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Abstract. We derive new sufficient conditions to solve the spectral pollution problem by
using the generalized spectrum method. This problem arises in the spectral approximation
when the approximate matrix may possess eigenvalues which are unrelated to any spectral
properties of the original unbounded operator. We develop the theoretical background of the
generalized spectrum method as well as illustrate its effectiveness with the spectral pollution.
As a numerical application, we will treat the Schrédinger’s operator where the discretization
process based upon the Kantorovich’s projection.
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Awnunoramus. C wucnosb30BaHWEM METOIa ODOOIIEHHOTO CIEKTPA IOJy9YeHbl HOBBIE
JIOCTATOYHBIE YCJIOBUSI PeIleHusl TpOOJeMbl CIIEKTPAJIbHOIO 3arpsi3HEeHUsl. IJTa, mpobJiemMa,
BOBHHKAIOIIAS B CHEKTPAIHLHOM PHUOJIMKEHIH, BEI3BAHA TE€M, 9TO MPUOJIMKEHHAS MATPUTIA
MOXKET UMETh COOCTBEHHBIE 3HAYEHNUSI, KOTOPBIE HE CBA3AHBI C KAKUMU-JIUOO0 CIIEKTPAJILHBIMEI
CBOMICTBAMU MCXOJIHOTO HEOTPAHWYEHHOro omneparopa. Mbl paspabaTbiBaeM TeOpeTHYECKHe
OCHOBBI MeTOJ[a ODODIIEHHOIO CIIEKTPa, a TaKyKe HJLIIOCTpUpyeM ero 3¢p@eKTUBHOCTD
IpU  HAJIMYUAU  CIEKTPAJBLHOTO 3arpsi3HEHUs. B kadecTBe UHCJIEHHOIO IPUIOKEHUS
paccmarpuBaercs oneparop llIpémuarepa, a Tporecc AUCKPETH3AIMH ITOrO OMEPATOPA
OCHOBBIBAETCsI Ha MpoeKnuyu KaHTopoBuya.
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C. 218-234. DOI 10.20310/1810-0198-2019-24-126-218-234. (In Engl., Abstr. in Russian)

1. Introduction

Let (H,D(H)) be a self-adjoint unbounded operator on a Hilbert space H . With the
purpose of finding the spectrum set sp(H) of the operator H by using numerical approach,
the conventional methods used are the projection methods (see e.g. [1] and [2]). Precisely,
let (Py)ren be a sequence of orthogonal projections Py : H — L, where the closed set Ly
is a subspace of D(H). In the theory of spectral approximation, we seek whether or not
klgglo sp(Px H Py) = sp(H) . Generally, the result is negative, where for k£ large enough, the

set sp(Hj) may contain points that do not belong to the set sp(H) .

The weakness of projection method is well known in numerical analysis as the spectral
pollution problem, this is an important problem in several areas in the field of applied
mathematics (see e.g. [3], [4] and [5]).

In this paper, we use an alternative method, the generalized spectral method, which has
been introduced in [6]. This new method is based on the concept of the generalized spectrum
(see [7] and [8]).

Let T and S be two bounded linear operators defined on a Banach space X, we define
the generalized resolvent,

re(T,S)={z€C: (T —25): X - X is beijective }.

The complementary set of the generalized resolvent set is the generalized spectrum, denoted
sp(T,S). We say that A is a generalized eigenvalue of the couple (7T,5) if there exists
ue X\ {0} such that

Tu = \Su.
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The subspace Ker(T' — \S) is called the generalized spectral subspace corresponding to A.

The space of all bounded linear operator defined on the Banach space X is denoted by
BL(X). We consider now an unbounded operator (A, D(A)) defined on X, we recall that
the resolvent set of A is given by

re(A) ={2€C:(A—=zI): D(A) — X, is beijective and (A — zI)"' € BL(X)},
and the spectrum set of A is sp(A) =C\ re(4).

