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Abstract. In this paper we discuss and prove various properties of the algebra of pseudo
differential operators related to integrable hierarchies in this algebra, in particular the KP
hierarchy and its strict version. Some explain the form of the equations involved or give
insight in why certain equations in these systems are combined, others lead to additional
properties of these systems like a characterization of the eigenfunctions of the linearizations of
the mentioned hierarchies, the description of elementary Darboux transformations of both
hierarchies and the search for expressions in Fredholm determinants for the constructed
eigenfunctions and their duals.
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Annoranus. B pabore paccMarpuBaloTcst pa3indHbIe CBORCTBA aJredphl ncesaoauddepen-
MUAJBHBIX OMIEPATOPOB, CBI3aHHbBIE C UHTETPUPYEMBIMU NEPAPXUSIMU, BOSHUKAIOITUME B 9TOI
anrebpe, B uactHoctu, nepapxueit Kagomiesa—Ilersuamsuiau (KII) u ee crporoii Bepcuei.
OpHu cBO¥CTBA MPOSICHSIIOT BUJI YPABHEHUI B MEPApPXMAX U JIAI0T IHOHUMAaHUE TOro, Iode-
MYy ypaBHEHUsT OIPEIeJIeHHOTO BUIa CKOMOMHUPOBAHBI B 3TUX CHUCTEMAX, JPYTHE MTO3BOJIsI-
TOT U3YYUTH CBONCTBA CAMUX CHCTEM, & MMEHHO: BUJ COOCTBEHHBIX (DYHKIINN JTMHEApU3AIIit
YIOMSIHYTBIX ME€PAPXUil, OIUCAHUE dJIeMEHTapHBIX IIpeobpaszoBanuit /lapOy obomx mepapxuii,
OTBICKAHUE TIPEJICTABICHUHN TTOCTPOEHHBIX COOCTBEHHBIX (DYHKITNH U JBONCTBEHHBIX UM B TE€P-
MuHax onpeneaureneit @pearonbma.

Kurrouessbie ciioBa: ncesoanddepeHnnabHbIe OePATOPDI; COMPSIKEHHBIN OIIepaTop; CBO-
6oanbiit wien; nepapxus n-Ka®; nepapxus KII; crporas nepapxus KII; ypasaenus Jlakca
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Introduction

The integrable hierarchies that play a central role in this paper consist of collections of
compatible Lax equations. This Lax form exists for many important nonlinear equations
from mathematical physics. We illustrate it at the hand of the well-known example of the
Korteweg — de Vries (KdV) equation that describes the propagation of shallow water waves
in a narrow channel:

duy = 6uly + Upgs, (0.1)

where wu(x,t) corresponds to the height of the waves in the channel and depends on the

space coordinate x along the channel and the time coordinate ¢. Let 0 be the operator a% :
The nonlinear partial differential equation (0.1) is then equivalent to the following identity

between linear operators in 0
9 2
(L) = a(ﬁg) = 0.0° + 0y(u) = [A, Ly]. (0.2)

Here L, is the second order operator 92 4 u, also known as the Schrédinger operator, A
is the third order operator 0% + %u@ + %ux, and [A, Lo] := ALy — Lo A is the commutator
of Lo and A. Let R be some commutative algebra of functions in = and t that contains
all the coefficients of L5, A and [A, L] for which 0 and 0; are derivations of R. Then
all three operators belong to the algebra R[0] of differential operators in 0 with coefficients
from R and identity (0.2) becomes an equality of differential operators, where two elements
of R[0] are called equal if the coefficients of corresponding powers of 0 are. The relation
between the KdV-equation and the operator form (0.2) was first found by P. Lax (see [1]),
which explains the name Laz form of the KAV equation for (0.2).

We focus here on two issues related to the form of equation (0.2). First of all, note the
special character of this identity: it says namely that the commutator of a second order
differential operator in 0 and a third order one is a zero-th order operator in 0, which is
far from true in general. Moreover, the commutator on the right hand side of the identity
suggests that L, is a deformation of an operator independent of ¢ by conjugation with an
invertible time-dependent operator. For, if £, = KLyK ™', with 0;(Lg) = 0, then there
holds

(9t(£2) == 8t(K)L0K*1 - KLoKilat(K)Kil == [at(K>K71,£2].

