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Abstract. In the article, the authors consider the problem of constructing an upper bound for
the sum of the maximal eigenvalues of Laplacian of a graph. The article is devoted to proving
the Brouwer conjecture, which states that the sum of the ¢-maximal eigenvalues of Laplacian
of a graph does not exceed the number of edges of the graph plus (t+1)t/2. Note that we prove
the validity of the general Brouwer conjecture under the assumption that the conjecture is valid
for a finite number of graphs with the number of vertices less than 10%*, i.e., a complete proof
of the conjecture is reduced to establishing its validity for a finite number of graphs. The proof
of this conjecture attracts the interest of a large number of specialists. There are a number of
results for special graphs and a proof of the conjecture for almost all random graphs. The proof
we are considering uses an inductive method that has some peculiarities. The original method
involves constructing various estimates for the eigenvalues of Laplacian of a graph which is
used to construct the induction step. Several variants of the method are considered depending
on the values of the coordinates of the eigenvectors of the Laplacian. The well-known fact of
equivalence of the validity of the Brouwer conjecture for the graph itself and the complement
of the graph is used.
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HokazarenbcrBo runore3bl Bpayspa (I'B)
JIJIs BceX IpapoB € 9MCJOM BEpPIIUH 7 > 1y B MPEIIIOJ0XKEHNN,
yro I'B BbIMOJIHSIETCH TIpu 1 < 1 AJd HeKoToporo ny < 10%

Buagumup Mapkosuy BJIMHOBCKUM! 2 | Jloan Jannbsua CIIEPAHCA?,
Anekcanap Hukomnaesuu ITUEJIMHIIEB?

L®I'BYH «MucturyT npobiem nepesaqn undopmaruu uM. A. A. Xapkesuda Poccuifckoii akajeMun HayK»
127051, Poccuiickaga Penepanus, r. Mocksa, Bospmoit Kaperusrit mepeysok, 19
2 @enepanbubii Yuusepcurer Can-Ilayiry
Kammyc Can-2Koze-nyc, nctuTyT HAyKU U TEXHOJIOTUN
12247-014, Bpasusus, Can-2Koze-ngyc-Kammyc/SP, Hezape Mancysro dxymnuo Jlarrec Asemio,
1201 — Dyxenno e Mesio
3 ®I'BOY BO «TamGoBCKmil TOCYIAPCTBEHHBI TEXHUIECKNT YHHBEPCUTET

392000, Poccuiickast Peneparnus, r. Tambos, yi. Coserckas, 106

Amnnoranus. B paGore paccmarpusaeTcs npobJiema MOCTPOCHH BepXHeil OIEHKHU JIJIsl CyMMBbI
MAKCHMAJIbLHBIX COOCTBEHHBIX 4MCesl Jjamacuana rpada. Crarbs MOCBAIIEHA JTOKA3ATENIbCTBY
runoTessl Bpayspa, KOTopast COCTOMT B TOM, 9TO CyMMa { -MaKCHMAJIbHBIX COOCTBEHHBIX THCEJT
Jamiacuana rpada He IpesBblmaer yuciaa pebep rpada miaoc (¢t + 1)t/2. Ormernm, 4TO MBI
JIOKAa3bIBAEM CIIPABEJIMBOCTL OOIIEH Iumoressl Bpayspa B NPEINONIOKEHUN CIIPABEIMBOCTH

IUIIOTE3B! [l KOHEYHOro uuc/aa rpadoB ¢ 4ncioM Bepina Menbme 1024

, T.€. IIOJTHOE JI0Ka3a-
TEeJILCTBO TUIIOTE3bl CBOJUTCH K YCTAHOBJIEHUIO €€ CIIPABEJJIMBOCTH JIJISI KOHEYHOI'O YHCJIa I'pa-
dos. /lokazaTesbCcTBO JAHHOM IUIIOTE3BI IPUBJIEKAET HHTEPEC OOJIBIIOTO YHCJIa CIIEINAIICTOB.
Nmeercst psisi pe3ysibTaToB [jisd CIIENUAIBHBIX IPaAdOB U JI0KA3ATEILCTBO CIPABEIIMBOCTH T'H-
MOTE3BI JIJIsI TIOYTH BCEX CIyYaiiHbIX rpadoB. PaccmarprnBaemoe HaMu TOKA3aTETHCTBO MCIIOThb-
3yeT MHJIYKTUBHBIN MeTOJl, MMEIOIuii psi ocobenHocTeil. OpUruHaIbHBINA METOJ, IIPEIIOJIaraeT
IIOCTPOEHNE PA3JINIHBIX OIEHOK JJIst COOCTBEHHBIX YMCE]I JIAILIACHAHA, KOTOPBIA UCIIOIb3YeTCs
JJIS TIOCTPOEHMS MIara WHIAYKIUA. PaccMaTpUBAIOTCS HECKOJIBKO BAPUAHTOB METOJA B 3aBUCH-
MOCTHU OT BEJINYMH KOOPIMHAT COOCTBEHHBIX BEKTOPOB JalljiacuaHa. VICIob3yeTcs: n3BeCTHBIM

daKT SKBUBAJIEHTHOCTH CIIPABEJIMBOCTH THIIOTE3bI Bpayspa st camoro rpada u JIOMOoTHEeHNsT
rpada.
KimroueBsbie cioBa: jamracuan rpada, coOCTBeHHbIE 3HAYEHUS

