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Abstract. In a sensory-rich environment, human experiences are shaped by the complex
interplay of multiple senses. However, digital interactions predominantly engage visual and
auditory modalities, leaving other sensory channels, such as olfaction, largely unutilized. Virtual
Reality (VR) technology holds significant potential for addressing this limitation by incorporating
a wider range of sensory inputs to create more immersive experiences. This study introduces a
novel approach for integrating olfactory stimuli into VR environments through the development of
predictive odor models, termed SPRF (Sensory Predictive Response Framework). The objective is
to enhance the sensory dimension of VR by tailoring scent stimuli to specific content and context
with the collection of information about the location of scent sources and their identification
through features to serve to reproduce them in the space of the VR environment, thereby
enriching user engagement and immersion. Additionally, the research investigates the influence of
various scent-related factors on user perception and behavior in VR, aiming to develop predictive
models optimized for olfactory integration. Empirical evaluations demonstrate that the SPRF
model achieves superior performance, with an accuracy of 98.13%, significantly outperforming
conventional models such as Convolutional Neural Networks (CNN, 79.46%), Long Short-Term
Memory (LSTM, 80.37%), and Support Vector Machines (SVM, 85.24%). Additionally, SPRF
delivers notable improvements in F1-scores (13.05%-21.38%) and accuracy (12.89%-18.67%)
compared to these alternatives. These findings highlight the efficacy of SPRF in advancing
olfactory integration within VR, offering actionable insights for the design of multisensory digital
environments.

Keywords: virtual reality, odor, model selection, user experience, imagination, odor
prediction.

1. Introduction. The rapid expansion of virtual worlds and
advancements in 3D space technology have ushered in a new era of human
interaction and perception. As research in these fields progresses, the
integration of virtual environments with real-life experiences becomes
increasingly significant [1]. This evolution reflects a growing interest in
enhancing human vision and creating immersive experiences that bridge the
gap between virtual and real worlds. Consequently, there is a concerted effort
to explore how these developments can enrich human life and foster a future
characterized by greater enjoyment and connectivity [2].

Moreover, today’s multisensory digital experiences have enhanced
human interaction with technology, with the aim of replicating real-world
sensory perceptions. The objective is to integrate human senses into digital
environments, creating a seamless and immersive experience. However,
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delivering a comprehensive sensory digital experience poses significant
challenges due to various influencing factors. This endeavor is prioritized in
the future technological development [3]. Current digital techniques often lack
full auditory stimulation and integration with other senses, which presents
a major challenge in increasing consumer value [4]. Besides, the future
expansion of VR systems has captured the keen interest of researchers, making
studies on transmission and prediction increasingly essential. In particular,
the ability to predict and simulate odors in virtual environments is expected
to play a pivotal role, especially in enhancing the online transmission of
360-degree videos [5-7]. This area of research is not only necessary but also
holds immense potential to revolutionize immersive experiences in the future.

The integration of olfactory elements into virtual reality (VR)
environments marks a groundbreaking advancement in immersive technology,
addressing a sensory dimension that has traditionally been overlooked in
digital spaces. Olfaction, with its profound influence on human perception,
memory, and emotion, offers significant potential to enhance user immersion
and realism in virtual environments. Recent technological advancements have
enabled the incorporation of scents into VR, thereby providing a more holistic
sensory experience. While much of the recent research in VR has focused on
areas such as viewport position prediction and the evaluation of 360-degree
video streaming quality [8-11], studies on integrating olfactory stimuli into VR
remain limited. However, predictive modeling, as demonstrated in studies such
as [9,10], plays a critical role in enhancing VR experiences by anticipating user
interactions and optimizing immersion. Building on these advancements, this
work seeks to enhance user perception in virtual environments by combining
predictive modeling with engaging olfactory stimuli. By doing so, we aim to
create a novel and immersive virtual atmosphere that deepens realism and
enriches the overall user experience.

The proposed scent recognition system in virtual reality works by
collecting and analyzing scents in the surrounding space through customized
electronic noses integrated directly under the virtual reality glasses with gas
sensors used in the e-nose such as MP503, BME680, MQ3, MQ5, MQ9 and
WSP2110 it is shown in Figure 1. When the user wears the glasses, these
electronic noses continuously scan the environment, detecting and collecting
scent molecules in the air. The collected data is then processed by advanced
algorithms to classify the scent, identify the characteristics of the scent, and
accurately predict the distance from the source to the location of the VR glasses.
The system also takes into account environmental factors that may affect the
diffusion of scents, such as wind speed and direction, temperature, humidity,
and air quality. As a result, the algorithm can calibrate parameters to ensure
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that the prediction of the scent’s location is simulated as accurately as possible.
When a scent source is detected, the system displays or recreates its location
in the virtual reality environment, providing the user with a more realistic
experience. With this technology, users in virtual reality environments can not
only see and hear but also intuitively perceive scents, opening upmany potential
applications in the fields of entertainment, education, scientific research and
even environmental investigation.

