Lithofacial analysis and possibilities for prediction of properties on geophysical research and seismic exploration data by methods of machine learning
- Authors: Kolbikova E.S.1
-
Affiliations:
- ООО «Роксар Парадайм – ПО и Решения»
- Issue: Vol 3, No 4 (2021)
- Pages: 32-37
- Section: Articles
- URL: https://journal-vniispk.ru/2707-4226/article/view/125861
- DOI: https://doi.org/10.54859/kjogi99690
- ID: 125861
Cite item
Full Text
Abstract
Full Text

About the authors
E. S. Kolbikova
ООО «Роксар Парадайм – ПО и Решения»
Email: vestnik@niikmg.kz
руководитель направления по петрофизике и интерпретации ГИС Москва
References
- Hami-Eddine K., Klein P., and Richard L. Well Facies-based supervised classification on prestack. – SEG Annual Meeting, Houston, Texas, October 2009.
- Hami-Eddine K., Klein P., Richard L., de Ribet B. and Grout M., A new technique for lithology and fluid content prediction from prestack data: An application to a carbonate reservoir. – The 13th SEGJ International Symposium, Tokyo, Japan, April 2019.
- Ye Shin-Ju, Rabiller P. A new tool for electrofacies analysis: Multi-Resolution Graph-Based Clustering. – 41st Annual Logging Symposium SPWLA, 2000.
- Ye Shin-Ju, Rabiller P. Automated Electrofacies Ordering. – Petrophysics, 2005, v. 46, N 6.
- Zhou Y., and Goldman S. Democratic co-learning. – 16th IEEE International Conference on Tools with Artificial Intelligence, 2004.
- Kolbikova E., Gusev S., Garaev A., Malinovskaya O., Kamilevich R. Forecast of prospective oil saturation zones in the Devonian carbonate deposits of the Kharyaginsky field based on geological and geophysical information analysis by using machine learning methods. – SPE-206520, SPE Russian Petroleum Technology Conference, 2021.
Supplementary files