Baaromapuocru: Vccnenosanus mojyiep:kanbl pasenamu kourpakra N114/2019, N20/2021,
nporpammbl N23089.101560,/2018-91.

s muruposanusi: baunosckuti B.M., Cnepanca JI./., [Tveaunuyes A.H. Jloka3aTeanCcTBO
runioresbl Bpayspa (I'B) ju1st Bcex rpadoB ¢ 4ncaoM BepIH 1 > ng B IPeIoaoKernd, uro I'B
BBITIOJIHAETCS TIPH 1. < Mg TS HeKoToporo ng < 10?4 // BecTHUK poccHiicKnX yHUBEPCHTETOB.
Maremaruka. 2025. T. 30. Ne 150. C. 110-127. https://doi.org/10.20310/2686-9667-2025-30-150-
110-127


https://doi.org/10.20310/2686-9667-2025-30-150-110-127
https://doi.org/10.20310/2686-9667-2025-30-150-110-127
https://doi.org/10.20310/2686-9667-2025-30-150-110-127

112 V.M. Blinovsky, L. D. Speranca, A.N. Pchelintsev

Introduction

Let A be n x n incidence matrix of simple undirected graph G :

S 1, iff (4,7) € G,
“ 1 0, otherwise.

Define the Laplacian L(G) of G as follows

where diagonal n X n matrix D has entries
di =j: (i,j) € G}.

We have ) .d; = 2m, were m is number of edges in G. Considering G as directed graph
with some choice of ordering of vertices in G define m x n matrix B :

1, if j heard vertex in edge 1,
b;j = —1, if j tail vertex in edge ¢,
0, otherwise.

Then L(G) = BTB and hence eigenvalues of matrix L(G) are nonnegative:
0 = 1n(L(G)) < o 1(L(G)) < ... < n(L(G)).

Brouwer’s Conjecture 1 (see [1]). For every graph G C ([Z]) and integer t € [n — 1], the
following inequality is valid:

S6) = m(L(@) < m+ (t ! 1), te fnl.

In this article we prove the validness of this conjecture under the assumption than it is true
for all n < ny where ny < 10%.
For convenience, we denote

26 = si6) - mie) - (1),
Whenever A;(G) <0, we say that G satisfy BC;.

It is known to be valid for trees 2], for k£ = 1,2, n—1,n, for unicyclic and bicyclic graphs 3],
for regular graphs [4], for n < 10 it was checked by A. Brouwer using a computer. In [5] was
proved that Brouwer’s conjecture holds asymptotically almost surely.

Before the proof of Brouwer‘s conjecture under above assumption (we call it below “Con-
jecture”) we introduce some consequences of its validity.

Define set of conjugate degrees

d(G) ={dy, ... dy}, di = [{j = dj =i}

We say that the set E of edges is compressed if from e = (i < j) € E it follows that
e=(iy <j1) € E, were i; < i, j; < j. V. Chatal and P. Hammer in [6] introduce the notion
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of threshold graph. It can be defined as a graph isomorphic (up to permutations on vertices
[n]) to a graph with compressed edge set.

Grone-Merris Conjecture |7], which was proved by Bai [§], we call it GMB, theorem says
that the following upper bound is valid

Zm(L(G)) < Zdi(G)‘ (0.1)

It is known [9] that for threshold graphs there is equality in the last relation.

Say that a graph G on n nodes with m = m(G) edges is spectrally threshold dominated [10]
if for each ¢ € [n] there is a threshold graph G having the same number of nodes and edges
satisfying

t t t
D m(L(@) <Y il L(G) = > di(L(G)).
i=1 i=1 i=1
In paper [10] Helmberg and Trevisan proved the following
Conjecture 1. Graph G is spectrally threshold dominated iff Conjecture for this graph is valid.

We introduce here their proof via construction of the set of conjugate degrees of optimal
threshold graphs.