Fig. 1. System in a virtual reality environment

Predictive odor models are at the forefront of this innovation, providing
the ability to simulate realistic olfactory experiences using complex algorithms
and extensive scent databases. These models work by analyzing the chemical
compositions of odors and predicting their perceptual attributes, thereby
enhancing the realism and interactivity of VR applications. Such applications
span diverse fields, including gaming, education, therapeutic interventions,
and marketing strategies.

Figure 2 shows an architectural model for developing predictive odor
systems in virtual reality environments. It features four key layers. The
Data Collection Layer collects information through sensors and odor data
repositories. Moving to the Processing Layer, chemical analysis is conducted
alongside machine learning models, such as Support Vector Machines
(SVM), to predict odor perceptions. The Integration Layer ensures seamless
connectivity between VR software and olfactory display systems, enabling the
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emission of odors within virtual environments. Finally, the User-Interaction
Layer focuses on incorporating feedback mechanisms and user interfaces to
refine and enhance user experiences. The flow between these layers is depicted
with arrows, illustrating the sequential process from data collection to user
interaction.

Fig. 2. Architectural model for predictive odor models in VR

The novelty of predictive odor models lies in their scientific approach
to synthesizing and delivering scents with precision. Using machine learning
techniques and comprehensive olfactory research, these models can accurately
reproduce a broad spectrum of odors. This capability is pivotal in overcoming
the challenges associated with creating consistent and repeatable olfactory
experiences in VR, ensuring that users receive reliable sensory input regardless
of the context.

On the one hand, predictive odor models facilitate the creation of
personalized and adaptive scent experiences, representing a significant leap
toward user-centric virtual environments. By tailoring scent profiles to
individual preferences or specific VR scenarios, these models enable a level
of customization that was previously unattainable. This personalization not
only enhances user engagement but also allows for the exploration of new
dimensions in digital interaction.

In addition to improving user experience, predictive odor models have
significant potential to advance research on the human olfactory system and its
influence on behavior and cognition. By simulating diverse scent scenarios,
researchers can investigate psychological and physiological responses to
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different odors within controlled virtual settings. This research can lead to a
deeper understanding of the interplay between olfaction and various cognitive
processes.

Ultimately, the development of predictive odor models represents a
substantial leap forward in the pursuit of truly immersive virtual realities.
As technology continues to evolve, these models will play an essential role
in bridging the gap between the virtual and the real, providing users with a
multisensory experience that closely mirrors real-world interactions. This
advancement not only enriches the sensory landscape of VR but also opens
new avenues for innovation across multiple disciplines.

2. Related work. The development of predictive odor models for
virtual reality (VR) environments is a multidisciplinary endeavor that integrates
insights from olfactory science, computational modeling, and immersive
technology. This field has gained traction due to the increasing demand for
more immersive VR experiences that engage multiple senses beyond sight and
sound. Researchers have explored various approaches to simulate and predict
olfactory experiences, with the aim of enhancing realism and user engagement.

Early work in olfactory science laid the groundwork by identifying the
fundamental properties of odors and how they are perceived by humans. Studies
such as those by the authors in [12] on olfactory receptors provided crucial
insights into how humans detect and differentiate odors. This understanding is
vital for creating models that can predict how different odorants will interact
and be perceived in a virtual space.

In computational modeling, efforts have been made to simulate odor
dispersion in virtual environments. These models often draw on fluid dynamics
to predict how odor molecules move and spread. For example, the research by
the authors in [13] applied computational fluid dynamics (CFD) to model odor
dispersion in enclosed spaces, which can be adapted for VR scenarios. Such
models help to create realistic odor propagation in virtual worlds, accounting
for factors such as air flow and temperature.

Machine learning techniques have also been used to improve predictive
accuracy. By training algorithms on large data sets of odorant molecules and
their perceived smells, researchers aim to predict olfactory experiences more
reliably. Approaches using neural networks, as discussed in [14, 15], show
promise in predicting odor characteristics based on molecular structure, which
is crucial for VR applications where real-time processing is needed.

In the realm of immersive technology, the integration of olfactory
feedback into VR systems presents unique challenges. Devices such as scent
diffusers and wearable olfactory interfaces have been developed to deliver
controlled odor stimuli. The research by the authors in [16] demonstrated
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how olfactory stimuli could be synchronized with visual and auditory cues to
enhance the sense of presence in VR. This synchronization is key to creating a
cohesive and believable virtual environment.