However, R[J] does not seem to be the right framework to make sense out of this, for it lacks
sufficient invertible elements. These considerations lead to a number of natural questions:

(a) Is there some algebraic relation linking the operators £5 and A or was it simply pure
coincidence?
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(b) Given L, are there more differential operators A in R[9] and derivations O0; of R
such that
05(L2) = [A, Lo]?

In particular, the commutator [ﬁ, L5] has then degree zero in 0.

(c) Is there a framework, where the deformation picture Lo = KLoK ™' holds?

All three questions can be solved in an extension Psd of R[0] called the algebra of pseudo
differential operators. The structure of R|[J], its extension Psd and the properties that allow
you to solve the questions (a), (b) and (c) are treated in Section 1. The next section treats
the properties related with two decompositions of Psd that lead to the characterization of
the wave functions of the two central hierarchies, their expressions in special functions and
the elementary Darboux transformations with whom one can construct new solutions out of
known ones.

1. The algebra of pseudo differential operators
In the introduction we already met the algebra R[0J]. We start with giving precise
conditions on R and 0@ under which we can form the extension Psd, keeping the perspective
of application as wide as possible. So we let R be some commutative algebra over a field &
of characteristic zero and let 0 be a k-linear derivation defined on R. In this way one can
choose to work in a real or complex context. Consider now the collection R[0] of k-linear
endomorphisms of R of the form Y1 a;0",a; € R, i.e. the maps

Rarw— Zaﬁi(r) €R.

1=0

We call the elements of R[0] differential operators in O with coefficients from R. By the
Leibnitz property of 9, the composition of “applying 9™” and “multiplying with rq € R”

O"org =) (T) 0" (rg)0™ ",

=0

is given by

which belongs also to R[0J]. Hence R[0] is an algebra w.r.t. the composition of endo-

morphisms of R. In the rest of this paper we leave out this composition sign “o” and
the multiplication between Y ;0" and > b;07 in R[] is given by:
i J

ZZ (;>aiak(bj)aj+fk. (1.1)

ij k=0

As was mentioned in the introduction, we want to be able to translate identities between
differential operators from R[0] directly into identities for their coefficients. Therefore we
will assume that all {0" | i > 0} are R-linear independent in R[J] . If this condition is not
satisfied, then one has to pass to a cover of R[0], where these relations are decoupled ( [2]),
and make the extension of the cover.
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Under the assumption just mentioned, the algebra R[J] can be extended to the algebra
of pseudo differential operators by adding the inverses of all the powers of 0 and by
allowing infinite sums of these negative powers. One can view this process as adding “integral
operators” to the differential operators of R[J], but it is done in a purely algebraic way. First
of all, one wants all the integral powers of 0 to satisfy

oo™ =9"" nom e 7,0 = 1.
Next one uses the relation dr = 9(r)+rd, r € R, and gets ' r =rd~ ' +9719(r)0~" or
O tr=r0 ' —0(r)0 2+ 0*(r)0* — ...,
and from the last formula, by induction,

o "r= Z(—l)k (k * Z a 1) (o * n>o0.

k=0

Thus one arrives at the set Psd= R[9,07!) of all formal series

N
P = Z pj(?j,pj € R,

j=—00

and letting for each n € Z,

(") L ) R (e 0 BT A R (g) -1, (1.2)

k k!

it can be verified that the product of two series P = >, p;0' and Q = > i ¢;0" in Psd is
defined by a formula that reminds (1.1), namely

PQ = ZZZ( )Pﬁs 4;)7 . (1.3)

In this way Psd becomes an associative algebra. A pseudo differential operator P =

Z;.V:_OO p;07 is said to be of order N if py # 0. It is convenient to use at many computations

in Psd the notation v
P S b = 1o,
j=—00

where l.o. is short for the lower order part Z P pjﬁj of P.
The algebra of pseudo differential operators admits a number of decompositions. For
s € Z, any operator P = Zj p;7 € Psd can be split as

P=P_.,+ P.,, where P, = Zp]@j and P, = Zp]@j. (1.4)
J<s jzs
For s = 0, this yields in particular the splitting of P in the strict integral operator part

P_y of P and its differential operator part P-y. Similarly, we have

P = Pe, + P.,, where P, =» p;&’ and P, =Y p;0’. (1.5)

j<s J>s
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For s =0, this corresponds to writing P as the sum of its integral operator part P<, and
its pure differential operator part Pxg.