In this work, under the assumption re(A) # (), we prove that each spectral problem
associated to A has an equivalent generalized spectral problem which means that there exist
two bounded operators 7' and S defined on X, satisfying sp(7,S) = sp(A) . Furthermore,
if A is an eigenvalue of A, then \ is a generalized eigenvalue of the couple (7,S) and

Ker(A — AI) = Ker(T — \S). (1.1)

Through the numerical approximation of the bounded operators 7" and S by sequences
of bounded operators (Ty)ren and (Sk)ren defined on X', where they converge in an ap-
propriate sense to T and S, we prove that

lim sp(Tk, Sk) = sp(T, S).
k—o0

The limit here is understood as a combination of the following Property U and Property L,
where they are naturally extended from the classical case with S =1 (see [9]).

Property U: if A\ € sp(Ty, Sk) and A\, — A, then X\ € sp(T,95).
Property L: if X\ € sp(T,S), then there exists (A;)gen such that A\, € sp(Tk, Sk) and

We organize this paper as follows: throughout section 2, we construct the theoretical
foundations of the generalized spectral method. This theory is a generalization of the clas-
sical case when S = I (see [9]). In section 3, we prove that the Property U and Property
L hold under appropriate convergence of (Ty)gen and (Sk)reny to T and S respectively.
Finally, a numerical application is given for the case of Schrodinger’s operator, where our nu-
merical results show the coherence and the effectiveness of the generalized spectrum method
(see [11]).

2. Generalized spectrum

Let (X,] -||) be a Banach space. The space BL(X) is the set of all bounded linear
operators on X equipped with the subordinated operator norm,

JA|l = sup{||Az|| : w € X, ||z]| = 1}, A € BL(X).
Let T and S be two operators in BL(X), for z € re(T,S), we set
R(z,T,S) = (T — 28)™*
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as the generalized resolvent operator. Let X € sp(T,S) be a generalized eigenvalue, we say
that A has a finite algebraic multiplicity if

dim Ker(7T' — \5) < oc.
We remark that, if the operator S is invertible, then
sp(T, S) = sp(S_lT),

but if S~! does not exist, the generalized spectrum set can be a bounded set, or the whole
C, or an empty set.

The next three results are a generalization of a classical case when S = I'. The proofs
are provided in [6].

Theorem 2.1. Let A € re(T,S) and p € C, where |\ — pu| <||[R(\,T,S)S||™'. Then
were(T,S).

Corollary 2.1. The set sp(T,S) is closed in C.

Theorem 2.2. The function R(-,T,S):re(T,S)— BL(X) is analytic, and its deriva-
tive is giwen by R(-,T,S)SR(-,T,S).

We consider now an unbounded operator A with domain D(A) C X . The following
theorem shows that every unbounded operator allows a pair of two bounded operators in
BL(X) which expresses it in the terms of the generalized spectrum.

Theorem 2.3. If re(A) # (0, then there exist T,S € BL(X) such that
sp(A) = sp(T, 5).

In particulary, X is an eigenvalue for A if and only if X is a generalized eigenvalue for the
couple (T,S). In addition, the equality (1.1) is satisfied.

Proof Let a€re(A). We define S,7: X — D(A) as follows:
S=(A—-al) ", T=A(A—al)™"

It is clear that 7S € BL(X). To show that sp(A) = sp(T,S), we prove that re(A) =
re(T,S). Let A € re(A), i. e. there exists operator (A — AI)~! € BL(X). Then

(A=XD)A—-al) ' =T+ (a=N(A—-al)™' € BL(X).
So as

(A= ADN(A—al) ' =(A-a)(A- M) =T+ A—a)(A—X)"' € BL(X),
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we get
A(A—al) ™ = XNA—al)™ € BL(X) = (T — \S)™' € BL(X).

