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Abstract: In this paper, a comparative analysis of methods for determining the surface area in relation to electrode
materials was carried out on the example of commercial carbon felts of various structures. For a more complete analysis,
scanning electron microscopy and Raman spectroscopy methods were additionally used. It is shown that electrochemical
methods for determining the surface area are selective with respect to the edge plane of graphite, which can be both an
advantage and a disadvantage, depending on the objectives of the study. It is revealed that the use of the classical method
of low-temperature adsorption of gases is not always justified due to the complexity of selecting the correct model
describing the system under study. Adsorption of dyes from aqueous solutions seems to be the most suitable method for
determining the wetted surface of the material, however, it requires large amounts of sample and is characterized
by a significant error.
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AnHotanusi: B manHON paboTe MpoBEIEHO CpaBHEHHE METOJOB OIMpEACNCHHS IUIONIaTid MOBEPXHOCTH MPUMEHHUTEIBHO
K JJICKTPOIHBIM MaTepHalaM Ha IpUMepe KOMMEPUECKHX YTJICPOIHBIX BOWIOKOB Pa3lIWYHON CTpyKTyphl. s Gomee
MOJTHOTO  aHalM3a [OMOJIHUTEIHHO IMPHBJCUCHA CKAaHUPYIOWass JJICKTPOHHAS  MHKPOCKONHS, IT03BOJIMBIIAS
0XapaKTepHU30BaTh MOP(OJIOTHIO MMOBEPXHOCTH MaTeprana M CHEKTPOCKOIHS KOMOWHAIIMOHHOTO PAcCesHUs, C MTOMOIIBIO
KOTOpPOW OLIEHMBAJIM KOJIMYECTBO JEPEKTOB B KPUCTALIMYECKOW CTPYKTYpe YIjepoja, a Takke cojepkaHue amophHOH
(ba3pl. TlokazaHa CENEKTHBHOCTH JJIEKTPOXMMHUYECKUX METOJIOB OINPEIEICHUS IUIOMAAN MOBEPXHOCTH 110 OTHOIIEHUIO
K KpaeBoil MIIOCKOCTH rpaduTa, YTO MOXKET SBISATHCS KaK IMPEUMYIIECTBOM, TaK U HEJOCTATKOM, B 3aBUCUMOCTH OT IiejIed
UCCIIeJOBaHMs. BBIsSBIICHO, YTO NMpUMEHEHHE KIACCHYECKOT0 METOJIa HU3KOTEMIIEpaTypHOU ajcopOIMu ra30B Jajieko He
BCET/a OINpaBJaHO, BBUJY CIIOXXHOCTH IOA0Opa KOPPEKTHOH Mojenu, ONHChIBaloIIed uccieayemyro cucremy. Kpome
TOT0, TPU WCCICIOBAHUU MPHUBEICHHBIM METOJOM 3JICKTPOIHBIX MAaTCPUAIIOB IIONYYCHHBIC IaHHBIC OYIyT CHIIBHO
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3aBBIIIICHBI HM3-32 JIyYlIed CMayMBaeMOCTH YIJIEPOJHOTO MaTephalia a30TOM, 4eM BOJOW. AJICOpOIMS KpacuTeled u3
BOJHBIX PACTBOPOB, MO-BHIMMOMY, SBISETCS HanOoJiee MOAXOSIMM METOJOM JJisl ONPEICNICHUs CMOYCHHOU
MOBEPXHOCTH Marepuaia, OJHAKO TpeOyeT Haiuuust OOJBIIOro 4uciia 00pasloB, XapaKTepH3yeTCs 3HAYUTEIbHOU
MOTPEIIHOCTBI0 U MOXET JaBaTh HECKOJBKO 3aBBIIICHHBIE PE3yJbTAaThl, XOTh U MEHBIINE, YeM HH3KOTeMIepaTypHas
azcopOnms a3ora.

KitioueBble cjIoBa: yriepoaHOE BOJIOKHO; IUIONIAb MOBEPXHOCTH; CKOPOCTh MEPEHOCA IJIEKTPOHOB; EMKOCTh JBOIHOIO
AIIEKTPUUECKOTO0 CJI0st; Oa3aibHast INIOCKOCTh rpaduTa; Kpaesas INIOCKOCTh rpaduTa; aacopOLusi METUIEHOBOTO roy0oro.