Being an associative k-algebra, Psd is a Lie algebra over k with respect to the
commutator. From the multiplication rules in Psd it follows that for s =0 the two decom-
positions (1.4) and (1.5) yield two ways to split the Lie algebra Psd into the direct sum of
two Lie subalgebras. The first is given by

PSd = {P & PSd, P = P<0} @ {P - PSd)P = P20} = Psd<0 @ Psd>0'
and the second one by
Psd = {P € Psd,P = Py} ® {P € Psd, P = P~o} := Psd¢y @ Psd~o.

We denote by 7> the projection from Psd on Psdy( consisting of taking the differential
operator part of an element in Psd. Similarly, the projections of Psd on respectively Psd,
Psd.o, and Psd.g, we denote by respectively m<g, 70, and m-o. Obviously, we have for
every P € Psd

7T<0(P) = P<0,7T>0<P) = P>0,7T>0(P) = P>0, and 7T<0(P> = P<0.

A special role in our considerations is played by the constant term ct( P):= py of P.
Contrary to R[J], the extended algebra Psd is rich in invertible elements. Let R* denote
the group of invertible elements in R.

Lemma 1.1. Fvery pseudo differential operator P = ngm p;® with p, € R* has an
iverse P~' of the form Y, q0", with q_m = p;".

P r o o f. The product of the elements » i<m p;07 and Y icem ¢;0" is by definition equal

>3 3 (porwor

js<mi<—m s=0

to

This is an operator of order < 0 and, if it has to equal 1, then the leading coefficient ¢q_,,
has to be the inverse of p,, and for all £ > 1 there has to hold

J J
0° i) = PmQ—m—k T 0° ;) = 0.
> (S)pg (%) = Pmd-m—r > (8)19] ()
7,8 7,8
1+ —s=—k i1+j—s=—k
1 >-m—k
Since p,, is invertible, one can solve from this ¢_,, , assuming all the ¢;, with index

1 > —m — k, are known. This shows the existence of the inverse of P. O
This Lemma leads to two groups inside Psd that play a role in the sequel.

Corollary 1.1. The subsets D(0) and D(1) defined by
D(0) = {po+ > _pj® | po € R} resp. D(1) = {1+ Y _ p;&¥ € Psd}
<0 <0

are groups w.r.t. the multiplication on Psd.
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The monic elements of positive order in Psd possess still another property.

Proposition 1.1. Consider for N > 1 any monic element
P=0V+> poV =Y poV
i>1 i>0

of order N > 1 in Psd. Then there is a unique monic pseudo differential operator of order

one .
P = +Z£ o =3 o
=0

satisfying (P%)N = P. The operator P~ s called the N -th root of P. Moreover each
coefficient ¢; of P¥ isa polynomial expression in the elements

{0"(p)) | 1; > 0,5 <}
P r oo f We will show that one can find the coefficients {/;} in a unique recurrent way.
Both pg and ¢y are equal to 1. Next we compare the other coefficients in the identity

(2&181 ) . ( Z 0, O ZN) Y an? (1.6)
11=0 in=0 =0
From the multiplication rules in Psd one sees that the term with V~! in P can only be
obtained by choosing in the N -fold product of the operator P~ in (1.6), N —1 times
the term O and once the term ¢; and disregarding the lower order terms. This gives you
that ¢; is determined uniquely: ¢; = +p;. Assume now that all {¢; | j < k} are uniquely
determined and each ¢; is a polynomial expression in the {0°(p;) | s > 0,7 < j}. Then a
similar reasoning as for £ = 1 shows that pyi1 — N/lxi1 is a polynomial expression in the
{07(¢;) | 7 < k,r > 0}. Since these {/;} were unique and possessed the required property,
this concludes the proof of the proposition. O
Applying Proposition 1.1 to the operator £, = 0 + u from the introduction, yields a
first order operator L = (£5)2 of the form

L=0+) 107 (1.7)
j=1
Note that operators of the form (1.7) can be obtained by conjugating 0 with an element
K € D(1). Under a mild condition, all L of the form (1.7) have this form.

Lemma 1.2. If 9: R — R is surjective, then any P =0+ pi+10~" can be obtained
by dressing the operator O by an element of D(1).