Furthermore, user experience studies are crucial to understanding how
predictive odor models affect immersion and enjoyment in VR. Experiments
often involve user testing to evaluate the effectiveness of olfactory integration.
Findings from studies such as those by the authors in [17] suggest that olfactory
signals can significantly enhance the perception of presence and emotional
impact in virtual settings.

The challenge of standardization and calibration of olfactory devices
remains a critical area of research. Differences in individual perception
and the subjective nature of smell require models and devices to be highly
adaptable. Collaborative efforts, such as those led by ISO working groups,
aim to establish guidelines and standards for olfactory VR implementations,
ensuring consistency and reliability across different systems.

Privacy and ethical considerations are emerging concerns as VR
environments become more personalized. The collection and processing
of olfactory data raises questions about user consent and data security.
Researchers such as the authors in [18] emphasize the need for ethical
frameworks to address these issues, ensuring that advances in olfactory VR
respect user privacy.

Recent advances in sensor technology also play a pivotal role in the
development of predictive odor models. The miniaturization and increased
sensitivity of electronic noses enable more precise detection and analysis of
odorants in real time. Studies by the authors in [19] highlight the potential of
these sensors in VR applications, where they can provide feedback loops to
dynamically adjust the virtual olfactory environment.

In summary, the development of predictive odor models for VR
environments is a rapidly evolving field that bridges several scientific and
technological domains. Continued research and collaboration across these
areas will be essential to overcome current limitations and unlock the full
potential of immersive olfactory experiences. As technology matures, it holds
the promise of creating truly multisensory virtual worlds that can transform
entertainment, education, and training.

In this study [20], machine learning-based classification models were
developed to predict odor characteristics using the psychophysical data set
created by the authors. This data set includes data on odorant properties for 480
structurally diverse compounds, each measured at two different concentrations
(dilutions).
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This study [21] uses data from five reservoirs in Kansas, USA, to create
predictive models that relate dissolved geosmin concentrations to water quality
factors. Individual reservoir-based models outperformed pooled data models
in terms of performance. Events related to taste and smell occurred outside of
the summer, and wintertime saw higher amounts of geosmin. The development
of universal models was hampered by the strong dependence of geosmin
concentrations on regional environmental conditions. Inorganic phosphorus
limits have been found to play a major role in controlling the generation and
release of geosmin into the water column.

This study [22] uses comprehensive data on a variety of biotic and
abiotic characteristics of Taihu Lake to create predictive models for T&O (Taste
and Odor) chemicals. The realistic dynamics of the T&O compounds were
accurately recorded and a good match was achieved. They took into account
two algal growth seasons (blooming and non-blooming) and two fractions of
the T&O compounds (dissolved and particle bound), in contrast to previous
odor models. The models proved to be useful for water resource managers
in anticipating the possibility of T&O accidents and showed a high degree of
accuracy in predicting T&O concentrations.

Due to the wider applicability and efficiency of model-based aroma
design in SOR (Stimulus-Organism-Response) creation, this study [23]
used it. In order to precisely characterize the olfactory characteristics and
facilitate the creation of a more potent SOR, R-profile descriptors were utilized.
Furthermore, the SOR was modeled using Machine Learning (ML) based on
Artificial Neural Network (ANN), which demonstrates the accuracy of the
model with an average R² of 0.8807. Two case studies, aroma replacement and
odor tuning, validated by tests and literature, supported the efficacy of the ML
model and the computer-aided aroma design framework (CAAD) for aroma
mixtures.

This study [24] presents a predictive model to predict chemical odor
characteristics represented by binary values from mass spectra. The predictive
model incorporates the language modeling approach Word2vec. The similarity
between descriptors is minimized because, in the Sigma-Aldrich catalog data
utilized in this work, descriptors representing the olfactory characteristics of
molecules are used solely, even when additional descriptors express comparable
odor characters.

Laboratory data were used in this study [25]. However, Internet of
Things (IoT) sensor devices are used to gather information regarding odor
compounds in real-world livestock scenarios. Due to the nature of data
collection using sensors, missing data for a variety of causes is a frequent
problem.
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This study [26] uses dynamic olfactometry and analytical techniques
to examine gas emissions from nine solid wastes and digestates during the
active composting phase. The authors measured 22 important odorants and
correlated them with odor concentration (OC) using an odor activity value
(OAV) approach based on odor detection thresholds (ODT). To forecast OC
trends, linear models employing OAVmax and OAVsum, as well as partial
least squares (PLS) regressions, were investigated. Outperforming OAVmax
and OAVsum, the PLS model explained 74-76% of the variance in OC. The
important causes of odor pollution were found to be key odorants such as
dimethyl sulfide, methanethiol, and hydrogen sulfide. In order to verify whether
the PLS model can be applied to other processes, the validation set must be
expanded.

