Polyaniline and its composites with carbon nanomaterials: preparation, properties, application

Мұқаба

Дәйексөз келтіру

Толық мәтін

Аннотация

The increased attention of researchers to electrically conductive polymers, including polyaniline (PANI), is due to the wide possibilities of its use in the production of supercapacitors, energy storage devices, anticorrosive coatings, detectors, sensors, solar cells, antimicrobial materials, sorbents, and coatings that absorb electromagnetic radiation. However, the instability of the PANI properties during operation limits the practical use of the polymer. In this regard, to date, many attempts have been made to stabilize the characteristics and increase the service life of polyaniline. Thus, new composite materials, which combine PANI and one or more other components, including carbon nanomaterials (carbon nanotubes, graphene, graphene oxide, reduced graphene oxide, mesoporous carbon), montmorillonite, metals, chalcogenides, conductive polymers,were developed. The purpose of this study is to summarize the information accumulated to date on electrically conductive polyaniline and its composites with carbon nanomaterials (CNM), as well as to demonstrate their potential and future prospects. The paper describes the structure and properties of the polymer. Chemical and electrochemical approaches to the synthesis of PANI and composites based on it are considered, attention is paid to the influence of synthesis conditions on the structure and properties of the final reaction products. A brief description of the application of polyaniline and its composites with CNM is given.

Авторлар туралы

Irina Gutnik

Tambov State Technical University

Хат алмасуға жауапты Автор.
Email: i.v.gutnik@yandex.ru
ORCID iD: 0000-0003-1236-7187