We construct for arbitrary n, m = m(G), t threshold graph 7T that attains Brouwer’s
bound for the sum of eigenvalues. Denote by Tr(n,m) the set of threshold graphs with n
vertices and m edges. To each graph with degree sequence d; > d;; define Ferrers diagram
of n rows, s. t. the i-th row displays d; boxes aligned to the left.

Next we demonstrate for arbitrary t € [n] that

min ytn, m(G) +t(t+1)/2,2m(G); = max d;(T).
{tn,m(G) +t(t +1)/2,2m(G) } TeTl“(n,m); (1)

This together with (0.1) deliver the proof of Conjecture 1.

Depending on the relation between t,n and m(G), we consider the following cases:

Case 1: min{tn,m(G) + t(t + 1)/2,2m(G)} = tn. Consider the threshold graph T con-
structed by filling up the Ferrers diagram below the diagonal in column wise order (on and
above the diagonal in corresponding row wise order). The first ¢ columns below the diagonal
are fully filled because they require tn—t(t+1)/2 < m(G) boxes. Hence T satisfies df(T) =n
for i € [t] and Y_._, d!(T) = tn. This is the maximum attainable over all threshold graphs on
n nodes.

Case 2. min{tn,m(G) + t(t + 1)/2,2m(G)} = m(G) + t(t + 1)/2. In this case put h =
| ey ] <n and r =m(G) +t(t +1) — th < t. Note that this implies & > ¢+ 1. Define a

t
threshold graph 7' on n nodes with m(7) = m(G) edges of trace ¢t by the conjugate degrees

N _Jh+1, i<,
di(T)_{h, r<i<t,

then S0 N(T) = Y20, d(T) = m(T) + t(t + 1)/2. This value cannot be exceeded by any

i=1""

threshold graph on n nodes with m edges by the GMB theorem, because in the Ferrers diagram
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of the conjugate degrees up to column ¢ all boxes are used on and above the diagonal, while
all possible m boxes are included below the diagonal.

Case 3. min{tn,m(G) +t(t +1)/2,2m(G)} = 2m(G). Put h=max{h € [n]: h(h+1) <
2m(G)} <t and r = (2m(G) — h(h +1))/2 < h + 1, then the threshold graph T of trace h
with conjugate degrees

h+2, i<r,

h+1, r<i<h
“(T) = ’ =
4i(T) T, t=h+1,

0, h+1<1

satisfies S0 \i(T) = 3.0 d:(T) = 2m(T) and this is the maximum attainable over all threshold
graphs T with m(T) = m(G) edges.
Define Laplacian energy of graph as follows

n

LE(G)=>_

=1

2m(QG)

n

pi(L(G)) —

The main result of the paper [10] is the following

Theorem 0.1. For each spectrally threshold dominated graph G there exists a threshold
graph with the same number of nodes and edges whose Laplacian energy is at least as large as

that of G.

1. Preliminary remarks

Here we gather preliminary results that will be useful later.
Let G = ([72‘]) — G denote the complement of G. Then, [9]:

wi(L(G)) =n — ppio( L(G)), i=1,....n—1.

The following duality result will be key in our work. It follows directly from the proof
of [2, Theorem 6], by including A’s with proper indices in the calculation.

Theorem 1.1 (see [11]). For every graph G,
At(G) == An—t—l(é)~
In particular, G satisfies BC; if and only if G satisfies BCp_s_1.

On the other hand, once G satisfy BC;, the graph obtained by adding an isolated vertex,
G U {v}, trivially satisfy BC;. Then, from Theorem 1.1, we conclude that the graph G’ =
G J{v} obtained by adding a dominating vertex v satisfies BCy,;

A (G) = D (GU{}) = A1 (GU{v}) = A1 (G) = Ay(G). (1.1)

Given G C ([Z]), we define the threshold family of G, T(G), as the family of all graphs
obtained from G by adding complete or empty vertices. Note that the family of threshold
graphs defined in the Introduction coincides with 7(0). From Theorem 1.1 and equality (1.1)

we conclude that G satisfy Conjecture iff an element in 7(G) does so. From this fact it follows
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Lemma 1.1. Brouwer’s Conjecture is valid for every n and t provided that BCy holds

for every graph G with n' wvertices where t' = % if ' is odd or t' equal to either =2 or
%/ if n' is even.