3. Methodology
3.1. Introduction to Methodology. Odor recognition in virtual reality

(VR) environments is an interdisciplinary research field that combines sensory
science and machine learning to create realistic olfactory experiences. Machine
learning models such as Convolutional Neural Networks (CNN), Long Short-
TermMemory (LSTM), Support Vector Machines (SVM), and Random Forests
play an important role in processing and analyzing complex odor-related data.
Each model has its own advantages, but not all are suitable for the current
research objectives and conditions. After careful consideration, we chose
Random Forest as the primary method to conduct this research and created a
model named the Sensory Predictive Response Framework (SPRF).

CNN is a powerful model for processing spatial data, such as images or
chemical structures. However, the main drawback of CNN is that it requires
a large amount of data for training. This is a major challenge in the field of
odor research, where data is often limited and difficult to collect. LSTM, with
its ability to analyze temporal data and detect long-term dependence patterns,
is also a potential option, but it requires high computational resources and
considerable time for parameter optimization, which is not suitable for the
scale of this study. Meanwhile, SVM has advantages in classifying data at high
spatial scales, but when dealing with large or complex data sets, SVM is prone
to becoming inefficient and resource-consuming.

Based on the current methodologies, a new model needed to be
developed, and SPRF was chosen by us because it better fits the current
research goals and context. The SPRF model is described in Section 4. It
is a decision tree-based machine learning method distinguished by its ability to
handle incomplete, noisy, and multidimensional data. It is particularly useful
in early studies where olfactory data is often incomplete or non-normilized.
A significant strength is its ability to perform well on small to medium-sized
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datasets and provide interpretable results. This allows us to analyze and adjust
the model more flexibly during the research process.

Additionally, SPRF offers a balance between accuracy and performance.
Unlike deep models such as CNNs or LSTMs in [27], it does not require high
hardware configurations or complex optimization techniques. With the ability
to synthesize multiple decision trees, it not only reduces the risk of overfitting
but also improves confidence in predictions. These characteristics make it an
ideal method for performing initial analyses in the prediction of odor, laying
the foundation for further research and practical applications in VR.

3.2. Research Design. In this section, we describe the type of research
3.2.1 and specifically outline our research design 3.2.2.

3.2.1. Type of research. Both qualitative and quantitative
methodologies are used in this investigation. Specifically, in this study,
qualitative factors are presented through the analysis of human sensory
responses to odors in a virtual reality (VR) environment, in order to better
understand the interaction between olfactory sensation and environmental
factors. Quantitative factors, on the other hand, are applied in the analysis of
data collected from sensors (e-nose), helping to determine the relationship
between the chemical characteristics of odors and the recorded sensory
characteristics.

3.2.2. Description of research design.
– DataCollection. Data were collected from experiments with subjects

(68 people) in a controlled environment. Important parameters such as phi
(azimuth) and theta (tilt angle) were recorded from electronic sensors, and the
data were stored as text files (txt) containing odor information. At the same
time, participants’ sensory responses to odors were recorded as color values in
the CIELAB color space, allowing for the analysis of the relationship between
odors and colors. In addition, using CIELAB allows for better representation of
nonlinear data because gas sensors measure the concentration of compounds in
the air, and the data obtained is often nonlinear. If using a color space such as
RGB, the values may overlap making it difficult to distinguish between odors.

– Experimental Design. In a virtual reality environment, participants
were exposed to different odors, such as black pepper, caramel, and cherry. The
experiments were designed so that participants were not distracted and could
concentrate on odor recognition under controlled environmental conditions.
Environmental parameters such as light and temperature were also maintained
and kept stable throughout the experiment.

– Survey and data analysis. After collecting sensory and chemical
data, we use data analysis methods to model the relationship between odors
and sensory features (color). Machine learning models are applied, including
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regression, sliding windows, and data normalization, to analyze the collected
data. Specifically, we use the sliding-window analysis method to generate
consecutive data sequences, which enables the machine learning model to
predict odors based on chemical and sensory features.

– Model evaluation. Machine learning models are evaluated using
metrics such as the root mean square error (RMSE) to test the accuracy of
predictions. The data is divided into training and testing sets to determine the
generalizability of the model and test the reliability of the results.

– Analysis of results. Finally, the results obtained from the machine
learning models will be compared with previous studies, and the validity of
the data will be checked. The results from the experiments and models will
provide insights into how odors are recognized in virtual reality environments,
thereby helping to improve odor prediction models in future research.

3.3. Data Collection. In this section, we present the prediction of
odor in virtual reality spaces. The environment plays a crucial role, as it
encompasses the simulated settings where scents are integrated to enhance
immersiveness. Participants are individuals who engage with these virtual
environments, providing feedback on their sensory experiences to help refine
odor prediction models. The data set comprises data collected from these
interactions, including sensory responses and environmental variables, which
are analyzed to improve the accuracy of odor predictions in digital simulations.