Cand. Sc. (Eng.), Associate Professor

Ресей, Bld. 2, 106/5, Sovetskaya St., Tambov, 392000

Tatyana Dyachkova

Tambov State Technical University

Email: dyachkova_tp@mail.ru
ORCID iD: 0000-0002-4884-5171

D. Sc. (Chem.), Professor

Ресей, Bld. 2, 106/5, Sovetskaya St., Tambov, 392000

Elena Burakova

Tambov State Technical University

Email: elenburakova@yandex.ru
ORCID iD: 0000-0001-8927-7433

D. Sc. (Eng.), Associate Professor

Ресей, Bld. 2, 106/5, Sovetskaya St., Tambov, 392000

Evgeniy Tugolukov

Tambov State Technical University

Email: tugolukov.en@mail.ru
ORCID iD: 0000-0003-1766-3786

D. Sc. (Eng.) Professor

Ресей, Bld. 2, 106/5, Sovetskaya St., Tambov, 392000

Artem Rukhov

Tambov State Technical University

Email: artem1@inbox.ru
ORCID iD: 0000-0001-9194-8099

D. Sc. (Eng.), Head of the Department “Chemistry and Chemical Technologies”

Ресей, Bld. 2, 106/5, Sovetskaya St., Tambov, 392000

Georgiy Titov

Tambov State Technical University

Email: bombercd1@mail.ru
ORCID iD: 0000-0002-3930-0559

Student

Ресей, Bld. 2, 106/5, Sovetskaya St., Tambov, 392000

Әдебиет тізімі

  1. Li Z, Gong L. Research progress on applications of polyaniline (PANI) for electrochemical energy storage and conversion. Materials. 2020;13(3):548. doi: 10.3390/ma13030548
  2. Thambidurai S, Pandiselvi K. Polyaniline/natural polymer composites and nanocomposites. In: Visakh PM, Pina CD, Falletta E. (eds.) Polyaniline blends, composites, and nanocomposites. Elsevier; 2018, p.235-256. doi: 10.1016/b978-0-12-809551-5.00009-6
  3. Stejskal J, Gilbert RG. Polyaniline. Preparation of a conducting polymer (IUPAC Technical Report). Pure and Applied Chemistry. 2002;74(5):857-867. doi: 10.1351/pac200274050857
  4. Chiang JC, MacDiarmid AG. «Polyaniline»: Protonic acid doping of the emeraldine form to the metallic regime. Synthetic Metals. 1986;13(1-3):193-205. doi: 10.1016/0379-6779(86)90070-6
  5. Zhang P, Zhai X, Huang H, et al. Capacitance fading mechanism and structural evolution of conductive polyaniline in electrochemical supercapacitor. Journal of Materials Science: Materials in Electronics. 2020:31; 14625-14634. doi: 10.1007/s10854-020-04025-y
  6. Pawar DC, Malavekar DB, Lokhande AC, et al. Facile synthesis of layered reduced graphene oxide/polyaniline (rGO/PANI) composite electrode for flexible asymmetric solid-state supercapacitor. Journal of Energy Storage. 2024;79:110154. doi: 10.1016/j.est.2023.110154
  7. Yang J, Liu Y, Liu S, et al. Conducting polymer composites: material synthesis and applications in electrochemical capacitive energy storage. Materials Chemistry Frontiers. 2017;1(2):251-268. doi: 10.1039/C6QM00150E
  8. Che B, Li H, Zhou D, et al. Porous polyaniline/ carbon nanotube composite electrode for supercapacitors with outstanding rate capability and cyclic stability. Composites Part B: Engineering. 2019;165:671-678. doi: 10.1016/j.compositesb.2019.02.026
  9. Liao G, Li Q, Xu Z. The chemical modification of polyaniline with enhanced properties: A review. Progress in Organic Coatings. 2019;126:35-43. doi: 10.1016/j.porgcoat.2018.10.018
  10. Nezakati T, Seifalian A, Tan A, et al. Conductive polymers: opportunities and challenges in biomedical applications. Chemical Reviews. 2018;118:6766-6843. doi: 10.1021/acs.chemrev.6b00275
  11. Runge FF. Über einige Produkte der Steinkohlendestillation. Annalen der Physik. 1834;107(5): 65-78.
  12. Fritsche J. Ueber das Anilin, ein neues Zersetzungsproduct des Indigo. Journal fur Praktische Chemie. 1840;20(1):453-459.
  13. Fritzsche J. Vorläufige Notiz über einige neue Körper aus der Indigoreihe. Journal fur Praktische Chemie. 1843;28(1):198-204.
  14. Letheby H. On the production of a blue substance by the electrolysis of sulphate of aniline. Journal of the Chemical Society. 1862;15:161-163. doi: 10.1039/JS8621500161
  15. Ciric-Marjanovic G. Recent advances in polyaniline research: Polymerization mechanisms, structural aspects, properties and applications. Synthetic Metals. 2013;177:1-47. doi: 10.1016/j.synthmet.2013.06.004