2

We call the explicit #'s in Lemma 1.1 as the middle t ’s. In what follows we will consider
an inductive approach on n to prove that BC; holds for the middle ¢’s, whenever it holds for
middle t’s for graphs with fewer vertices. To this end, we remove one vertex of G and derive
a special basis of R™ where explicit bounds can be inferred. Recall the following formula for

L(G) :

(p9)EE

We have [12, Cor 4.3.18|

t

S(G) = max{ S (L@, ;)

i=1

T1y.o., Ty, (l"i,%') = (5ij}>

t
= max {tr(L(G)y)|V is a ¢ dimensional subspace of R"} = Z(L(G)zi, z)  (1.2)

i=1
for {z1,...,2,} an orthonormal set of eigenvectors corresponding to non-increasing eigenvalues
of L(G), and z, =z = (1/y/n,...,1/\/n).
From the last equality we conclude that
t
Si(G) = (L(G)x;, x;)
i=1
for any orthonormal basis {x1,...,2;} of span{zy,..., z}.
We have
t
S (G) = max L(G)x;, x;
(@) {h;, jelt]yeort(n,t) ;( © )
t t
< max (Dh“ hz) + max (Ahl, hl)

~ {hy, je[t}eort(n,t) {hy, jeltlyeort(nt) =

i=1

t n t t
Szdri‘ tz&%ﬁzdi—#\/ﬁﬁzdﬁ-n\/ﬁ, (1.3)
i=1 i=1 i=1 i=1

where «;, i € [n] are eigenvalues of A and ort(n,t) is the family of sets of ¢ orthonormal
vectors in R"™.

Lemma 1.2. There ezists an orthonormal basis {x1,...,x:} of span{z,...,z} and ortho-
normal basis {Tiy1,..., 201} of span{zii1,...,2n1} for any t € [n — 1] such that z; =
(07"'a07$i,i7xi,i+17---ami,n)y (NS [t]a Ty = (07'--707$i—t,iaxi—t—1,ia"'7xn,i)a (NS [t—l—lan_l]

We skip the usual proof of this Lemma, it contains the statement that one can choose the
basis of such form in arbitrary subspace of dimension ¢t and n —t¢ — 1.
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From now we fix a basis as in Lemma 1.2 and denote it by {x1,..., 2 Tii1,- -, Tno1}. It

. /n—1 ‘o no.2 _ . 1
is easy to see that 0 < xy1,741,1 < 4/ —. This is because Yoy r;; =1 and z,; = z; = N
n—1

We further assume 0 < 211, 244111 < “—, since the extremal cases are easily dealt with.
The existence of x; also allows our induction step. Let x1,...,x; be as in Lemma 1.2. Given
G C ([Z]), consider the subgraph G — {1} obtained by removing the first vertex of G, together
with its edges.

We have
SUG) = (@, L(G)a) = Y (a0, LG — {1})z) + Y Zx”, + (21, L(G)x:)
i=1 i=2 p;(1,p)€E i=2
S St_l(G — {1}) + w1 + (Il, L(G)$1)7
where

Z Z (zi1 — Tig)® Z Zmzq <d. (1.4)

¢:(1,9)€E =2 q:(1,9)€E i=2

In particular, if G — {1} satisfies BC;_;, then G satisfies BC; if
w1 + (Il, L(G)lj) S t+ dl. (15)

Equivalently, we can work with the complement graph, G, and show that BC; holds if G — {1}
satisfies BC;_; and
w1 + (I’t+1, L(G)l’t+1) S E"‘ dl. (16)

Here we take x;,1 as the only vector with (possibly) non-zero first coordinate, and

n—1 n—1
f:n—l—t, czlzn—l—dl, @1: Z Z(xi,l_'ri,q)Q: Z Zx?’qul. (17)

q:(L,q)€E i=t+2 ¢:(1,g)eE i=t+2

It is easy to see that we can choose arbitrary p € [n] instead of the first coordinate in above
consideration with substitution 1 <> p in the formulas, we use this consideration below several
times.

The key elements in the paper are the following bounds on (L(G)x,x1)

Proposition 1.1. Let x; be as in Lemma 1.2 and x1, > 0. Then,

1—x2 1
(21, L(G)m1) < [ (18)

d1
di+1°

n 132 9
x5 P11 <
Likewise,

_l _l 1 ‘T?H 1 2 d

1 172 =, 3%4.1 1 Z — )