We use the dataset from [28], which is used to predict the color
associated with odors using an electronic nose (e-nose). Perceptual data was
collected from 68 participants who were asked to associate colors with ten
different odors such as black pepper, caramel, and cherry. These participants
selected colors in the CIELAB color space, which includes three channels: L*
for lightness, a* for the red-green axis, and b* for the yellow-blue axis. The
odors were presented in a controlled environment to ensure consistent lighting
conditions.

On the one hand, the chemical data was obtained using a custom-made
e-nose equipped with various gas sensors, such as MP503, BME680, and MQ9.
This setup allowed for the extraction of chemical features from the odors,
which were then used to train the regression models. The e-nose recorded
100 samples, ten for each odor, with sensors that capture data on air quality,
pollution level, and other environmental factors. The data were pre-processed
by averaging sensor responses and smoothing signals before being used in the
analysis.

On the other hand, the final dataset consisted of ten features per sample,
excluding the time component used for packet reordering. Regression models
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were trained to predict the L*, a*, and b* values for each odor based on the
chemical characteristics captured by the e-nose.

The odor data in this study were collected in large datasets consisting
of ten odors, each stored in ten data files. As shown in Figure 3, these files
serve as examples for the remaining ten odors in the dataset and are depicted
as two 3D graphs.

Fig. 3. Analyzed Scent Data from Sensors

As mentioned above, each collected odor dataset contains eleven
columns of data describing that odor, as detailed below.

– Time is responsible for allocating time during the data collection
process.

– AirQuality is responsible for measuring and evaluating air quality
based on parameters such as fine dust concentration (PM2.5, PM10) and toxic
gases.

– PollutionLevel measures the concentration of air pollution in the
environment.
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– Temperature measures the current ambient temperature, expressed
in °C or °F units.

– Pressure measures atmospheric pressure, commonly used for
weather and environmental conditions analysis, in hPa or mmHg.

– Humidity measures the relative humidity of the air, expressed as a
percentage (%).

– Gas measures the concentration of flammable or toxic gases in the
air, such as methane (CH4) or carbon monoxide (CO).

– MQ3 sensor detects alcohol vapor, mainly for measuring ethanol
concentration in the air.

– MQ5 sensor is used to measure gases such as LPG, methane and
butane.

– MQ9 sensor detects carbon monoxide (CO) and other flammable
gases in the air.

– HCHO measures the concentration of formaldehyde (HCHO), a
pollutant commonly found in indoor or industrial environments.

Thus, a collected odor has ten collection files, and each file can have
approximately 2125 rows of collected data with eleven columns. The recording
process is done continuously, and the collected values are updated in real
time. This ensures that even smallest change in the environment is accurately
recorded by the "e-nose".

3.4. Data Analysis. In this study, data analysis was mainly performed
using Python, a programming language with development tools such as
PyCharm for coding and data processing. Popular libraries such as NumPy
and Pandas were used for data manipulation and processing, while machine
learning models were built and evaluated with the support of libraries such
as Scikit-learn and Keras. Below are two sections related to data processing:
the first is Data Analysis Methodology 3.4.1, which analyzes the data in this
study, including various techniques for processing and understanding the data,
and the next is Data Reliability and Validity Check 3.4.2. Through the above
techniques, we can ensure that the collected data is accurate, reliable, and
highly valid, thereby laying a solid foundation for the machine learning model
in predicting odors in virtual reality environments.

3.4.1. Data Analysis Methodology.
– Descriptive Statistics. Before building the model, the data is

explored through descriptive statistical techniques such as calculating the
mean, standard deviation, and distribution of the values. This helps to identify
key features of the data, such as phi and theta values, and detect outliers that
may affect the model results.
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– Data transformation. To ensure that the data falls within a suitable
range for the machine learning model, normalization techniques are applied.
The transform function is used to normalize the data, bringing the phi and
theta values to a range of 0 to 1, which helps to increase the accuracy and
performance of the model.

– Regression. To predict phi and theta values, regression models are
used, in which linear regression techniques or more complex models such as
Gaussian Process Regression (GPR) can be applied to analyze the relationship
between chemical characteristics and sensory values.

– Sliding window analysis. An important technique used in this study
is sliding window analysis, which aims to generate consecutive data sequences
to serve as input to the machine learning model. Sliding window functions help
to divide the data into consecutive sub-segments, providing training samples
for the regression model. This technique helps the model to learn the temporal
features in phi and theta data over time.