  16. Abe M, Ohtani A, Umemoto Y, et al. Soluble and high molecular weight polyaniline. Journal of the Chemical Society, Chemical Communications. 1989;(22): 1736-1738. doi: 10.1039/c39890001736
  17. Jozefowicz M, Yu LT, Perichon J, et al. Proprietes nouvelles des polymeres semiconducteurs. Journal of Polymer Science: Part C. 1969;22:1187-1195. doi: 10.1002/polc.5070220251
  18. MacDiarmid АG, Chiang JC, Halpern M, et al. «Polyaniline»: Interconversion of Metallic and Insulating Forms. Molecular Crystals and Liquid Crystals. 1985;121:173-180. doi: 10.1080/00268948508074857
  19. Do Nascimento GM. Spectroscopy of Polyaniline Nanofibers. In: Nanofibers. In Tech; 2010. doi: 10.5772/8162
  20. Goswami S, Nandy S, Fortunato E, et al. Polyaniline and its composites engineering: A class of multifunctional smart energy materials. Journal of Solid State Chemistry. 2023;317(A):123679. doi: 10.1016/j.jssc.2022.123679
  21. Jangid NK, Jadoun S, Kaur N. A review on high-throughput synthesis, deposition of thin films and properties of polyaniline. European Polymer Journal. European Polymer Journal. 2020;125:109485. doi: 10.1016/j.eurpolymj.2020.109485
  22. Gospodinova N, Terlemezyan L. Conducting polymers prepared by oxidative polymerization: polyaniline. Progress in Polymer Science. 1998;23(8): 1443-1484. doi: 10.1016/s0079-6700(98)00008-2
  23. Sun P, Shen X, Xu P, et al. Conductive polyaniline film synthesized through in-situ polymerization as a conductive seed layer for hole metallization of printed circuit boards. Applied Surface Science. 2024;655:159649. doi: 10.1016/j.apsusc.2024.159649
  24. Ležaić AJ, Bajuk-Bogdanović D, Ćirić-Marjanović G. In situ Raman spectroscopy study of the oxidative polymerization of aniline in media of different acidity. Synthetic Metals. 2024;305:117602. doi: 10.1016/j.synthmet.2024.117602
  25. Hussain AMP, Kumar А. Electrochemical synthesis and characterization of chloride doped polyaniline. Bulletin of Materials Science. 2003;20:329-344. doi: 10.1007/BF02707455
  26. Shan J, Han L, Bai F, et al. Enzymatic polymerization of aniline and phenol derivatives catalyzed by horseradish peroxidase in dioxane(II). Polymers for Advanced Technologies. 2003;14(3-5):330-336. doi: 10.1002/pat.316
  27. Mohammad RS, Zarrintaj P, Khandelwal P, et al. Synthetic route of polyaniline (I): Conventional oxidative polymerization. In: Mozafari M, Chauhan NPS (eds.) Fundamentals and Emerging Applications of Polyaniline, Elsevier, 2019. p. 17-41. doi: 10.1016/B978-0-12-817915-4.00002-6
  28. Yılmaz F, Küçükyavuz Z. The influence of polymerization temperature on structure and properties of polyaniline. e-Polymers. 2009;9(1). doi: 10.1515/epoly.2009.9.1.48
  29. Tran HD, D’Arcy JM, Wang Y, et al. The oxidation of aniline to produce “polyaniline”: a process yielding many different nanoscale structures. Journal of materials Chemistry. 2011;21:3534-3550. doi: 10.1039/c0jm02699a
  30. Stejskal J, Sapurina I, Trchová M. Polyaniline nanostructures and the role of aniline oligomers in their formation. Progress in Polymer Science. 2010; 35(12): 1420-1481. doi: 10.1016/j.progpolymsci.2010.07.006
  31. Trchová M, Konyushenko EN, Stejskal J, et al. The conversion of polyaniline nanotubes to nitrogen-containing carbon nanotubes and their comparison with multi-walled carbon nanotubes. Polymer Degradation and Stability. 2009:94(6):929-938. doi: 10.1016/j.polymdegradstab.2009.03.001
  32. Dhawale DS, Dubal DP, Jamadade VS, et al. Fuzzy nanofibrous network of polyaniline electrode for supercapacitor application. Synthetic Metals. 2010;160:519-522. doi: 10.1016/j.synthmet.2010.01.021
  33. Mandić Z, Roković MK, Pokupčić T. Polyaniline as cathodic material for electrochemical energy sources. The role of morphology. Electrochimica Acta. 2009; 54(10):2941-2950. doi: 10.1016/j.electacta.2008.11.002
  34. Qin Q, Tao J, Yang Y. Preparation and characterization of polyaniline film on stainless steel by electrochemical polymerization as a counter electrode of DSSC. Synthetic Metals. 2010;160(11-12):1167-1172. doi: 10.1016/j.synthmet.2010.03.003