Jost muruposanusi: Oskin PV, Lepikash RV, Dyachkova TP, Alferov SV. Comparative evaluation of different methods
for determining the specific surface area of carbon materials used in electrochemical systems. Journal of Advanced
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1. Introduction

Specific surface area is one of the key
parameters of carbon materials. Various methods are
used to determine it. For example, for quasi-one-
dimensional materials, it is possible to estimate the
specific surface area based on the average fiber radius
values [1-3]. However, the geometric estimate cannot
be considered accurate, since it does not take into
account the heterogeneity of the fiber surface. Low-
temperature gas adsorption data [2, 4, 5] and dye
adsorption from aqueous solutions [6, 7] are often
used. In addition, a number of sources report on
electrochemical methods for estimating the specific
surface area [8, 9].

The results obtained by the Brunauer—Emmett—
Teller (BET) method are often poorly suited for
describing the electrochemical behavior of a carbon
material due to the difference in the mechanisms of
interaction between gas and electrolyte with carbon.
Data on dye adsorption from solutions are more
suitable in this sense, but difficulties with selecting a
physical model of the process remain.

Electrochemical methods are free from this
drawback, but require the use of accurate values of a
number of constants. Moreover, if the diffusion
coefficient used in calculations according to the

Randles-Shevchik equation [8] is known for most
standard redox systems, then determining the specific
capacity of the electric double layer (EDL) causes
difficulties, since this value is made up of the
capacities of the marginal and basal planes [10—12],
data on which vary significantly in different sources
(Table 1). For example, experimentally determined
values of the capacity of the marginal plane differ by
orders of magnitude due to the contribution of
pseudocapacitance [13, 14].

Thus, all currently available methods for
assessing the surface area of carbon materials have
shortcomings. At the same time, the use of several
complementary methods can provide reliable useful
information, for example, the ratio of the areas of the
basal and edge planes of graphite. This parameter is
extremely important for characterizing the
electrochemical properties of carbon materials. Thus,
in [18], it was shown that materials with a high
proportion of the edge plane are able to more
effectively reduce oxygen in the cathode space of fuel
cells. The rate of electron transfer in redox systems,
for example, [Fe(CN)6]3_/[Fe(CN)6]4_ containing
ascorbic acid or hydrazine significantly, depend on
this ratio [19-21].

Table 1. Specific capacity of the basal and edge plane of graphite

Electrolyte Basal plane capacity, uF-em > Edge plane capacity, pF-cm > Reference
0,9 H NaF 3 50-70 [15]
1 mM HCF in 1M KCI 12 70 [11]
IM KCI 0.81 - [16]
6 M LiCl 472 +0.37 430.1+£9.9 [13]
0,1 M NayHPO4 (pH = 7), 0,1M KCl 4 10° [14]
6 M LiCl 43-6.0 - [10]
6 M LiCl 17402 2546 [17]
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Usually, the proportion of the edge plane is
calculated from the value of the rate constant of

heterogeneous electron transfer in the [F e(CN)6]37
[F e(CN)6]4_ system according to equation (1) [11, 12].

k:kefe+kb(1_fe)v (1)

where £ is the rate constant of heterogeneous electron

transfer, cm-sﬁl; k, 1s the rate constant of
heterogeneous electron transfer to the edge plane of

graphite, cm-sﬁl; kp is the rate constant of
heterogeneous electron transfer to the basal plane,

cm-sfl;fe is the fraction of the edge plane of graphite.
This method is not very accurate due to the large
error in determining the rate constant [22].

According to [1, 16], the fraction of the edge
plane is also included in equation (2):

C:fece+(1_fe)cb’ (2)

where C is the specific capacitance of the EDL for
the material, pF-cm_z; C, is the specific capacitance
of the edge plane of graphite, uF-cmfZ; Cyp is the
specific capacitance of the basal plane of graphite,
uF'cmfz.

However, it is not possible to use equation (2) in
practice due to the complexity of determining the
exact value of the specific capacitance of the edge
plane EDL.