3.4.2. Data Reliability and Validity Check.
– Reliability. To check the reliability of the data, we use methods such

as dividing the data into training and testing sets. This helps to evaluate the
generalization ability of the model and confirm that the model does not overfit
the training data. The results of the model are measured by metrics such as
root mean square error (RMSE), which helps to assess the accuracy of the
predictive model.

– Validity. The validity of the data is checked by comparing it with
experimental results or previous studies in the field. The data is collected from
reliable sources and under strictly controlled conditions, ensuring that outliers
do not affect the results. Furthermore, the data is thoroughly processed to
remove missing or unusual values that may cause bias in the analysis.

4. Experiments
4.1. Experimental Settings. In this part, we will install and test the

Python programming language on a 64-bit Windows 11 Pro computer. The
system specifications include a Core i5-6300U processor, 16GB of RAM,
a 512GB SSD, and a 12.5-inch HD display with a resolution of 1366x768.
Additionaly, we conducted data analysis and created graphs using the Python
programming language, focusing on a dataset comprising 11 features collected
from odor samples [28]. These samples were instrumental in developing odor
prediction models, which paved the way for future research involving a broader
range of odors. This expansion is crucial for improving the accuracy and
applicability of our models.

To support these advancements, we plan to incorporate assessments in
complex 3D spaces using virtual reality. These environments provide objective
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evaluations for participants, enhancing their experience and ensuring more
rigorous testing conditions. This approach will facilitate the development of
more robust and versatile odor prediction models.

An overview of our research model is presented in Figure 4. This
model is designed to predict scent in virtual reality (VR) environments using
the Random Forest algorithm. The model-building process includes many
important steps, from input data collection, processing and feature extraction,
to training and evaluating prediction performance.

Fig. 4. Model Overview

Bootstrap Sampling. For each tree Ti, a subset Di is randomly sampled
from the training dataset D , with the size equal to that of D but allowing
repetition. The mathematical formulation of this sampling process is given by
Equation (1). In this, the index jk is drawn randomly from the set of available
data points, as defined in Equation (2) below:

Di = {x j1 ,x j2 , . . . ,x jm}, where x jk ∈ D , (1)

where:
– Di – bootstrap sample for the i-th tree.
– x jk – the k-th data point sampled from the dataset D .
– D – the training dataset.
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m = |D | and jk ∼ Uniform(1,m), (2)

where:
– m – the total number of data points in the training set D .
– jk – randomly drawn index for the k-th data point.
– Uniform(1,m) – random sampling from the set {1,2, . . . ,m}.
Building Each Decision Tree. Each tree Ti is constructed based on

Di, with several random features. At each split node, a random subset F of
features n is considered to select the best-split point. The size of F is typically√

n or log2(n).
The Gini index, given in Equation (3), is used to evaluate the quality of

each potential split. This index helps determine how well the split divides the
data into distinct classes. The lower the Gini index, the purer the split.

G = 1−
K

∑
k=1

p2
k , (3)

where:
– G – the Gini index for a given split.
– K – the number of classes (labels).
– pk – the probability of a sample belonging to class k at that node.
Aggregating theResults. After buildingN decision trees, the algorithm

aggregates the results from all the trees to make a prediction. For classification
problems, the final prediction ŷ is obtained by taking the class that appears
most frequently across all trees, as shown in Equation (4).

ŷ = argmax
k

(
N

∑
i=1

I[Ti(x) = k]

)
, (4)

where:
– ŷ – the predicted class label.
– k – a class label.
– Ti(x) – the prediction made by the i-th tree for input sample x.
– I[·] – indicator function (1 if the condition is true, 0 if false).
– N – the total number of trees in the forest.
For regression problems, the final prediction is the average of all the

individual tree predictions, as seen in Equation (5).
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ŷ =
1
N

N

∑
i=1

Ti(x), (5)

where:
– ŷ – the predicted value for regression.
– Ti(x) – the output of the i-th tree for input sample x.
– N – the total number of trees in the forest.
Specific Parameters from Code.
– Number of trees (n_estimators): N = 100. Increasing the number of

trees N helps reduce the model’s variance but increases training and prediction
time.

– Random feature subset size at each node (F ). By default in sklearn,
F =

√
n, where n = 11, so F ≈ 3.
– Maximum depth (max_depth): ∞ (default). Allows the tree to grow

until leaf nodes achieve purity (Gini = 0).
– Minimum samples to split a node (min_samples_split): 2.
– Minimum samples at each leaf node (min_samples_lea f ): 1.
– Bootstrap sampling. Used to ensure that each tree is built from a

different dataset.
4.2. Performance Analysis. In the realm of machine learning,

performance analysis is essential to evaluate how well different models meet
the objectives of a given task. Therefore, by understanding the strengths
and limitations of various algorithms, such as CNN [29], LSTM [30], and
SVM [31] and the proposed (SPRF), we can make informed decisions on
model selection and optimization. In this part, we delve into the comparative
performance of these models, providing insights into their applicability to
diverse datasets and problem domains.