  35. Lukachova. LV, Shkerin EA, Puganova EA, et al. Electroactivity of chemically synthesized polyaniline in neutral and alkaline aqueous solutions. Journal of Electroanalytical Chemistry. 2003;544:59-63. doi: 10.1016/s0022-0728(03)00065-2
  36. Sayah A, Habelhames F, Bennouioua A, et al. Capacitance of polyaniline films synthesized by direct and pulse potentiostatic methods. Journal Marocain de Chimie Hétérocyclique. 2021;20(2):108-116. doi: 10.48369/IMIST.PRSM/jmch-v20i2.24711
  37. Gojgić J, Petrović M, Jugović B, et al. Electrochemical and electrical performances of high energy storage polyaniline electrode with supercapattery behavior. Polymers. 2022;14(24):5365. doi: 10.3390/polym14245365
  38. Duić L, Mandić Z. Counter-ion and pH effect on the electrochemical synthesis of polyaniline. Journal of Electroanalytical Chemistry. 1992;335(1-2):207-221. doi: 10.1016/0022-0728(92)80243-W
  39. Abalyaeva VV, Kogan IL. Initiating agents for electrochemical polymerization of aniline on titanium electrodes. Synthetic Metals. 1994;63(2):109-113. doi: 10.1016/0379-6779(94)90257-7
  40. Lee HT, Chuang KR, Chen SA, et al. Conductivity relaxation of 1-methyl-2-pyrrolidone-plasticized polyaniline film. Macromolecules. 1995; 28:7645-7652. doi: 10.1021/ma00127a009
  41. Dhawale DS, Salunkhe RR, Jamadade VS, et al. Hydrophilic polyaniline nanofibrous architecture using electrosynthesis method for supercapacitor application. Current Applied Physics. 2010;10(3):904-909. doi: 10.1016/j.cap.2009.10.020
  42. Zhang H, Wang J, Wang Z, et al. Electrodeposition of polyaniline nanostructures: A lamellar structure. Synthetic Metals. 2009;159(3-4):277-281. doi: 10.1016/j.synthmet.2008.09.015
  43. Zhao L, Li X-X, Guo Y-X, et al. Electrochemical Polymerization and Characterization of Polyaniline/Carbon Nanotube Composite Films. Proceedings of the 2nd Annual International Conference on Advanced Material Engineering (AME 2016). 2016;281-286. doi: 10.2991/ame-16.2016.47
  44. Itoi H, Hayashi S, Matsufusa H, et al. Electrochemical synthesis of polyaniline in the micropores of activated carbon for high-performance electrochemical capacitors. Chemical Communications. 2017;53:3201-3204. doi: 10.1039/C6CC08822H
  45. Blinova NV, Stejskal J, Trchová M, et al Polyaniline prepared in solutions of phosphoric acid: Powders, thin films, and colloidal dispersions. Polymer. 2006;47:42-48. doi: 10.1016/j.polymer.2005.10.145
  46. Konyushenko EN, Stejskal J, Trchová M, et al. Multi-wall carbon nanotubes coated with polyaniline. Polymer. 2006;47(16):5715-5723. doi: 10.1016/j.polymer.2006.05.059
  47. Konyushenko EN, Stejskal J, Šeděnková I, et al. Polyaniline nanotubes: Conditions of formation. Polymer International. 2006;55(1):31-39. doi: 10.1002/pi.1899
  48. Stejskal J, Sapurina I, Trchová M, et al. The genesis of polyaniline nanotubes. Polymer. 2006;47:8253-8262. doi: 10.1016/j.polymer.2006.10.007.
  49. Stejskal J, Sapurina I, Trchová M, et al. Oxidation of aniline: Polyaniline granules, nanotubes, and oligoaniline microspheres. Macromolecules. 2008;41(10): 3530-3536. doi: 10.1021/ma702601q
  50. Ding H, Shen J, Wan M, et al. Formation mechanism of polyaniline nanotubes by a simplified template-free method. Macromolecular Chemistry and Physics. 2008;209(8):864-871. doi: 10.1002/macp.200700624
  51. Zhang L, Zujovic ZD, Peng H, et al. Structural characteristics of polyaniline nanotubes synthesized from different buffer solutions. Macromolecules. 2008;41: 8877-8884. doi: 10.1021/ma801728j
  52. Wang J, Zhang D. One-dimensional nanostructured polyaniline: syntheses, morphology controlling, formation mechanisms, new features, and applications. Advances in Polymer Technology. 2012;32:E323-E368. doi: 10.1002/adv.21283
  53. Anju C, Palatty Sh. Ternary doped polyaniline-metal nanocomposite as high performance supercapacitive material. Electrochimica Acta. 2019;299:626-635. doi: 10.1016/j.electacta.2019.01.030
  54. Lin K, Hu L, Chen K, et al. Characterization of polyaniline synthesized from chemical oxidative polymerization at various polymerization temperatures. European Polymer Journal. 2017;88:311-319. doi: 10.1016/j.eurpolymj.2017.01.035