The aim of this work was to compare different
methods for determining the surface area for
characterizing carbon materials that can be used in
electrochemical systems in the future. Carbon felt
was chosen as a model material, since it is widely
used in the creation of supercapacitors [23, 24],
electrochemical [5, 25] and bioelectrochemical
[4, 26] current sources, as well as electrochemical
sensors [8].

2. Materials and Methods
2.1. Initial materials and reagents

In this work, two commercial samples of carbon
felt obtained by pyrolysis of polyacrylonitrile fiber in
an inert atmosphere were investigated. Sample No. 1
was produced by Heibei Huasheng Felt Co Ltd.
(China), sample No. 2 was produced by Kompozit-
Polymer (Russia).

The reagents (methylene blue, potassium
hexacyanoferrate (III), potassium chloride) used in
the work were of analytical grade. All solutions were
prepared with deionized water and stored in dark
glassware at a temperature of 4 °C for no more than a
week.

2.2. Analytical methods

Electron images were obtained on a JSM-6510
LV microscope (JEOL, Japan) in low vacuum mode
(30 Pa) with secondary electron (SE) registration.
Raman spectra were recorded on a DXR Raman
Microscope (Thermo Scientific, USA) using a laser
with a wavelength of 532 nm.

The surface area was determined by the
adsorption of methylene blue (solution concentration
1 mmol-dm%) according to the procedure [6] using an
SF-2000 spectrophotometer (OKB-Spectr, Russia).
The optical density of the dye was measured at a
wavelength of 616 nm. The surface area was
determined by nitrogen adsorption using a
Quantochrome Autosorb 1Q Nova 1200e specific
surface area and porosity analyzer (Quantachrome
Instruments, USA) at a temperature of 77 K and a
partial pressure of 0.05-0.30. Electrochemical
measurements were performed on a CORRTEST
CS1350 potentiostat-galvanostat (Corrtesr, China) in
a three-electrode cell with a saturated silver chloride
electrode as the reference electrode and a 0.5x0.5x0.1
cm platinum foil as the auxiliary electrode. A 0.1 M
KCI solution was used as the background electrolyte.
The concentration of potassium hexacyanoferrate
(II) in the solution was 0.5 mM. Cyclic
voltammograms were recorded at scan rates of
10-500 mV-s ' in the range of —-0.4—+0.6 V.

Impedance spectra were recorded in 0.1 M KCl
in the frequency range from 1 Hz to 0.1 MHz at the
anodic potentials of cyclic voltammograms (CV) of
potassium hexacyanoferrate (III) (to determine the
rate constant of heterogeneous transfer) and at the
open circuit potential (to determine the specific
capacitance of the EDL). The voltage amplitude was
10 mV.

From the CV data, the rate constant of
heterogeneous electron transfer was calculated using
the Nicholson-Lavagnini method [27, 28] based on
the slope of the dependence of the limiting current on
1/y in accordance with equation (3) obtained by
combining the Nicholson and Randles-Shevchik

equations:
kN
1, =0.4463nFSCN1 -0 — , 3)

\V

where [, is limiting anode current; ©m is a
mathematical constant, 3,14; 1—o is an electron

transfer coefficient for the anode process; 4 is a rate
constant of heterogeneous electron transfer; F is the
Faraday number; S is the electrode area; n is the
number of electrons participating in the reaction.
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The parameter y was determined using equation
(4) [28]:
—0.6288+0.002AFE
Y =- 5 (4)
1-0.017AF

where vy is the Nicholson coefficient, V; AE is the
difference between the potentials of the anodic and
cathodic peaks, V.

From the electrochemical impedance
spectroscopy data, the rate constant of heterogeneous
electron transfer was calculated using equation (5) [27]:

RT

k (5

S

Rpn*F*SX

where R is the universal gas constant, J-mol-Kﬁl;

T is the temperature, K; Ry is the Faraday resistance
of the reaction, Ohm; X is the concentration of the
electro-active substance in the solution, mol-dm™>.
To find the Faraday resistance, the Voigt ladder
diagram was used. To calculate the specific capacity
of the EDL, the Randles diagram was used [29].

