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Abstract. We show that the multiplication of symbols in polynomial quantization is
exactly an action of an overalgebra on the space of these symbols
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In [1] we constructed quantization in the spirit of Berezin on para-Hermitian symmetric
spaces G/H , see also [2|. In [3] we showed that this quantization, anyway polynomial
quantization — the most algebraic variant of quantization, can be considered as a part of the
representation theory. In present paper we continue our activity in this direction, namely, we
show that the multiplication of symbols is exactly an action of an overalgebra on the space
of symbols, see Theorem 2. Here we restrict ourselves to a hyperboloid of one sheet in R?.
Besides, we write explicit formulae of this action.

The study of actions of overalgebras is a new theme, opened by Yu. A. Neretin and the
author [4-6].

In this paper the group G is the group SL(2,R), the subgroup H consists of diagonal
matrices, the space G/H is a hyperboloid of one sheet in R?. The overgroup G=GxG
contains three subgroups G¢, G; u G, isomorphic to G. Namely, they consist of pairs
(9,9), (9,FE), (E,g), respectively. Here E is identity matrix, g € G'.

Let g be the Lie algebra of G'. Then the Lie algebras of G and G4, Gy, Gy are
g=g+g and g%, g1, g2, respectively. In order to write an action of the overalgebra g, it
is sufficient to take some subspace complementary to g?. Now we take the subalgebra gs .
It consists of pairs (0,X), where X € g.

The work is supported by the Ministry of Education and Science of the Russian Federation (Project
Ne 3.8515.2017/8.9).
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The group G consists of real matrices of the second order with unit determinant:

92(3 §> ad — fy =1 (1)

Changing in (1) « <> d and [ <> 7, we obtain an involution g +— ¢ in G given by

~ [0~
g_<5a)'

The Lie algebra g of the group G consists of real matrices of the second order with zero
trace. A basis in g consists of matrices:

() (2 ) (0 ) e

The commutation relations are:
Ly, L |=-2Ly, [Ly,L[1]=—-Ly, [L1,L_|=—L_. (3)

Denote by Env (g) the universal enveloping algebra of the Lie algebra g.

Recall some material on representations of GG. We shall use the notation
tM = |t|*sgn’t, teR*=R\{0}, A eC, v=0,1.

For 0 € C, v = 0,1, let us denote by D, ,(R) the space of functions f in C*(R) such
that the function f(t) = t?>* f(1/t) belongs to C*°(R) too. The representation 7,, of the
group G acts on D, ,(R) by (we consider that G acts from the right):

(Tow(9) ) (1) = F (- g) (Bt + 67, t-g= Zig .

The contragredient representation 7, is defined by the involution g+ g, so that

(Fow(9)f) () = f(t-7) (vt +)*".

Representations 7,, and 7,, are equivalent by means of the operator f — J?

Any irreducible finite-dimensional representation pp of the group G is labelled by the
number k (the highest weight) such that 2k € N={0,1,2,...}. It acts on the space Vj of
polynomials ¢(¢) in ¢ of degree < 2k (so that dimVj =2k + 1) by

(r(9) @) (1) = (t-g) (Bt + ).

Operators corresponding to elements of g and Env (g) in representations 7,, do not
depend on v, so we do not write v in indexes.
For basis elements (2) we have

d d
To(Ly) =t primkl mo(Ly) = 1* pri 20t.
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and 7,(Ly) = —7,(Ls), T.(L1) = —7m,(L1). Replacing here o by k, we obtain formulas
for pg.

On the product ¢t of functions ¢ and ¢ the differential operators n,(L), L € g,
(they have the first order) act as follows:

To(L) () = (mo(L)p) - ¥ + - (mo(L)Y) (4)

and similarly to 7, .
An operator A,, defined by

)0 = [ (1= 1) f(s) ds

— 00

intertwines m,, and T_,_1,:

%—U—I,V(Q)AU,V - Aa,uﬂ-a,u<g> )

and also 7,, and m_,_1, . The composition A,, and A_,_;, is a scalar operator:

A,U,L,, AO’,l/ =

c(o,v)

where

(0.2) 2041 (—=1)"+cos2om
c(o,e) = . )
’ or sin 207

Let us realize the space R* of vectors = = (z9, 71,72, 23) as the space of real 2 x 2

1‘—1 To— T3 —T1+ To
_2 T+ T2 To + T3 '

matrices:

The overgroup G acts as follows:

T g'zg, (91,92) € G.