P r o o f. The proof consists of solving step by step the equation PK = K0 with a
K € D(1). For, if K =14, ,k;077, the right hand side is equal to 9+ Y., k;0' 7
and the left hand side equals

= (0+ i P ) (14D k07 ) =0+ kit

§>0 i>0

S ok +2pma 15303 o G LI LSS

>0 i1 5721 1>0

3>0 j>0
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This shows that we have to choose K such that

S ok, auzpma F XY () )oo <o

7=1 i1 721 >0

The coefficient of ="' in the expression in the left hand side is equal to d(k;)+ps and thanks
to the assumption on 0 one can find a k; such that this coefficient is zero. Assuming that
one has found {ki,---,k,} for m > 1 such that the coefficients of all the 97,1 < m, are
zero, then the next coefficient has the form

O(Kmy1) + Pmia + polynomial expression in d'(k;) and the pj,1,i < m and j < m

and one can choose k,, 1 such that this equals zero. Thus the coefficients of K can be found
inductively. U

Hence, if 0 is surjective, then Lo = K§?K~!, K € D(1), and the deformation picture
from question (c) in the introduction holds. We can also comment now the questions (a) and
(b) from the introduction. As for question (a), one verifies directly that A = ((£2)*?)so,
the differential operator part of (£5)%?2. Since for all s > 1 the operator (£5)*/? commutes
with L9, we see that

[((£2)*%)0, L] = [L2, ((£2)"?) <]

and the right hand side of this equality is of order zero or less in 0. This shows Ehat the
{As = ((£2)*/*)s0} are good candidates to consider question (b) and they span all A € R[]
with this property, for there holds

Proposition 1.2. Denote as above (Egv)l/Q by L. Let A bea differential operator
in R[O] of order r such that the commutator [A, Ly] is of order smaller or equal to zero.
Then there are a; € Ker(9),0 <i < r, such that

AV = Z CLi<Li)20
1=0

Proof. Note first of all that the operator L has the form L = 9 + > 72 £;1,077.
Therefore, we have for all i > 1 that (L')>p = 9"+ lo. and there follows by induction on
the order r of A that A= 7 0 @i(L")>0. What remains to be shown is that a; € Ker(d)
and for that we use the fact that the order of [A,£,] in 9 is —¢, with 0 < ¢ < co. We
claim now that the order of the commutator [A L] is —1—¢. In particular, if A commutes
with Lo then it also commutes with L. Suppose,

[A, L] = ad™ + lo., with o # 0.
Then we have the formula

[A, Lo] = [A, L% = [A,LIL + L[A, L]
= (a0™+ lo.)(0+ lLo.)+ (0+ lo.)(ad™ + lo.)
=220™" + lo.
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Hence the order of [A Ls] is m+ 1, which shows that m = —1—¢. As £ > 0, we see that
the order of [A, L] in @ is smaller than zero. On the other hand we have

(A, L] = [4,0" + Lo.,d+ lLo]=—(a,)d" + lo.

and thus 0(a,) = 0. As a, is in the kernel of 9, it commutes with all elements of Psd and
we have [a,(L")s0, £2] = a,[(L")s0, L] and thus a,(L")so satisfies the same property as A.
This holds then also for the differential operator A — a,(L")so and continuing in this fashion
gives you that all the a; belong to Ker(9). This finishes the proof of the proposition. [

So, we have seen that it makes sense for each s > 1 to look for Schrodinger operators
Ly and a k-linear derivation ds of R, commuting with 0 such that the Lax equation

Ou(L2) = [Ay, L] (1)

holds. It were Gelfand and Dickey ( [3]) who realized that it made also perfect sense to
consider similar Lax equations for an n-th order analogue £, of L5. Simply replace Lo by
L, and A, by ((£,)*™)s0, where this fractional power exists thanks to Proposition 1.1.

Having found the examples ((L£3)*?)so the next step was to consider not only single
Lax equations, but actually a whole chain of them corresponding to all these examples and
to construct solutions for the whole system. Much work in this direction was initiated by
Sato and his school, see e.g. [4] and [5]. Thereto one had to consider a set of derivations
{0s | s > 1} of R, all commuting with 0, and one looks for Schrodinger operators Lo that
satisfy all the equations

85(52) = [AS,£2],8 2 1. (19)

This system of equations is the so-called KdV hierarchy and the equations (1.9) are the Lax
equations of the hierarchy. Also for the higher order analogue L£,, of the Schrodinger operator
one can unite the corresponding Lax equations and that yields the n-KdV hierarchy. Note
that the n-th root of a solution of the n-KdV hierarchy satisfies the same Lax equations
as the solution itself. There holds namely

Proposition 1.3. Let L, be a solution of the n -KdV hierarchy, L its n -th root
and A be the projection (L*)so, s = 1. Then L has the form (1.7) and satisfies the Lax

equations
Os(L) = [(L*)>0, L], s > 1. (1.10)

Proof The form of L is a consequence of the construction of the n-th root in
Proposition 1.1. Assume there is an s for which equation (1.10) does not hold, i.e.

aS(L) - [(L8)207L] = 68m + lo. 75 7é 0.