Thus, it is proved that A € re(T, S).
Inversely, let A € re(T,S). To show that (A —\)~' € BL(X), we prove that (A — \I)

is bijective. Firstly, check the injectivity. Let u € D(A), using the fact that A commutes
with (A — al)™! we have

(A—al)'Au=AA—-al) 'u=u+a(A—al)  u. (2.2)
Taking into consideration the equality (2.2), we find

(A=Xu=0 = (A-—al) " (A-=X)u=0= (A-X)(A—al)lu=0
= [AA-al)' = XA-a)Mu=0= (T-AS)u=0=u=0.

Secondly, prove the surjectivity. For all y € & we show that (A — M)z = y has a
solution = € D(A). Put z = (A —al) YT — AS) ty; it is clear that = € D(A) (the fact
that (A—al)™': X — D(A)), moreover we have

(A= AD)(A—-a) "™ T =Xy = [A(A—al)™ = XA —al) (T - 1Sy
= (T—=AS)(T—AS) 'y=y.

Furthermore, we can see, upon the choice of the vector x, that
el < 1A — ad) 1T = A8) 7 Tl
SO
[(A=ADTH < (A= al)TH (T = AS) 7,

which implies that (A — A)~! € BL(X) and therefore \ € re(A).
Now, we show that the equality (1.1) holds. Let A be a generalized eigenvalue of the
couple (7,5), then there exists u € X\{0} such that Tu = ASu, thus

Tu=ASu = A(A—al)'u=XA-al)lu
= u=MN—a)(A—al) ' = uec DA).

By applying (A — al) on Tu = ASu, we find that Au = Au. Inversely, let A\ be an
eigenvalue of A, then Au = Mu. So, by applying (A — al)™! on Au = \u and using the
fact that (A—al)™Au= A(A—al) 'u for all u € D(A), we find that Tu—ASu=0. O

We note that the choice of the couple (7,S) as a function of the resolvent operator of
A is not unique (see the numerical application below).

The next results represent the theoretical background of the generalized spectrum ap-
proach.
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Theorem 2.4. Let T,S € BL(X), and let A be a generalized eigenvalue with finite
algebraic multiplicity, isolated in sp(T,S). We denote by T" the Cauchy contour separating
A from sp(T,S). Then the operator

-1

P = —
i r

(T — 25)'S dz (2.3)

defines a projection from X to X, and we have
PX = Ker(T — \S). (2.4)

P r o o f. To show that the operator P given by (2.3) is a projection form X to X, see
the book [8, p. 50]. Now to prove the equality (2.4), firstly we fix « € re(7,S5), where for
any Cauchy contour I' associated with A we assume that a ¢ I'. For pu € I', we have

pS =T = (aS = T)[(a—p)~'1 — (aS = T)"'S)(a — p)
which gives
(uS=T)"" =[(a—p)~'1— (aS=T)"'S] " (a — p)~(aS - T)"".

-1

Thus, we can see that (o — A)™! is an eigenvalue of the operator (a.S —T)~1S. Indeed

u€Ker(T—AS) = (T—-AS)u=0= (aS—-T) " (aS—T+T—-AS)u=u
= (aS—T)"'Su=(a—-N)""u=uecKer((aS—T)"'S — (a—N)""I).

We reverse the last process and get
Ker(T — \S) = Ker((aS —T) 'S — (o — X\) ).

Now, under the choice of «, we can see that for all Cauchy contour I', n(I") is also a Cauchy
contour of the eigenvalue (o — \)™' where n(u) = (o — )~

We put B = (S —T)7'S and z = (o — u)~! for any p € I'. Following this notation
we have

(S —T)™*S = z[~I + z(2I — B)™].