In this research area, we evaluate the performance of a prediction
model using accuracy as a key metric. Accuracy is defined as the ratio of
correct predictions to the total number of predictions. It is calculated using the
following formula:

Accuracy =
Numbero fCorrectPredictions
TotalNumbero f Predictions

. (6)

Next, F1-Score is used as an important evaluation metric in various
types of tasks to evaluate the performance of a model because it combines
precision and recall scores:
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recall =
T P

T P+FN
, (7)

precision =
T P

T P+FP
, (8)

F1−Score =
2× precision× recall

precision+ recall
, (9)

where:
– TP. The number of times the model correctly predicted a scent that

actually existed.
– TN. The number of times the model correctly predicted that a scent

did not exist and that scent did not exist.
– FP. The number of times the model incorrectly predicted that a scent

existed but did not exist.
This metric provides a straightforward assessment of the model’s

effectiveness in making accurate predictions.
Table 1 presents a comparative analysis of model accuracy metrics for

four different machine learning models: CNN [29], LSTM [30], SVM [31],
and SPRF. The accuracy percentages indicate the performance of each model
in terms of its ability to correctly predict outcomes. The CNN model, with
an accuracy of 79.46%, was the least accurate among the models presented,
given that they used CNN for odor pleasantness prediction. While CNNs are
typically strong in handling image data due to their convolutional layers, their
lower performance here might suggest that the dataset used is not well-suited
for a CNN’s architecture, or that the model was not optimally tuned. This
highlights the importance of model selection and hyperparameter tuning in
achieving high accuracy.

Table 1. Comparative Analysis of Model Accuracy Metrics
Models Accuracy (%) F1-Score (%)
CNN [29] 79.46 76.70
LSTM [30] 80.37 77.70
SVM [31] 85.24 85.03

The proposed (SPRF) 98.13 98.08

The LSTM model showed a slightly better accuracy of 80.37%, which
represents a modest improvement over CNN, but their LSTM was built with
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automatic gas source localization in an outdoor environment in mind. They set
the feature transformation function in the convolutional layer to 〈3,3,5〉 with
no padding. LSTMs are particularly effective in handling sequential data, such
as time series or natural language processing tasks. The marginal increase in
accuracy suggests that the data set may have some sequential aspect, but the
improvement is not substantial. This could mean that the LSTM architecture
captures some temporal dependencies better than CNN but still struggles
to fully understand the underlying patterns, possibly due to insufficient data
preprocessing or feature engineering.

On the one hand, the SPRF model that we developed – previously no
Random Forests model has been applied to predict smells in virtual reality
environment – achieved a significantly higher accuracy of 98.13%, making it
the most accurate model in this comparison. Random Forests are ensemble
learning methods that are robust to overfitting and can handle a wide variety
of data types, which might explain their superior performance. This suggests
that the dataset features are well-suited for decision tree-based models, where
feature importance and interactions play a crucial role. The high accuracy of
the SPRF model implies that it effectively captures the complex patterns within
the data, making it a reliable choice for similar datasets.

On the other hand, the Support Vector Machine (SVM) model also
performed well, with an accuracy of 85.24%. SVM has not been applied
to odor recognition in virtual environments; it has been used for emotion
recognition in VR scenes [31] and some other VR-related categories such
as odor source localization [32] so we further developed the SVM model to
apply to odor prediction to provide more model choices for odor prediction
in this study and demonstrated that SPRF performs well, SVMs are known
for their effectiveness in high-dimensional spaces and are especially useful
in classification tasks with clear boundary distances. The performance of the
SVM model shows that it can handle the data efficiently, although not as well
as the SPRF model. This shows that although SVM can delineate classes to
a good extent, it may not capture all complex patterns as effectively as the
ensemble approach of the SPRF model.

In conclusion, the data indicate that the model selection should be
tailored to the characteristics of the data set. The Random Forest model
outperforms the others, suggesting its suitability for these particular data.
However, the choice between models should also consider other factors such as
computational efficiency, interpretability, and specific application requirements.
The results emphasize the importance of understanding the strengths and
limitations of each model type, as well as the necessity for a thorough data
analysis to guide model selection and optimization.
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4.3. Discussing Smell in VR Environment. To integrate odor sensor
models into the VR system, first, it is necessary to collect data from odor and
gas sensors, then use data analysis algorithms to convert the measured values
into signals that can be interacted with in the VR environment. Sensors such
as MQ3, MQ5, and HCHO [33] will provide data on specific gases, while the
data processing system will analyze and reproduce odors in the virtual space.