Since J; and taking the commutator with A, are derivations of Psd, we get for its n-th
power

05(Ln) = [(L*)20, Ln] = 0s(L") = [(L%)20, L"] = Z LI (0(L) = [(L)0, L)) L™

Zw1+m/wu¢wwﬂ:wmwﬁuﬂ¢o
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and this contradicts the fact that the left hand side of this equality is zero, because L,, is a
solution of the n-KdV hierarchy. Thus all the Lax equations (1.10) have to hold for L. O

The equations (1.10) for any L in Psd of the form (1.7) are called the Lax equations
of the KP (Kadomtsev — Petviashuvili) hierarchy, as they imply for the coefficient ¢, of L
the KP equation. Such an L is seen as a prototype of dressing the operator 0 with an
element from D(1). Proposition 1.3 shows how all n-KdV hierarchies are contained in the
KP hierarchy. In [6] it was shown how to construct solutions of the KP hierarchy starting
from an infinite dimensional Grassmanian of a separable Hilbert space.

A further step |7] is to consider deformations M of 9 by dressing it with the wider class
of invertible operators K from D(0) and by requiring that M should satisfy a similar set
of Lax equations as in (1.10), but this time A, should be replaced by the strict differential
part of M?®. This deformation is called the strict KP hierarchy. Besides its Lax form, the
strict KP hierarchy possesses still two other descriptions: the zero curvature form [7| and the
bilinear form [8]. Both the KP hierarchy and its strict version have natural Cauchy problems
associated with them and their solvability is discussed in [9]. There exists also a geometric
construction of solutions of the strict KP hierarchy in the style of [6]. The manifold from
which solutions of the strict KP hierarchy can be constructed is a fiber bundle over the
Grassmanian mentioned above with the projective space of a separable Hilbert space as the
generic fiber. Details can be found in [10]. Moreover, the solutions constructed in [10] can
be expressed in Fredholm determinants. This is described in [11].

We discuss in the next section some properties relating the constant term of pseudo
differential operators and the projections 7.y and 7 of Psd.

2. Properties related to 7.y, ™ and ct
We start with a number of properties relating the constant term and the projection 7
of Psd on Psd..

Proposition 2.1. For arbitrary f,g € R and each P = Zij\i_oo p;0" € Psd there
hold the following relations in Psd:

(fP9)<0:fP<09a (
(OP)<o = 0P~ — ct(P0), (
(P0)<o = P<o0 — ct(P0), (
(PO Yo = PO +ct(P)o . (

P roof. Asfor the first property, just note that for each differential operator @ € R[0]
any product fQg € R[0], f,g € R. Hence we have

(fPg)<o = (fP209)<0 + (fP<09)<0 = 0+ (fP<0g)<o-

To get property (2.2) we multiply P with 0 from the left and substitute P =Y, p;0°. This
yields
(8P)<0 = (azpiai)@ = Z(()(pi)(f)i + Z pi(?iH
% 1<0 i+1<0

= "0(p)0'+ Y pidt — p_10° = 0Py — ct(P).

1<0 1<0
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At the next two identities we proceed in a similar way:

(PO)<o = Zpﬁ“ = po"

1+1<0
= Zpiazﬂ —p-1 = P<o0 — ct(PI)
i<0

and

~ (= X o

1—1<0
= Zpﬂ‘l +po0~ " = Pgd™' + ct(P)07!

i<0

This completes the proof of the proposition. O

The properties in Proposition 2.1 are used in the proof of the next proposition and at
the characterization of the wave functions of the KP hierarchy and its strict version in [10].