Thus, integrating over the I', we get

1 1 dz
— S—T)'Sdy = — I I-B) =
1 -1 -1
= — —z I+ (2] — B dz
i) (=1 = B)"]
1

1 1
- —dz [+ — (2 — B)"'dz = —Py(a-x-13,

271 n(F)Z 211 n(T)
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where Pp,_»x)-1y is the spectral projection associated with the operator (aS—T )~LS around
(a — X\)7!. Hence, according to the spectral decomposition theory,

PX = P{(a,)\)—l}X = Ker((ocS - T)’lS — (Oé — )\)71]) = Ker(T - )\S)

g

Now, we show some results obtained in the qualitative aspect for the generalized spectrum
theory.
We denote by B(0,k) C C the ball with center 0 and radius k£ > 0.

Theorem 2.5. Let T, S € BL(X), then there exists k > 0 such that sp(T,S) C B(0, k)
if and only if 0 & sp(S).

P r oo f. We assume that sp(T,S) C B(0,k), then for a € re(T,S), we get
AS —T = (aS—T)[(aS —T)"S — (a— N7\ —a). (2.5)
As a e re(T,S), we have that
A€ sp(T,S) <= (a— Nt esp((aS—T)19).
So, the inclusion sp(T,S) C B(0,%) implies the relation 0 ¢ sp((aS — T)~1S); otherwise,

0 € sp((aS —T)71S) implies oo € sp(T,S). Thus 0 & sp((aS —T)71S) gives 0 & sp(S).
U

We denote by sp,(T,S) the set of all generalized eigenvalues. It is clear that when
X is a finite-dimensional space, the generalized spectrum consists only of the generalized
eigenvalues, except {oo}.

Theorem 2.6. Let T, S € BL(X), if S is compact, then
sp(T,S) = sp,(T,S) U{oo}.
Proof We use the expression (2.5). Since the operator (S — T)71S is compact,
sp(T,S) is a set of isolated points. Let A € sp(T,S), then there is v € sp((aS — T)~19),

where v = (o — A\)™'. Hence there exists v € X\ {0} such that

(@aS—T)'Su=pu = (aS—T) " (aS—-AS)u=u
= u+(aS—T) YT - A\S)u=u= Tu= \Su.
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3. Generalized spectrum approximation

Let T,S € BL(X), where re(T,S) # 0, and let (T})ren and (Si)ren be two sequences
in BL(X). We will use the following conditions:

(H1) S is a compact operator in BL(X),

(H2) |(Tx — T)x|| — 0, [|(Sk — S)z|| = 0 for all z € X,

(H3) (T, — T)T| =0,

(H4) [[(Sk = S)T|| = 0.

In the sequel, we write - = - to express the pointwise convergence, while the norm
convergence is denoted by - = - .

Proposition 3.1. (see [6]) Let T,T,S,S € BL(X). For all z € re(T,S),
if ||R(2,T,S) [(T— T) — (S — S’)} | <1, then z € re(T,S), and the next inequality is

satisfied
|R(z, T, S|

L= |[R(=,T,8) (T = T) + (8 = )] I|

IR(z, T, 5)| <

Remark 3.1. According to our assumptions in (H1) — (H4) we can easily conclude
that
(T, = T) = XSk, = S)|(T — 25) = 0,

for all z € re(T,95).

Proposition 3.2. Let A, B and C be three bounded operators such that 0¢ sp(B)
and AB > C', then B'AS B-'CB~'.

P roof Wenote that ||[B~*A — B'CB7Y| < ||B7!|| ||AB — C|| || B7Y]. O
Theorem 3.7. Property U. For k € N, under (H1) — (H4), if \x € sp(Tk, Sk) and
A = A, then X € sp(T,S).