System installation requires connecting VR software to sensors via data
transmission protocols, such as MQTT or WebSocket [34, 35], to ensure that
sensor data are continuously updated and responded to promptly. VR software
will need to integrate biological models and odor analysis to create realistic
odor responses in the virtual environment. The odor generation system will be
installed to reproduce odors based on sensor data while ensuring stability and
high performance when operating in the VR environment.

This process requires both software and hardware to work in sync, with
the VR software controlling and simulating the environment, and the hardware
performing the odor reproduction.

Potential issues that may arise during this process:
– Accuracy of sensor data. Odor and gas sensors need to be highly

accurate to ensure that the data collected is accurate and reliable in simulations.
If the collected data is skewed or inaccurate, this can lead to incorrect odor
reproduction or even negative effects in the simulation.

– Interaction between odors and the VR environment. One of the major
challenges in integrating odor sensors into VR is how to make the odors
perceived realistically and in line with other elements in the virtual environment.
This requires a sophisticated system that can combine odors with other elements
such as images, sounds, and sensations in the VR space.

– Odor technology in virtual environments. To create a realistic
experience, the odor systemmust be able to reproduce odors with high accuracy
and be adjustable. However, this technology still faces some limitations in the
ability to reproduce various odors, the consistency of the odors over time, and
the precision of the odor distribution in virtual space.

5. Conclusions. In conclusion, based on empirical research, the SPRF
smell prediction outperforms other models, achieving 98.13% accuracy. In
contrast, the CNNmodel has the lowest accuracy at 79.46%, followed by LSTM
at 80.37% and SVM at 85.24%. This shows that SPRF is the most effective
model for developing predictive odor models in VR environments. It improves
the F1 score by 13.05% to 21.38% and accuracy by 12.89% to 18.67%. Based
on these results, future research should prioritize the refinement of the SPRF
model to further enhance its predictive capabilities. Furthermore, exploring
hybrid models that combine the strengths of multiple approaches could lead
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to even more robust solutions. Implementing these advanced models will be
crucial in integrating scents into VR, thus enriching digital experiences and
making them more immersive and engaging.
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СОЗДАНИЕ ПРОГНОЗИРУЮЩИХМОДЕЛЕЙ ЗАПАХОВ ДЛЯ
СРЕД ВИРТУАЛЬНОЙ РЕАЛЬНОСТИ

Хунг Н.В., Куан Н.А., Тан Н., Хай Т.Т., Чунг Д.Т., Нам Л.М., Лоан Б.Т., Нга Н.Т. Создание
прогнозирующих моделей запахов для сред виртуальной реальности.

Аннотация. В среде, насыщенной сенсорными стимулами, человеческий опыт
формируется за счет сложного взаимодействия множества чувств. Однако при цифровом
взаимодействии задействуются преимущественно зрительные и слуховые модальности,
в то время как другие сенсорные каналы, такие как обоняние, остаются практически
неиспользованными. Технология виртуальной реальности обладает значительным
потенциалом для преодоления этого ограничения за счет включения более широкого
спектра сенсорных стимулов, что позволяет создавать более погружающий опыт.
В данном исследовании представлен новый подход к интеграции обонятельных стимулов
в виртуальную среду посредством разработки прогностической модели запахов,
названной Сенсорно-Прогностическая Реакционная Структура (SPRF). Цель исследования
заключается в улучшении сенсорного измерения виртуальной реальности путем адаптации
обонятельных стимулов к конкретному контенту и контексту. Это достигается за счет сбора
информации о местоположении источников запахов и их идентификации по характерным
признакам, что позволяет воспроизводить их в пространстве виртуальной среды, тем
самым повышая вовлеченность и уровень погружения пользователя. Кроме того, в
исследовании изучается влияние различных факторов, связанных с запахами, на восприятие
и поведение пользователя в виртуальной реальности, с целью разработки прогностических
моделей, оптимизированных для интеграции обонятельных стимулов. Эмпирические
оценки показывают, что модель SPRF демонстрирует производительность с точностью
98,13%, значительно превосходя обычные модели, такие как сверточные нейронные
сети (CNN, 79,46%), сети с долгой краткосрочной памятью (LSTM, 80,37%) и метод
опорных векторов (SVM, 85,24%). Кроме того, SPRF обеспечивает заметные улучшения в
показателях F1 (на 13,05%-21,38%) и точности (на 12,89%-18,67%) по сравнению с этими
альтернативными моделями. Эти результаты подчеркивают эффективность SPRF в развитии
интеграции обонятельных стимулов в виртуальной реальности, предлагая ценные идеи для
проектирования мультисенсорных цифровых сред.

Ключевые слова: виртуальная реальность, запах, выбор модели, пользовательский
опыт, воображение, прогнозирование запахов.
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