Based on the results of the CV with a linear
potential sweep at a potential sweep rate of
100 mV-s ' in the range of 0-0.5 V, the specific
capacitance of the EDL of carbon felt was determined
using equation (6) [30]:

E|
[1dE
c=—2 (6)
m(E; — E;)

where / is the equation for the dependence of current
on potential, A; £ is the initial potential of the cyclic
voltammogram, V; E, is the final potential of the
voltammogram, V; m is the mass of felt, g.
Charge-discharge curves were recorded at a
charge-discharge current of 10 pA in the potential
range of 0-0.5 V. The specific capacity of the EDL
was calculated using formula (7) [30]:
I'At
C=—rrm, (7

where /' is the charging (discharging) current, A; Af
is the charging (discharging) time, s; AE' is the
absolute value of the difference between the potential
at the beginning and end of charging (discharging), V.

3. Results and Discussion

Scanning electron images (SEM) were obtained
to characterize the morphology of the felt samples
(Fig. 1). Both samples consist of interwoven carbon

fibers with a diameter of about 20 pm. On the surface
of these fibers, longitudinal grooves with a width of
0.1-0.3 pm are observed, which apparently formed
during the production of polyacrylonitrile fiber.
On the surface of sample No. 2, growths with a size
of 0.5-5.0 um are observed. The obtained results are
consistent with the literature data [1].

The Raman spectra (Fig. 2) of both samples
contain the G (1550 cmﬁl) and D (1350 cmﬁl) bands,
which are characteristic of all carbon materials. The
G band is due to vibrations of sp>-hybridized carbon
atoms in the crystal structure of graphite, and the D
band is due to the presence of defects in this
structure. The degree of defectiveness of a carbon
material is usually estimated by the intensity ratio of
these bands (Ip/lg) [31]. The Raman spectrum of
sample No. 1 (Fig. 2a) is characterized by a high
noise level, which may be a consequence of the
amorphization of the structure [31]. This is confirmed
by the presence of the D" peak (1400 cm_l) between
the D and G bands, the intensity of which depends on
the amount of the bulk amorphous phase in the
structure [32]. The Raman spectrum of sample No. 2
(Fig. 2b) additionally contains the 2D (2700 cmﬁl)
and D+ G (2950 cmﬁl) bands, characteristic of the
ordered structure of graphite [33]. Thus, sample No. 1
is amorphized to a greater extent than sample No. 2.
To confirm this conclusion, peaks D’ (1600 cmﬁl) and
D", were additionally identified using mathematical
processing of the Raman spectra in accordance with

[34]. The defect density (np) [35],

between defects (L,) [35] and the crystallite size (Lp)
[36] were also calculated (Table 2).

The Ip/lg ratio for both materials, the distance
between defects, the density of defects and the sizes
of crystallites differ slightly, which indicates the
similarity of the general parameters of the structure
disorder [31]. At the same time, judging by the value

of Ip/Ip and the intensity of the D’ band, surface [37,
38] rather than intracrystalline [31] defects of the
graphite structure are more characteristic of sample
No. 2. It is not entirely correct to compare the
obtained absolute numerical values of the parameters
given in Table 2 with the literature data due to the
individual settings of each specific Raman
spectrometer [39].

The specific surface area values were measured
in various ways for the carbon felt samples, which
were then compared with the literature data for
analogs (Table 3).

the distance
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X950 20pm

Fig. 1. SEM images of carbon felt samples No. 1 (a, b) and No. 2 (c, d)
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Fig. 2. Raman spectra of sample No. 1 (a) and sample No. 2 ()
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Table 2. Results of processing the Raman spectra of carbon and graphite felts

Sample Ip/lg Lp,nm  np10° cm? L, nm Ip/lg Ipi/lg Ip/lpy Type of defects
1 1.6+£0.1 332 2.7+£02 102 1.8+04 07£01 1.0+0.2 Local
2 1.8+02 32+4 3.1+0.3 9+2 03+0.1 - 6.1 0.2 Regional, vacancies