_ x 5 di1+1
t+1,1

($t+1, L(G)$t+1) <

nd 7 dy \ langed d
Loy _d n—1"t+1,1 .ZUQ < 4
n—1 1 n—1 :):f_H 1 ) t+1,1 di+1°
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P roof By eventually replacing x; by —x;, we assume that z;; > 0.
We have
(1, L(G)z1)x1 1 = dyw1 g — Z Tpp < dix1 + ‘ Z T1p
p:(1,p)€E p:(1,p)EE
and
‘ Tip| = ‘ Z T1p + T1,1 S T1,1 + ‘ Z T1p|-
p:(1,p)eE p:(1,p)EE p:(1,p)EE
Using Jensen inequality we obtain:
‘ Z 1‘171, S dl.’L', ‘ l’lp \/dl 1—1’11 ),
p:(1,p)eE p:(1,p)EE
_ 2
where z =3 g1,
Therefore,
Z T1p| £ max, min {\/dlx, 11+ \/Jl(l — xil — x)}
p(Lp)CE xE[O,l—a:lyl]
di(1 — 2, 1) riy > df-lu?
o ldl + \/ddl 2-22), otherwise.
The first bound on :17%71 is equivalent to
di(1—a3,) <,
making /di(1 —x7,) the solution to the maxmin problem. Otherwise, since
T \/Jl(l -}, — 1)
is decreasing, the maxmin is achieved when
\ dlﬂf =T11 + \/(il(l — 33'%71 — CC)
We manipulate this equation as follows:
(Vdix —211)* = di(1 - ﬁ,l —x) & (n—1)x—2y/dny 1\/_+3:t1 dy(1— xfl)
Vd Vd 22 —dy(1—a?
@\/E: 11,1 4 ( xll) 1,1 1( 1,1)
n—1 n—1 n—1
Vdizy dlxil —(n— 1>Ii1 + (n — 1)J1(1 - x%l)
= +
n—1 (n—1)2
Vdizy CZ1(1 _x%& n11x%1) Vdizy di no o,
n—1 n—1 n—1 n—1 n—1"
The result is concluded by multiplying the last expression by +/d;. O]



118 V.M. Blinovsky, L. D. Speranca, A.N. Pchelintsev

Before proceeding, we remark the following inequality that follows from the last proof.

didy
p:(Lp)eE :Blvp| B V n—1-

P r oo f. In the proof of Proposition 1.1, we concluded that

xl,ldl dCZ1 n 9
‘ Z Tl Sn—1+\/n—1<1_n—1x1’1>'

p(Lp)eE
Proof follows from the observation that r.h.s. of last inequality is decreasing function of 1,
and hence achieved its maximum for z;; >0 at z;; =0. O

Lemma 1.3. Suppose a7, < ;%5. Then,

An extra inequalities are also needed.
Recall that 1,z are the only vectors in {zy,...,z,_1} with non-zero first coordinates.
To motivate the next inequality, we also recall that the first vertex is complete if and only if

the vector
( n—1 1 1 )
z = ,— N
n Vvn(n—1) Vn(n—1)
is in the span of {z1,...,z:}.

Next, we measure how much this vector does not belong to this ¢-subspace.
There exists 0 < A < 1 and a vector y = (0,y2...,4n), >0 oYy =0, >0 ,y; = 1 such
that

1 =2VA+V1— )y,
Tpi1 =2V/1-Xx—V\y.

Further denote:

1
B=SwLGw= > (m—u)
) ) ) p<q, (p,9)EE (1.9)
B =5y, L(G)y) = S (W)
p<q, (p.Q)€E

Then, using inequalities

‘ Z Yp| < m%uf mln{\/dlx \/d 1—x}
z€|

p:(1,p)€E
we have
(21, L(G)x1) = M, ﬁ S+ (1= VB - 2\//\( Z Uy
n p:(1,p)€E
d
<A 1 +(1—/\)B+2\/ n 1)\(1—>\)d1(1— ! 1);
n — n — n —
(1.10)
(@1, L)) = (1= N +AB =21 =N 3
p:(1,p)eE

SR 'n—1 \/nﬁl)\(l_k)czl(l_ncﬁl)

Optimization over A\ deliver the following bounds
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Proposition 1.2. Let x; be as above. Then,
di"5+ B 1\/ n d;
L T (d —B) i d(l— );
(@, L(G)m) < == PR R

(@411, L (G)xt+1)_w+l\/<d1nﬁ —B> +4 d1<1— 4 >

2 2 1 n—1

P r o o f. We maximize the expression in (1.10) for 0 < A < 1. To this aim, we analyze the
derivative of the expression with respect to A :

N _pgy)hd 1224 (1.11)

n—1 n—lm

Observe that the derivative goes to 400 and —oco as A goes to 0 and 1, respectively.
Therefore, we conclude that the maximum is in the interior. On the other hand setting

dy

expression (1.11) to zero gives:

1 (dl% - B) (n— 1)
A=+ =0, A=-~"1 .
4+ A2 Vdidin

The maximum is achieved at:

Ay = %(11\/%).

The proof is concluded by replacing A by Ay in (1.10), observing that Ay =1 — AL. O

Using Proposition 1.2 and conditions (1.5), we conclude that if graph G — {1} satisfies
BC,_; and

di"5+ B 1\/ n 2 dy
e S —B) Ad (1— ) <t+d, 1.12
> 3 <1n—1 R Y =it (1.12)
then graph G satisfies BC;. Simular using condition (1.6)
JlLl—I—B 1 - n _\2 - d; n N
el T2 (a - B) +4d,(1- —2=) 0 <f+d 1.13
2 2\/(1n—1 T Tt stra (1.13)

we conclude that if graph G — {1} satisfies BCy_;, then graph G satisfies BCy.