P ro o f. We assume that A € re(7,5). Since the set re(7,S) is open in C, as stated
in Corollary 2.1, there exists r > 0 such that

E={ueC:|lu—A<r}creT,»S).
On the other side, for all z € E and for all k£ € N, we find that
Ty — 28 = (T —28)[I + R(2,T,5)[(T — Tx) — 2(S — Si)]] -
Using Remark 3.1 and Proposition 3.2 with
A=[(T=T:) = MS = Sk)l, B=(T'-\9),

so, there exists ky € N such that

[1R(z, T, 8) (T = Tie) = A(S = Si)] || <

)

N | —
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for all k > ky. Then, by Proposition 3.1, we find z € re(Ty, Sg) such that
||R(Z’Tkv Sk)” < 2||R(27T7 S)”’ Vk > ko,

but Ar — A, thus there exists k; € N such that A\, € E C re(Ty,Sy) for k > ki, which
form a contradiction. O

In numerical test, we calculate the quantity
sup {dist(p, sp(T,S)) : p € sp(Tx, Sk) },
its convergence to 0 implies the Property U. We mention that

dist(p, sp(T,S)) = inf —vy|.
(o sp(T, 5)) = _inf i =y

Lemma 3.1. (see [10]) Let P, and P, be two projections on X such that
|(Pr = P) | < 1,
then dim X < dim P,X .

Lemma 3.2. Let z € re(T,S), under (H1) — (H4) there exists a positive integer ky € N
such that for k> ko, z € re(Ty, Sk) and

R(z, Ty, Sk) = R(2,T,S).
Proof. Let z € re(T,S), we have
Tk — ZSk = (T - ZS) [] + R(Z,T, S)[(T — Tk) - Z(S — Sk>]] y

for all k € N. As stated above in the demonstration of Theorem 3.7, we find z € re(7T}, Sk)
for all k > ko, and R(z, T}, Sk) is uniformly bounded for all k£ € N.

On the other side, for z € re(T,S) Nre(Ty, Sk),
R(Z, Tk, Sk) - R(Z, T, S) = R(Z,T, S) [(T - Tk) - Z(S - Sk)] R(Z,Tk, Sk)

Since R(z,T,S) (T —Ty) — 2(S — Si)] = 0 (according Remark 3.1 and to Proposition 3.2)
and R(z, T}, Sy) is uniformly bounded for all k£ € N, we have that

R(z,T,9) (T —T) — 2(S — S)] (T — 2Sx) "+ = 0.
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Theorem 3.8. Let A\ be a generalized eigenvalue of finite type, isolated in sp(T,S). We
denote by I the Cauchy contour separating X\ from sp(T,S). Under (H1)— (H4), there
exists ko € N such that for each k > ko, we have

dim PX = dim P,

where .
P———/RZ TS)SdZ Pk——2— R(Z Tk,Sk) 1Skdz

20w i)

Proof For ze€T and k > kg, we see that

R(z,Tk,Sk)Sk — R(Z,T, S)S = [R(Z,Tk, Sk) — R(Z T S)] S
— [R(2, Tk, Sk) — R(2,T,9)| (S — Sk) — R(2, T, S)(S — Sk).

From (H1) — (H4) we easily find that (S —S;)(T —2S) = 0, thus according to Proposition
3.2 we have R(z,T,S)(S — Si) —+ 0. Now by using Lemma 3.2, we have

R(z, Ty, Sk)Sk — R(2,T,59)S = 0.

Finally, we apply Lemma 3.1 and find that dim PX = dim P,X for k > k. U

Theorem 3.9. Property L. Let A\ be a generalized eigenvalue of finite type, isolated in
sp(T,S). Under (H1) — (H4) there exists a sequence A, € sp(T, Sk) such that A\ — .

Proof. Let I' be the Cauchy contour separating A from sp(7,S). We set
Ak € int(I") N sp(Tk, Sk).