Table 3. Specific surface area of carbon felt determined by various methods

. 2 -1
Specific surface area, m”-g

Method References
Sample No.1 Sample No. 2
Nitrogen adsorption (BET) - - 0.4 [2]; 1.69 [4]; 0.5 [5];
0.8 [25]; 1 [24]
Geometrical evaluation 0.011 0.011 0.028 [17; 0.022 [3]
Methylene blue adsorption 45+0.7 43+04 -
Rendles-Szewczyk equation 0.072 £ 0.006 0.19+0.02 -

It was not possible to determine the surface area
by low-temperature gas adsorption due to the
extremely long establishment of equilibrium (more
than 3 days), which makes it impossible to use the
BET model and other common models. Similar cases
have already been encountered previously [1], so for
comparison with the electrochemical determination it
was decided to use a geometric estimate and the
adsorption of methylene blue. The surface area was
estimated geometrically by calculating the lateral area
of an ideally smooth cylinder, which was taken to be
carbon fiber. For this calculation, it is necessary to
know the density of the felt, which was taken to be
1.9 g-cmﬁ3 based on literary data [1, 2]. The fiber
diameter (Fig. 1) of both graphite and carbon felt is
the same and is about 20 um, which is why the
geometric estimate gives a similar result. However, it
should be noted that the use of this approximation for
sample No. 2 is incorrect due to the presence of a
large number of growths on the surface of its fibers
(Fig. 2).

Methylene blue adsorption also yields similar
surface area values ((4.5+0.7) and (4.3+0.4) mz-gfl),
which are an order of magnitude higher than the
literature data on low-temperature nitrogen
adsorption processed using the BET model (Table 3).
The fact that surface area values obtained by different
methods differ for carbon materials is widely known
[2, 40]. In addition, as mentioned above, low-
temperature nitrogen adsorption may yield incorrect
results. From the electron microscopy data (Fig. 1), it
is evident that the felts should have different surface
areas, which does not correlate with the results of
determination by methylene blue adsorption. This is

explained by the higher content of defects in the
structure of sample No. 1 (from the Raman spectra).
In [16], it was shown that defects in the structure of
the carbon material are methylene blue adsorption
centers. In addition, the use of the methylene blue
method for determining the specific surface area can
give strong errors towards overestimation in the case
of the presence of relatively narrow mesopores in the
material due to the interaction between molecules and
their conformations in the pores.

The electrochemically active surface area
determined using the Randles-Shevchik equation is
two orders of magnitude lower than the result
obtained by adsorption of methylene blue.
Apparently, this is connected with the high rate
constant of heterogeneous electron transfer to the
edge surface of graphite, due to which only the area
of the edge plane is determined, whereas dye
adsorption yields the total area.

EV
Fig. 3. Voltammograms of an empty wire hook (1), sample
1 (2) and sample 2 (3), scanning speed 100 mV-s '
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This is consistent with the data of [2], in which
the surface area according to BET (total area) and the
EDL capacitance (edge plane area) are similarly
different. The ratio of the EDL capacitances of
different felts can be estimated from the appearance
of cyclic voltammograms (Fig. 3). In sample No. 2,
the peaks are broadened, which indicates high EDL
charging currents, from which one can conclude that
the EDL capacitance is higher.

To confirm this conclusion, the specific capacity
of the EDL of carbon felt was determined using
cyclic  voltammetry, electrochemical impedance
spectroscopy and charge-discharge curves (Table 4).

The values of the EDL specific capacity
determined by different methods are in satisfactory
agreement with each other. A slight underestimation
of the value obtained by the cyclic voltammetry
method may be due to the fact that the potential
increases faster than the diffusion of ions from the
solution, so the EDL is not charged to the maximum
possible value [41]. The specific capacity of the EDL
for the “Composite-Polymer” felt is higher, which
agrees with the qualitative assessment of the ratio of
the EDL capacitances based on the shape of the
cyclic voltammograms.

To calculate the rate constants using formulas
(3) and (5), the surface area determined using the
Randles-Shevchik equation was used. It is directly
related to the limiting current, from the dependence

of which on the parameter y the constant is
calculated.

The results obtained by the two methods (Table 5)
are quite close to each other and correspond to the
literature data, including those obtained using
mathematical models [5, 42] and on electrodes
consisting of individual fibers [3].