2. Proof of Conjecture

We describe the key steps in the proof.
First case. Using (1.8) and assuming condition 4’7%,1 > ddj—l or xt+11 > ddﬂ we make
inductive proof BC; for graph G or G assuming that BC,_; for G — {1} is valid.
Second case. We assume that there exists p € [n] s.t. w, <#(1—J). Because we can make
permutation p <> 1 vertices of graph in arbitrary way, w.l.o.g. we set p = 1. Assume also
9 2 1

11 > W, 5 >0 > 2n_1/3 (21)
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and ¢ — B > 2. At first we use inequality (1.5) which we reduce to (2.1) for one step inductive
proof BC; for graph G under the condition that BC;_; for graph G — {1} is true. Next we
consider the case B >t — 2. Then we come to contradiction to the condition (2.1).

Third case. w, > t(1 —9), g € [n]. Two situations are possible.

When

m(G) > (;) (1+36),

we prove BC,_; for graph G directly by using bound (1.2).

In the case
t

m(G) < <2> (1+ 34),

we first assume that there exist p € [n] s.t. t(146) > d,, d, > t(1 —6). Next we show that
there exist set R C [n] s.t. d, < Tné"*, g€ R,

o= 1= ot -85 (1= 1= )

By permutation of vertices of graph w.l.o.g. we can assume that R = [a]. We make a steps of
induction adding step by step [a] vertices to the graph G — [a] and for each step ¢ € [a] we
prove the BC;_; for the graph G — [i] under the assumption that BC;_; ; is valid for graph
G —[i+1], i € [a]. Choice of a in (2.11) allows to prove BC,_, directly by using bound (1.2).

In the last case assumption is d, > t(1+6) or d, < (1—146), ¢ € [n], BC,_; for G is
proved directly, using bound (1.2).

Next we use this scheme to demonstrate the proof in details.

We use induction on n to prove BC and assume that BC is true for n < 10**. One can
significantly improve this bound for n by following the proof in this article more carefully.

Let {x;, i € [n — 1]} be the set of eigenvectors of L(G). Considering Grassmannian frame
F with row set {z;, i € [t]} and complement frame F with row set {x;, i € [t + 1,n — 1]}.

Note, that

‘T%,l + xt2+1,1 = nT_l
W.lo.g. we can assume that z;; € (O, \/m) .
As a first step, we observe that the case xil > ﬁ (respectively, 2 111 2 % ), is easily
discarded.
Lemma 2.1. Suppose that either x7, > dldﬁ or TP, > %. Then, BC holds for G.
Proof. To prove BC for n and xil > dfﬁ, assuming that it is true for n — 1, it is

sufficient to prove the inequality

or
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Last inequality is trivial, since

. . 2 ch
The same consideration proves BC when zi,; > 775 [

Taking into account conditions 1.5, 1.6 and Proposition 1.1 together we conclude that BC;
holds for G if one of the following inequalities is true:

d1 dl I %I% 1
d (1 _ ) 171, <t 2.2
n_1+\/1 n—1 CC%’I +w < ( )
d - dy \1—L5af _
L+ (1 — ) n T Lo <L (2.3)
n—1 n—1 Tii1a
For the remaining of the paper, we consider ¢t = § when n =2t and t = ”T’l when n = 2t+1.
Assume at first that w; < t(1 — ).
Then using (2.2) we obtain the inequality
dy \1- %137% 1
d(1- ) < (1 - 1)?
! n—1 3 = )
or S ) p
9 s5(n — 1 -
> = =1—
S -1 T -1 ° °
The last inequality is satisfied if
2 1
2 e 4 —1/3
T > 52§ >0 >3n /7. (2.4)
It is left to consider the reverse condition:
2
2
< —.
T11 o2

In this case, we have:

di < wy + Z (ml,p — xl,l)z < dlxil + 24/ dlxl,l + 14wy

p:(1,p)EE
1 2 2 d ~1/3 -1
<§+5—|—1+w1<§+w1§t<1—1>, 3n <0 <107 (2:5)

Imposing condition (1.12) and using inequality w; < dj, we obtain stronger condition

di-"5 + B 1\/ n 2 d; n
_n- 4 — — < .
5 +2 (dln—l B) +4d1<1 n_1>n_1+d1_d1+t (2.6)

to prove that graph G satisfies BC; if G — {1} satisfies BC,_;.
Hence

n 2 dy n n
—B) 4 (1— ) <o — _B.
(dln—l +dd, n—1 S d 1

n — n —
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Assume that B <t — %, then