Let C be the cone det x =0, v #0.For c € C, v =0,1,let D,,(C) denote the space
of C* functions f on the cone C homogeneous of degree 20 and parity v:

fltr) =tV f(x), teR".

Let R,,V be the representation of G by translations on the space D,,(C) (in fact, it is
a representation of the group SOg(2,2) associated with a cone, G covers SOq(2,2) with
multiplicity 2):

(Row (g1, 92) ) (@) = f(g1 ' 2g2).

The section X' of C by plane (trz) =1 can be identified with a hyperboloid of one sheet
—2? + 23+ 23 =1 in R®. Restrictions of functions in D, ,(C) to X form a space D, ,(X)
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of functions on X'. It is contained in C'*°(X) and contains D(X'). In the realization on X
the representation R, is:

(Rouliro) 1)) = f (T2 ) (o a7, e

The section X is invariant with respect to the action z +— g~'xg of G¢ = G, it is just
the space G/H . The restriction of }N%U,V to G = G is the quasiregular representation U of
G on X . It preserves the space S(X') of polynomials on X and decomposes in the direct
sum: U = po+p1+p2+... with the corresponding decomposition S(X) = Ho+Hi+Ha+. ..

Introduce on X horospherical coordinates &, :

ol (—775 —1]

)7 N:N(gvn)zl_gna

N\ ¢ 1
so that
oo Stn o &-m o 14+&n
1 N’ 2 N, 3 N .

In these coordinates, to basis elements (2) the following operators correspond:

0 U
RO—(O,L_) a_f — 20 N 5

0 1
R0(07 Ll) 58_5 —0 é-n];i]—_ )
- )
RO—(O, L+) == 628—5 — 20 % .

Recall some material on polynomial quantization. As a supercomplete system we take the
kernel of the intertwining operator A_,_;, , namely,

D, (&) = N(En)*".

This function has an invariance property

[vra(g) ® %a(g)} ®,.,(8m) = 00§, m).

This formula can be rewritten as

(molg™) ©1) @rulem) = (1@ 7o(9)) B (€.). (5)

For elements L of the Lie algebra g, formula (5) gives:

~(R(1) @1) @l m) = (18 7olL)) P& (6)
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Covariant symbols of operators m,(X), X € Env (g), are functions F(z) on X defined

as follows: |

] <7TG(X) ® 1)<I>U,y(£,n>-

In particular, covariant symbols for basis elements (2) are multiplied by (—o) polynomials

F(&,n) =

r1— To, T3, T+ To, respectively.

The multiplication of operators gives rise to the multiplication of covariant symbols,
denote it by *. Namely, let F; and F; be covariant symbols of operators D; and D,
respectively. Then the covariant symbol Fj % F5 of the product DD is

(Fyx B2)(€m) = (D18 1) (0 (&) FalE)) (7)

b
(PO',V<§7 77)

Let V' be a covariant symbol of the first order (corresponding to an element L of the
Lie algebra g). Let F' be an arbitrary covariant symbol (corresponding to an element X of
the universal enveloping algebra Env (g) )

Theorem 1. We have (the point means pointwise multiplication)

VaF =V -F+(m(L)®1)F 8)
FxV=V.-F—(1am(L)F 9)

Proof. To prove (8), we take in formula (7) Dy = 7n,(L) and Fy = F', then we
differentiate by (4), as a result we get (8).
Now let D = m,(X). Since (D7 (L)) ® 1= (D ® 1)(7,(L) ® 1), we have

