Lithofacial analysis and possibilities for prediction of properties on geophysical research and seismic exploration data by methods of machine learning


Cite item

Full Text

Abstract

The success of a development strategy for any field depends on the degree of knowledge of the geological structure of its main reservoirs. As the area is drilled out, the concept of the structure of the hydrocarbon accumulation is refined, but in the case of a complex structure of the void space of the reservoirs and the lithological heterogeneity of the section over the area, geological uncertainties and risks during the subsequent placement of wells remain high. For these reasons, one of the main problems in hydrocarbon production is predicting rock types and the distribution of fluids throughout the reservoir away from wells, since the determination of rock properties is a major source of uncertainty in reservoir modeling studies [1, 2]. The proposed project will demonstrate algorithms based on machine learning methods that allow predicting the distribution of lithology and the uncertainty of lithofacies variability in the section.

Full Text

Restricted Access

About the authors

E. S. Kolbikova

ООО «Роксар Парадайм – ПО и Решения»

Email: vestnik@niikmg.kz
руководитель направления по петрофизике и интерпретации ГИС Москва

References

  1. Hami-Eddine K., Klein P., and Richard L. Well Facies-based supervised classification on prestack. – SEG Annual Meeting, Houston, Texas, October 2009.
  2. Hami-Eddine K., Klein P., Richard L., de Ribet B. and Grout M., A new technique for lithology and fluid content prediction from prestack data: An application to a carbonate reservoir. – The 13th SEGJ International Symposium, Tokyo, Japan, April 2019.
  3. Ye Shin-Ju, Rabiller P. A new tool for electrofacies analysis: Multi-Resolution Graph-Based Clustering. – 41st Annual Logging Symposium SPWLA, 2000.
  4. Ye Shin-Ju, Rabiller P. Automated Electrofacies Ordering. – Petrophysics, 2005, v. 46, N 6.
  5. Zhou Y., and Goldman S. Democratic co-learning. – 16th IEEE International Conference on Tools with Artificial Intelligence, 2004.
  6. Kolbikova E., Gusev S., Garaev A., Malinovskaya O., Kamilevich R. Forecast of prospective oil saturation zones in the Devonian carbonate deposits of the Kharyaginsky field based on geological and geophysical information analysis by using machine learning methods. – SPE-206520, SPE Russian Petroleum Technology Conference, 2021.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2021 Kolbikova E.S.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».