4d1<1-— d ) "< <2t——d1
n—1/n—-1 n

n 2 n 2
—B>—( —B>.
—1 P

Hence we need to prove inequality

d1 n
a(1-0) s (e

To satisfy last inequality it is sufficient to impose condition

Y-,

d1<t<1——§>, (2.7)

when § >3n~ '3 t— B> 2
AH%tﬁB>t——tMnB<n—t+6 242
From other side,

B> Z (Te411 — xt+1,p) > d, xt+1 1 — 2|24 di(1 - xt+1 1)
¢:(1,9)€E

S ) G )50 )
)
"8

—(2—1—5)(1 1>—§<1+é>>g+§, where é>5>3n_1/3. (2.8)

2
>24n
=2 52 8

This contradiction complete the proof in the case that exists p € [n], s.t. w, < t(1 —J). Here
in the third inequality we use relation

22 _n_l_xz
11 = 1,1
t+7 n b

and in the forth inequality in (2.8) we use the inequality

2/t a1+ 9) <21+

Next we assume that w, > t(1 —6), ¢ € [n]. Then d, > w, > t(1—6) and d, < t(1+6),
q € [n]. BCy, t=t,t—1 to be true for complement graph G it is sufficient to impose inequality

i (g, L(G)zy)) = i He(L(G)) < i dy + ny/n < (14 6) + ny/n <m(G) + (é)

q=t+1 q=t+1 qg=t+1

Here we use bound (1.3).
From the last inequality it follows that BCj is true for G if the number of edges m(G)
satisfies the inequality

m(G) > (2)(1 + 39).

Assume now that there exists p € [n] s.t. t(1+6) > d,, d, >t(1—29).
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Taking into account that w, > t(1 — ) we have

> szq<t—t1—5):t5.

q:(p,g)ek =1

Assuming uniform distribution on the set {q: (p,q) € E},

! t5 t5 5
E(;qu) =T, - 1-0

Using Markov inequality P(X > CE(X)) < L, C >0 and choosing C = 6~/2, we have

(Z% 1—o ><\/_

Hence .
Sz < Y0
— L

where ¢ € J for some set J C {q: (p,q) € E}, |J| > (1—+/0)(1—0)t. Note also that w, < t.
Hence for the arbitrary ¢ € J

SOl VRS DD I Db DENRES Dl prees

rrqEEzl ri(r,q)€E =1 ri(r,q)€E =1 ri(r,Q)€E 1=1

§t+dq1—\f55+2! > szq Zx2 <t+d, \/55+2d L

r:i(r,q)€E i=1 1-4
or ;
d, < <t(1+30Y%), qeJ, §>3n"13 (2.9)
1- Y0 9 /6
-5 -5
Because d, > w, > t(1 —§) > t(1 — 46'/1), p € [n], we have inequalities
t(1 —46Y%) < dp, dy < t(1 4+ 46YY), w,>t(1—6), g€ J.
Thus

Z dy < 2m(G) — (1 — 46V 13(1 — 6)(1 — V9)
q€[n]\

( ) (1430) — (1 — 46" £2(1 = 6)(1 — V/8) < 3n*V/3.

W.lo.g. we can assume |J| = [t(1 — 6)(1 —+/§)]. Assuming uniform distribution on the set
[n] \ J, we have

TN ZqG[n]\JJq 3%2\/3 n
E(d,) = IR n—t(l—é)(l—\/5_)<7 V.
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Using Markov inequality we have
P(d, > Tns"/*) < 64,

Thus there exists set I C [n)\J, |I| > n—t(1—06"*)(1=v3)(1—6) > t(1+5"4) s.t. d, < Tné"/4,
q € I and hence d, > n(1 —176Y4), g € I. W.lo.g. we can assume that [ = [¢(1+ %) and
it is sufficient here to assume that 76'/* < 1/10.

Last inequality and inequality 3n~'/3 < §, which is imposed in (2.4), (2.5), (2.8), (2.9) leads
to the condition 3n~'/% < § < (70)~*. Hence 3n~'/% < (70)~*. The last inequality to be true
it is sufficient to impose condition n > 10%*.

We consider a coordinates R from the set I. W.l.o.g. we can assume that R = [a], where

a= [n(l —851/4)(1 . \/1 - m)]

Justification of the choice of a we make later. When passing step i € [a — 1] we renumber
vertices of graph G — [i — 1] as follows ¢ — i — 1 skipping first ¢ — 1 positions in graphs

G —[i—1] and G — [i — 1]. On this way we redefine t(i) = t —i vectors Ty;1,...,2Tn, 1 as
follows i = (0,...,0, Zegiiy- - -y Tigin) = Teri = (Teits - - - Tetin—it1). Complement set of
orthonormal vectors of length n — i+ 1 we denote Zi,...,7;.