Since re(T,S) > z — R(z,T,5)S and re(Ty,Sk) 3 z — R(z, T}, Sk)Sk are analytic func-
tions, and P, — P, we find

()\k)keN =) = mt(F) N Sp(T, S) = (.
We fix € > 0 such that the sequence (A;)ren belongs to B, where
B={z€C: |z— ) <€}

On the other hand, it is enough to show that every convergent subsequence of (A ) eN
converges to A itself. Indeed, let a subsequence ()\k’)k’eN converge to A where A #
A. By Property U proved in Theorem 3.7, we see that A € sp(T,S), but A € B and
sp(T,S)N B = {\}, hence A=\, thus A\, — \. O

The last theorem shows that for every generalized eigenvalue A\ of finite type isolated
in sp(T,S), there exists a sequence (Ap)reny converging to A such that Ay € sp(Ty, Sk) .
The next result shows that the generalized eigenvectors associated to A\, converge to the
generalized eigenvector associated with .
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We define the notion of gap between two closed subspaces Z and Y of X as
gap(Z,Y) = max {1(2,Y), (Y, )},

where
Y(Z,Y) =sup {dist(z,Y): z € Z, ||z|| = 1}.

Theorem 3.10. Let M = PX and My = P.X for k € N. Then gap(M, M) — 0.
Proof. Let u€ M = PX such that ||ul| =1. For k& € N large enough we have
dist(u, My) < ||lu — Pyu|| = ||Pu — Pyu|| < ||P — Pyl
Let u € My, = P,X such that |lu| = 1. For k € N large enough
dist(u, M) < ||lu — Pul|| = || Pxu — Pul| < ||P — Pyl
which implies gap(M, My) < ||P, — P||. O

4. Numerical application

As an example for which the numerical results are available by other approaches, we
consider the following problem from [11]; it is also studied in [13].
We consider the unbounded operator A defined on L?*(0,+o0) by the differential equa-
tion
Au = —u" +2%u, 2z €[0,+00), u(0)=0.

This is the harmonic oscillator problem with domain
D(A) = H¥(0, +00) 1 {u € 13(0,00) / # fufide < o0 ).
0

First, according to the theory of pseudo spectrum for self-adjoint operators (see [6], [11]
and [14]) we can find

sp(4) = | sp(4a), (4.6)

a>0

where A, is the Schrédinger operator which has the same formula as A in L?(0,a), but
with the Dirichlet condition at the point a. The domain of A, is given by

D(A,) = H*(0,a) N H(0,a).
Let a > 0, we denote by L, the Laplacien operator defined on L?*(0,a) by

Lou=—d", D(L) = H*(0,a) N H}(0,a).



A CLASS OF STRONGLY STABLE APPROXIMATION FOR UNBOUNDED OPERATORS 229

Proposition 4.3. (see [12]) L, is invertible and its inverse is the bounded op-
erator S, defined by

Seulz) = / Grom (@ y)uly)dy, € L2(0,a),
0

where
) g<r<y<a,

Goay(2,y) = {M 0<y<z<a.

a

Let T, be a bounded operator defined on L?(0,a) to itself by
Toule) = (@) + | Gloa (o u)yPuly)dy.
0

Theorem 4.11. sp(A) = U sp(Ta, Sa).

a>0

P roof. According to (4.6), we need only to show that sp(A,) = sp(Ty,S,) for all
a>0.

Let A be an eigenvalue of A, with the eigenvector v € D(A,) \ {0}. By applying S,
to A,u = Au, we get T,u = AS,u, which implies that A\ is a generalized eigenvalue of the
couple (T,,S,) with the eigenvector u € L*(0,a) \ {0}.

Inversely, let A be a generalized eigenvalue of the couple (T,,S,) with the eigenvector
u e L*0,a)\ {0}, i e. Tyu= AS,u, so

u=ASu — Sp(vu) = u=S,(A\u—vu),
where v(z) = 2*. Since \u+vu € L*(0,a), we have u € D(L,) = D(A,), then
u+ Sg(vu) = ASu = Lyu+vu = Au.
U

Now, for a > 0 we use Kantorovich’s projection method to approach the operators T,
and S,. We define a subdivision of [0,a| for n > 2 by

Let T, and S,, be the approximation operators of 7, and S, by means of Kan-
torovich’s projection methods (see |9]), given for all = € [0,a] by

Tyntin(z) & +Z ( / G100} xz,y)y%n(y)dy)ei(x),

Zj: (/0 G{O,a}(ﬂfi,y)un(y)d@ ei(z),

Sanln ()

Q
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where, for 2 <i<n-—1,

1 - |x—ac2-|, Tic1 S0 < Xiq
0, otherwise,
To — X
;o 11 S <X
el(z) = I,
0, otherwise,
X — Tp-1
—n7 Tn—1 S x S Tn
en(r) = I,

0, otherwise.