On Psd there is important transformation of taking the adjoint. The adjoint operator P*
of P=73%",p;0" is given by

P =30 n =Y ()t

_Z {Z DR <£Zk>ak(pé+k)} d". (2.5)

Taking the adjoint, defined here quite formally, is an algebraic analogue of the following real
analytic context. Let S(R) be the space of Schwartz—Bruhat functions on R with the inner

<flg>= / f(2)g(x)dz

Then considering on S(R) the linear operators of differentiating 0 := - and multiplying
by a function My, : f — hf, h € S(R), one has for all f,g € S(R),

<Of |g>=<f|—-0g>and < Mpf|g>=<f| Mg >

product

which is often expressed as the adjoint of 9 is —0 and the adjoint of M}, is M. So the
adjoint of a linear operator on S(R) such as D = YN M, 9" is equal to S (=)' M.

Lemma 2.1. The operation of taking the adjoint on Psd is an anti-algebra morphism.

P r o o f. Obviously, it is enough to check the equality (P Q)* = Q*P* for the operators
P=0" and Q=gq, i €Z, q € R, i.e. one needs to prove that (9"q)* = (—1)'qd". Using
the multiplication rule (1.3) and the definition of the adjoint we get:

>(!) as<q>ai-s>* = (Devmamo

(0 q)" =

(
>

:OO (;) - {g (Z ' S) asﬂ(q)ai-s—t}

i 2(_1)k+t <Z —~ (/i + t)) (k ;r t) } 9" (q)0". (2.6)
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Now we calculate coefficients of 9% in (2.6). For k =4, we have

o ()T o= () (oo

For k < i, taking into account relation (1.2), we get

2 ao) <’C?t)=§<-1>’““<<z--2>-t)(’f?t)=

() () e (o) () ()( )

iDL (kD) i =1 (k1) - —1). (k1)
U o OV T h oo ) 01(i — )|
(i —1)...(k+1) [ (i—k)! (1 —k)! e (i — k)
il = (il T
(=1) (i — ) S R (e TR A Ty A
The expression in curly brackets here is the binomial formula for (1 — 1)*~*, and hence is
equal to zero. So we have (9% ¢q)* = (—1)" q0". O

By definition, the map P+ P* maps Psd.g to Psd>y and Psd.y to Psd.y and since
P = (P*)*, both maps are bijections. The adjoint plays a key role in the dual version of the
hierarchies (see, e.g. [10]). Below we prove some relations between constant terms of certain
combinations of pseudo differential operators and the projections 7~y and 7.

Proposition 22. Forany f,g € R and each P = Zf\ifoopi(?i € Psd there hold
the formulae:

ct(Pf) = Po(f), (2.7)
ct(07' fPO) = PZy(f), (2.8)
(07 P)cg = 0 Pog + 0 et (PY). (2.9)

P r o o f. From the rule for multiplication in Psd follows that for each f € R and each
P € Psd the element P_qf belongs to Psd.g, hence we get that

N
ct(Pf) =ct(Psof) = ct(Zpﬁ%) sza’ = Po(f).
=0

For the relation (2.8), we use first the multiplication rule (1.3) to compute the coefficients
for 071 fPO :

a—lfpa:a—lzptfat+l ZZ( ) pz 1f)87, s— 1

Hence the constant term is given by

Z (i_—11> O piaf) = D (=10 (pef) =

> Z r(y)o o . > {;H)t () a“%m} (1),
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Now we compare with the expression for the coefficients of PZ, = Ze;o p;0°, namely

i =30 ()0t = S0 ()

r=0

and we get the identity (2.8). Next we focus on relation (2.9). Since there clearly holds

<871P)<0 - 671P<0 + (871]320)

<0’

it suffices to show that (97'Psg)<o = 0 'ct(P*). The constant term of P* is by (2.5) given
by

N

ct(P7) = (~1)'d(py).
i=0
Hence, this yields for the right hand side of the desired equality

oo N
aflct(P*):ZZ az pz a 1—s ZZ s+zas+z pz)a 1—s

s=0 =0 s=0 =0

Next we compute the left hand side

(a 1P>0 <0_<ZZ ar pZ az 1— r><O:ZZ( )rar(pl)az 1—7r
=0 r=0 =0 r>1
oo N
ZZ(_]_ s—i—zas—l—z(pz)a—l s
s =0
This concludes the proof. Il

Propositions 2.1 and 2.2 played a crucial role in [10] and [11] at the description of
elementary Darboux transformations of both hierarchies and at expressing the constructed
wave functions of the two hierarchies and their duals in Fredholm determinants.
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