1

FxV =
TS,

(D@ 1)(7o(L) @ 1)®0.,,

then by (6) we can change here the latter operator by the operator {—(1 ® 7,(L))} and
then transpose it with D ® 1 since they act on different variables. We obtain

FsV=— (1 ® a,(m)(cbo,,,p), (10)

then we differentiate by (4) and use (6) again. It gives (9). O

Theorem 2. The multiplication of covariant symbols F by first order symbols V is the
action of the overalgebra g on the space of covariant symbols:

V«F =R,0,L)F, FxV=—R,(L,0)F. (11)

Proof. Formula (7) with Dy = n,(L) and F, = F gives exactly the first formula in
(11). The second formula is just (10). O

For k € N, we define the Poisson kernel Py(x;t) as follows. Denote

B(x;t) = B(§,m;t) = (t_g)](\,l_nt)7 (12)




358 V. F. Molchanov

then
Py(z;t) = B((E;t)k. (13)

This kernel is a fixed vector in the tensor product U ® py :
(U(g) @ pr(9)Fr) (z;1) = Pr(z;t), g€ G
Therefore, Py(x;t) is a generating function for polynomials in Hy .

Let us introduce the following differential operators Si(X), k € N, and F(X) in variable
t, linearly depending on X € g, for basic elements (2) they are

d2
E(L.)=1 L)=—
(L)=1, Si(L-) =25,
d? d
E(L) =t, Sk(Ll):tﬁ_<2k+1)%7
2
E(Ly)=1t, Si(Ly)= tQ% —2(2k + 1)t% + (2k + 1)(2k + 2).

The following commutation relations hold

Sk ([X,Y]) = pe(X) Se(Y) = Su(Y) pra(X),
E([X,Y]) = pr(X) E(Y) = E(Y) pr-1(X) .

Then, let us introduce the following coefficients ay, Ok, V& :

o — 20 — k
T 2k+2)2k+1)]
1
/Bk:_§7
(20 +k+ 1)k
Ve = =
2(2k + 1)

Theorem 3. Let X € g. The operator R,(0,X) acts on the Poisson kernel Py(z;t) as
follows:

RU<O,X) Pk = Oék‘Sk(X>Pk+1 +ﬁk pk(X)Pk—l—’yk 'E(X)Pkfl, (14)

in the left hand side the operator acts on a function of £,m, and in the left hand side the
operators act on functions of t.

Proof. First we take X = L_ . Keeping in mind (12), (13), we find:

8_ n k_ _ 7.pk-1 L—mnt _ N
(85 2O'N)B = —kB N + (—20+k)B N (15)
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On the other hand, we compute (9/0t)B* and (9?/0t*)B**+*:

0 4 2t +én+1
ot N
1 -t
— —kBFl42kBht. T” (16)
0? (—2nt +&n+1)° 2n
_Bk+1 — 1 Bk*l . - Bk 2
e (k+ ){k e N
= (k+1) {kB’“‘l — 2(2k +1)B* - %} (17)

Expressing from (16) and (17) the second summands in right hand sides, substituting in
(15), we obtain (14) for X = L_ . Now for X = L; and X = L, , we use equality (14) with
X = L_ already proved and commutation relations — successively the first and the second
ones in (3), and corresponding commutation relations for operators Si(X) and E(X). O
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ITOJINMHOMUWAJIBHOE KBAHTOBAHUVE N1 HAJTAJITEBPA
AJ14 OJHOITIOJIOCTHOI'O I'MITEPBOJION A

© B.®. Mosruanos
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Annomayus. Mbl ToKa3biBaeM, 9TO yMHOXKEHUE CUMBOJIOB B TIOJTMHOMUAAJILHOM KBaH-
TOBAHUH €CTh B TOYHOCTH JIefiCTBIE HAIAJIreOPbl HAa IIPOCTPAHCTBE ITUX CHMBOJIOB.
Karouesvie caosa: KBAaHTOBAHUE; MPEJCTABIEHIST; TUIIEPOOJIONIBI; TPEOdOPa30BAHUS
IIyaccona
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