By applying Kantorovich’s projection method [9] to the equation T,u = AS,u, we get the
approximate equation

n

un(x) + Z( /0 aG{O,a}(xi:y)fUQUn(y)dy>ei(x)

- A (/ Gy (20 9)ua )y )ex(a), € [0.a].

Denote by (7 and f5 the two vectors

a

Bu(i) = /0 Grom (5, )5 %un(y)dys Bo(i) = /0 Grow (27, ) un(y)dy, 1<i<n,

then we can rewrite the previous approximate equation as

z) + Z Bi(i)ei(z) = Ay Z Bo(i)e; (). (4.7)

Multiplying first equation (4.7) by Gyoq(z;, x)2? for 1 < j < n and integrating over [0,a],
we obtain

/\nzn: &(i)( /0 aG{Oﬂ}(xj, )e2e;(x )dm) - /0 aG{ma}(xj?x)x?un(x)dx

+ iﬁl(z)</0a G{O,a}(xj,x)xQei(x)dx)

The latter equation is equivalent to the matrix equation
61 + Aﬂl = )\nAB% (48)

where A is a matrix defined by

A(Zh]) = / G{O,a}(l‘jvm)xzei(‘r)d‘r’ 1 S Za] S n.
0
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In the same way, multiplying equation (4.7) by Gyoa(zj,z) for 1 <j <n and integrating
over [0,a], we also obtain

A zj: Ba(7) ( /Oa G100y (;, x)ei(:z:)da:) = /Oa G100y (2, T)up(z)d

+ Z B1(7) (/ G103 (7, x)ei(x)dx),
i=1 0
the latter equation is equivalent to the matrix equation

P2+ BB = A\ B, (4.9)

where B is a matrix defined by
B(Zuj) = / G{O,a}(‘rjvx)ei(x)dxﬂ 1 S 27] S n.
0

So, by using this process, we have transformed the equation (4.7) into the system of two
matrix equations (4.8) and (4.9), namely

{51 + AB1 = N\, Ao,
B2 + BB = A\, Bfs.

We also can write this system as

{(ITLX’VL + A)Bl + Onxnﬁ? = /\nOanﬁl + /\nABQa
Bﬂl + 52 = )\nOanﬁl + AnBﬁ%

where [, «, is the identity matrix with dimension n x n and O,y, is the null matrix with
dimension n x n. This leads to the matrix generalized eigenvalue problem

A + ]nxn Onxn 61 — )\ Onxn A ﬁl
B Inxn BQ S Onxn B 62 .

Finally, we use the command "eig" in Matlab to calculate the generalized eigenvalue of

A + In><n On><n On><n A
B ITLXTL ’ OTLX?’L B ‘
We mention that Kantorovich’s projection method gives the norm convergence (see [9]) which
satisfies our assumption in (H1) — (H4).
We fix n =200 to approach the eigenvalues in our example.

The following table 1 shows that the Kantorovich’s method converges perfectly compared
with the exact eigenvalue.
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Table 1: The numerical results for a=>5

Exact eigenvalue Kantorovich’s method

3 3.0001972
7 7.0009887
11 11.0026039
15 15.0103317
19 19.0806050

5. Conclusion

Our study shows the efficiency of the generalized spectrum method, theoretically and

numerically. This technique appears to be a computationally attractive tool for resolving the

spectral pollution. We resolved this spectral pollution by treating the analytical question: to
find the bounded operators T" and S representing the spectrum proprieties of an unbounded
operator A in the theory of generalized spectrum.
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