разностная краевая задача для параболической системы с распределенными параметрами на графе", Процессы управления и устойчивость, 7:1 (2020), 127–132. [V. N. Hoang, "Differential-difference boundary value problem for a parabolic system with distributed parameters on a graph", Management Processes and Sustainability, 7:1 (2020), 127–132 (In Russian)].
- [2] V. V. Provotorov, S. M. Sergeev, V. N. Hoang, "Point control of differential-difference system with distributed parameters on the graph", Becmu. С.-Петербург. ун-та. Сер. 10. Прикл. матем. Информ. Проц. упр., 17:3 (2021), 277–286. [V. V. Provotorov, S. M. Sergeev, V. N. Hoang, "Point control of differential-difference system with distributed parameters on the graph", Vestnik of Saint Peterburg University. Applied Mathematics. Computer Science. Control Processes, 17:3 (2021), 277–286 (In English)].
- [3] V. V. Provotorov, E. N. Provotorova, "Optimal control of the linearized Navier-Stokes system in a netlike domain", Вестн. С.-Петербург. ун-та. Сер. 10. Прикл. матем. Информ. Проц. упр., 13:4 (2017), 431–443. [V. V. Provotorov, E. N. Provotorova, "Optimal control of the linearized Navier-Stokes system in a netlike domain", Vestnik of Saint Peterburg University. Applied Mathematics. Computer Science. Control Processes, 13:4 (2017), 431–443 (In English)].
- [4] M. A. Artemov, E. S. Baranovskii, A. P. Zhabko, V. V. Provotorov, "On a 3D model of non-isothermal flows in a pipeline network", *IOP Conference*, Journal of Physics: Conference Series, **1203**, IOP Publishing Ltd., 2019.
- [5] E. S. Baranovskii, V. V. Provotorov, M. A. Artemov, A. P. Zhabko, "Non-isothermal creeping flows in a pipeline network: existence results", *Symmetry*, **13** (2021), Article ID 1300.

- [6] A.P. Zhabko, A.I. Shindyapin, V.V. Provotorov, "Stability of weak solutions of parabolic systems with distributed parameters on the graph", Becmu. C.-Πетербург. ун-та. Сер. 10. Прикл. матем. Информ. Проц. упр., 15:4 (2019), 457–471. [A.P. Zhabko, A.I. Shindyapin, V.V. Provotorov, "Stability of weak solutions of parabolic systems with distributed parameters on the graph", Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 15:4 (2019), 457–471 (In English)].
- [7] А. С. Волкова, В. В. Провоторов, "Обобщенные решения и обобщенные собственные функции краевых задач на геометрическом графе", Изв. вузов. Матем., 2014, № 3, 3–18; англ. пер.:А. S. Volkova, V. V. Provotorov, "Generalized solutions and generalized eigenfunctions of boundary-value problems on a geometric graph", Russian Math. (Iz. VUZ), 58:3 (2014), 1–13.
- [8] А. А. Самарский, *Teopus разностных схем*, Hayka, M., 1977, 656 с. [A. A. Samarsky, *Theory of Difference Schemes*, Nauka Publ., Moscow, 1977 (In Russian), 656 pp.]
- [9] О. А. Ладыженская, *Краевые задачи математической физики*, Наука, М., 1973, 407 с. [О. А. Ladyzhenskaya, *Boundary-value Problems of Mathematical Physics*, Nauka Publ., Moscow, 1973 (In Russian), 407 pp.]
- [10] E. Rothe, "Thermal conductivity equations with non-constant coefficients", Math. Ann., 1931, № 104, 340–362.
- [11] L. N. Borisoglebskaya, V. V. Provotorov, S. M. Sergeev, E. S. Kosinov, "Mathematical aspects of optimal control of transference processes in spatial networks", *IOP Conference*. V. 573, Series: Materials Science and Engineering, IOP Publishing Ltd., 2019.
- [12] V. V. Provotorov, E. N. Provotorova, "Synthesis of optimal boundary control of parabolic systems with delay and distributed parameters on the graph", Becmu. C.-Πεμερδγρε. γηma. Cep. 10. Πρυκλ. матем. Информ. Проц. упр., 13:2 (2017), 209–224. [V. V. Provotorov,
 E. N. Provotorova, "Synthesis of optimal boundary control of parabolic systems with delay
 and distributed parameters on the graph", Vestnik of Saint Petersburg University. Applied
 Mathematics. Computer Science. Control Processes, 13:2 (2017), 209–224 (In English)].
- [13] A. P. Zhabko, V. V. Provotorov, O. R. Balaban, "Stabilization of weak solutions of parabolic systems with distributed parameters on the graph", Becmu. C.-Петербург. ун-та. Сер. 10. Прикл. матем. Информ. Проц. упр., 15:2 (2019), 187–198. [A. P. Zhabko, V. V. Provotorov, O. R. Balaban, "Stabilization of weak solutions of parabolic systems with distributed parameters on the graph", Vestnik of Saint Petersburg University. Applied mathematics. Computer science. Control processes, 15:2 (2019), 187–198 (In English)].
- [14] S. L. Podvalny, V. V. Provotorov, E. S. Podvalny, "The controllability of parabolic systems with delay and distributed parameters on the graph", *Procedia Computer Sciense*, **103** (2017), 324–330.

Информация об авторах

Провоторов Вячеслав Васильевич, доктор физико-математических наук, профессор кафедры уравнений в частных производных и теории вероятностей. Воронежский государственный университет, г. Воронеж, Российская Федерация. E-mail: wwprov@mail.ru

ORCID: https://orcid.org/0000-0001-8761-7174

Хоанг Ван Нгуен, аспирант, кафедра уравнений в частных производных и теории вероятностей. Воронежский государственный университет, г. Воронеж, Российская Федерация. E-mail: fadded9x@gmail.com

Information about the authors

Vyacheslav V. Provotorov, Doctor of Physical and Mathematical Sciences, Professor of the Partial Differential Equations and Probability Theory Department. Voronezh State University, Voronezh, Russian Federation. E-mail: wwprov@mail.ru

ORCID: https://orcid.org/0000-0001-8761-7174

Van N. Hoang, Post-Graduate Student. Partial Differential Equations and Probability Theory Department. Voronezh State University, Voronezh, Russian Federation.

E-mail: fadded9x@gmail.com

Конфликт интересов отсутствует.

Для контактов:

Провоторов Вячеслав Васильевич

E-mail: wwprov@mail.ru

Поступила в редакцию 17.12.2021 г.

Поступила после рецензирования 24.02.2022 г.

Принята к публикации 10.03.2022 г.

There is no conflict of interests.

Corresponding author:

Vyacheslav V. Provotorov E-mail: wwprov@mail.ru

Received 17.12.2021 Reviewed 24.02.2022

Accepted for press 10.03.2022