Thus, the data presented in Table 5 shows that
there is no need to use complex mathematical models
and single-fiber electrodes [3]. According to the
literature data, a high error in determination is
characteristic of the rate constant of heterogeneous
electron transfer [3, 43]. It can be associated with the
heterogeneity of the distribution of the marginal and
basal plane in different parts of the felt [2].

An important characteristic of electrochemical
properties of carbon materials is the ratio of the edge
and basal planes of graphite. As was said above, in a
number of redox-active systems, electron transfer
occurs only on the edge surface. The percentage of
the edge plane area was calculated from the values of
the heterogeneous transfer rate constant according to
equation (2), the capacity of the EDL — according to
equation (1), and also from the ratio of the specific
surface areas determined by the adsorption of
methylene blue and from the Randles-Shevchik
equation (Table 6).

Table 4. Results of determining the specific capacity of the EDL of carbon felt

Specific capacity, F/g

Sample Electrochemical imped
. yr pedance
Cyclic voltammetry Charge-discharge curves spectroscopy (EIS)
1 0.21+0.02 0.26 +£0.05 0.28 +0.02
2 0.35+0.02 0.42+0.04 0.37 +0.02

Table 5. Results of determining the rate constant of heterogeneous electron transfer by various methods

Method Sample No. 1 Sample No. 2 References
ks10%, sms ™, CV 3+1] 31409 7.0+0.5[1]; 7+3 [3]; 10 [5]
ke10°, sms ', EIS 3+2 3+2 3+2[5];7.7+0.1[42]

Table 6. Results of determining the content of the boundary plane by various methods

Sample ks, % CepL, % Ratio of specific areas, %
1 3£1 2.7+0.6 1.6+0.4
2 3.1+09 6.4+0.9 4,4+0.9

Oskin P.V., Lepikash R.V., Dyachkova T.P., Alferov S.V. 173



Journal of Advanced Materials and Technologies. 2024. Vol. 9, No. 3

0 0.1 0.2 0.3 0.4 0.5
E,V
Fig. 4. Cyclic voltammograms of carbon felt in 0.1 M KCl;
1 — Sample No. 1, 2 — Sample No. 2

When calculating the capacity of the EDL, the
specific capacity of the edge plane was taken as
70 pF'cmfz, since in this case the result obtained is in
good agreement with other methods. From the
rectangular shape of the cyclic voltammograms of
carbon felts (Fig. 4), one can conclude that there is no
pseudocapacitance [41], therefore 70 uF-cmf2 is the
capacity of the EDL in the absence of
pseudocapacitance. The distortion of the rectangular
shape can be associated with the diffusion of ions
to the electrode surface, which limits the charging
rate [30].

Calculation from the values of the rate constant
of heterogeneous electron transfer does not yield
significant differences between the percentage
content of the edge plane for the felts. This can be
explained by the high error in determining this
constant for this material [3, 43]. Calculations by
other methods indicate a higher content of the edge
plane in sample No. 2 despite the close values of the
defect densities according to Raman spectroscopy
data. Thus, the rate of electron transfer to the
amorphous phase of carbon is low, which may be due
to its low electrical conductivity. Charge
accumulation also apparently occurs better on more
structured graphite defects, which is associated with
the formation of conjugated bond systems between
quinoid structures.

4. Conclusion

It is shown that in order to obtain the most
complete information on the surface area of a carbon
material, it is necessary to use several complementary
methods for its determination. Calculation of this
value from cyclic voltammetry data with the help of
the Randles-Shevchik equation, using potassium
hexacyanoferrate (III) as an electrochemical sensor,
makes it possible to determine predominantly the area

of the edge plane. Geometrical assessment of the
surface area and determination by low-temperature
gas adsorption should be used with caution. In the
case of characterization of electrode materials, the
expediency of using these methods is questionable.
Comparing the specific surface area obtained by
various methods with the results of Raman
spectroscopy, it should be noted that electron transfer
to amorphized carbon is more difficult than to
crystalline carbon, while adsorption of methylene
blue, on the contrary, occurs more easily on the
amorphous phase.
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