(O Starting point for the process, described below and implemented “a” times.

Using inequality (2.3) on 4 -th step and taking into account the inequalities @, < d; < Tnd'/4
and t(i) =t — i we obtain the inequality

B CZ 1— nfifli,2 ; 9
d1(1 — ) noi T o (t— 1 —i—7n(51/4> . (2.10)

— =2
n—1 Titin

Because i < a, we relax bound (2.10) to

y Tnét/4 7 14%51/4
Titin 2 5 =~ :
’ (34n — Tnét/4) n

Assume now, that the opposite inequality is valid 7?2 in < %. Then we repeat considerations

starting from equation (2.6) for d;(G —[i]) = di(G —[i—1]) < ™é*/*, t = t—i, B(G—[i]) —
B(G —[i —1]).
According the induction process, we impose the inequality (1.13)

=B 1 [ ion—i1 N2 - dy \n—i+1 _
LJré (dlu—B) +4d1<1— ! )n o <di+t—i. (2.11)

2 n—1 n-—1 n—1

Assume that B < t—i—1. Making transformations of the last inequality, and using inequality
w, < dy, we impose stronger inequality

(1= ) iy (- d ),

n—1 n—1 n-—21
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We strength last inequality and obtain the bound
Snd'/* < (t —i— B)(t —i — Tné"%)

or ”
_ 8nd
B<t—4——m—«——.
- S Tndl/4
Assume now the opposite inequality
_ 8no'/4
B>t—i— ———
T i~ TnoiA
or i
8nd
From other side we have d; > n(1 —76"*) and #}, > =L — 7'14251/4 >1—2 6 <(70)7*

At the end we show that inequality (2.12) could not be satisfied, and we come to contradiction:

B > Z (le — jl,p)2 > dljil — 2|f1’1’\/ dl

p:(1,p)€E(G—[i—1])

> n(l — 751/4)<1 - 2) - 2\/n(1 — 751/4) (1 - 3) > gt.

n n

Last inequality contradict to inequality (2.12) for n > 10%%.

Next we make above proof procedure (from sign () for graph G — [i — 1] and set of
orthonormal vectors @y, ..., &,_1. Step by step deleting vertex i € I from G on i-th step and
assuming by induction that BC;_;_; is true for graph G'—[i] and set of vectors @, i1, .., Tn1
of length n —i = 2t —i and as before proving that BC,_; is true for graph G — [i — 1] and set
of vectors xy i, ..., Tn_ 1.

We make a steps of this induction process and obtain from graph G —[a] and set of vectors
Tigaits- .- Tno1 Of length n—a =2t —a, graph G and set of vectors @y 1,...,o,_1 of length
n. The complement to graph G — [a] is graph G — [a] and complement set of orthonormal
vectors 1, ...,x; of length n —a. The BC,_,_; is true for G — [a] iff BC; is true for graph
G —[a].

Remind that we assume that

t

m(G) < <2>(1+35)

(#17)- () eco

BC, for G — [a] is obviously true if m(G — [a]) < (*}'). Because

or

dy>n—1—d,>n—1-"Tné"* > n(1 - 854,

we have

m(G —[a]) < m(G) —na(l —85"*) + (;>

< (Zt; 1) - (;) ~ na(1 — 85V + (‘2’) < (“;1). (2.13)
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The last condition to be true it is sufficient to impose condition

a= [n(1 - 851/4)(1 - \/1 - m)] (2.14)

Note that |I| = [t(1 + V4)] > a.
Assume now that d, > t(1+6), i € [n]. Then d, < t(1—6). BC;_; is true if

im(L(G)) < ; T, +/2m(G)t < t(t — 1)(1 — 6) + \/nm(G)
<tt—1)(1—-6)+nvn <m(G)+ w,

t

which is true when m(G) > (;

the proof.

), otherwise BC,_; is trivially true for graph G. This completes

Note that this version of the article has the following additions compared to the preprint
published at [13]:

1. The formula (2.12) in the preprint was refined for the number a (in this article it became
the formula (2.14));

2. Before the formula (2.14), in the second inequality for (2.13), the refined estimate d, >
t(1—=9) for d, > n(1—76%) is used instead of the weaker one which allows us to obtain
a suitable estimate value for the number a;

3. According to the formulas on page 11 of the preprint, the terms 1/n have been removed:
taking its contribution is redundant and does not need to be taken into account;

4. The estimate for d; before formula (2.5) in the preprint (the inequality (2.7) in this
paper) is corrected to match the estimate after formula (2.4) in the preprint ((2.5) in this
article), so that the subsequent evaluation of B is transparent.
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