  55. Yashwanth VN, Kariduraganavar MY, Srinivasa HT, et al. Synthesis and characterization of cotton candy-PANI: Enhanced supercapacitance properties. Journal of the Indian Chemical Society. 2023;100(3):100944. doi: 10.1016/j.jics.2023.100944
  56. Prasutiyo YJ, Manaf A, Hafizah MAE. Synthesis of polyaniline by chemical oxidative polymerization and characteristic of conductivity and reflection for various strong acid dopants. Journal of Physics: Conference Series. 2020;1442:012003. doi: 10.1088/1742-6596/1442/1/012003
  57. Shaari HAH, Mohtar MN, Rahman NA, et al. Synthesis and functional characterization of conducting polyaniline by oxidative polymerization method. AIP Conference Proceedings. 2022;2506(1):030001. doi: 10.1063/5.0084374
  58. Zeng F, Qin Z, Liang B, et al. Polyaniline nanostructures tuning with oxidants in interfacial polymerization system. Progress in Natural Science: Materials International. 2015;25(5):512-519. doi: 10.1016/j.pnsc.2015.10.002
  59. Yasuda A, Shimidzu T. Chemical oxidative polymerization of aniline with ferric chloride. Polymer Journal. 1993;25(4):329-338. doi: 10.1295/polymj.25.329
  60. Lyu W, Yu M, Li J, et al. Adsorption of anionic acid red G dye on polyaniline nanofibers synthesized by FeCl3 oxidant: Unravelling the role of synthetic conditions. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2022;647:129203. doi: 10.1016/j.colsurfa.2022.129203
  61. Bláha M, Riesová M, Zedník J. Polyaniline synthesis with iron (III) chloride – hydrogen peroxide catalyst system: Reaction course and polymer structure study. Synthetic Metals. 2011;161:1217-1225. doi: 10.1016/j.synthmet.2011.04.008
  62. Ayad M, Amer W, Whdan M. In situ polyaniline film formation using ferric chloride as an oxidant. Journal of Applied Polymer Science. 2012;125:2695-2700. doi: 10.1002/app.36584
  63. Chiolerio A, Bocchini S, Crepaldi M, et al. Bridging electrochemical and electron devices: fast resistive switching based on polyaniline from one pot synthesis using FeCl3 as oxidant and co-doping agent. Synthetic Metals. 2017;229:72-81. doi: 10.1016/j.synthmet.2017.05.001
  64. Nestorović GD, Jeremić KB, Jovanović SM. Kinetics of aniline polymerization initiated with iron (III) chloride. Journal of the Serbian Chemical Society. 2006;71:895-904. doi: 10.2298/JSC0609895N
  65. Yan H, Kajita M, Toshima N. Polymerization of aniline using iron(III) catalyst and ozone, and kinetics of oxidation reactions in the catalytic system. Macromolecular Materials and Engineering. 2002;287(8): 503-508. doi: 10.1002/1439-2054(20020801)287:8<503::aid-mame503>3.0.co;2-n
  66. Syed AA, Dinesan MK. Review: Polyaniline – A novel polymeric material. Talanta. 1991;38(8):815-837. doi: 10.1016/0039-9140(91)80261-w
  67. Cao Y, Andreatta A, Heeger AJ, et al. Influence of chemical polymerization conditions on the properties of polyaniline. Polymer. 1989;30(12):2305-2311. doi: 10.1016/0032-3861(89)90266-8
  68. Jun TS, Kim CK, Kim YS. Vapor phase polymerization of polyaniline nanotubes using Mn3O4 nanofibers as an oxidant. Materials Letters. 2014;133: 17-19. doi: 10.1016/j.matlet.2014.06.154
  69. Li Y, Gong J, He G, et al. Fabrication of polyaniline / titanium dioxide composite nanofibers for gas sensing application. Materials Chemistry and Physics. 2011;129(1-2):477-482. doi: 10.1016/j.matchemphys.2011.|04.045
  70. Fei J, Cui Y, Yan X, et al. Controlled fabrication of polyaniline spherical and cubic shells with hierarchical nanostructures. ACS Nano. 2009;3(11):3714-3718. doi: 10.1021/nn900921v
  71. Yakubu A, Monday M, Tsado MJ, et al. In situ synthesis of polyaniline nanohybrid and formulation of polyaniline/carboxymethyl cellulose/ethylene glycol nanocomposite: study of its conducting and antibacterial properties. Journal of Materials and Polymer Science. 2023;3(4):1-9. doi: 10.47485/2832-9384.1041
  72. Bláha M, Trchová M, Bober P, et al. Polyaniline: Aniline oxidation with strong and weak oxidants under various acidity. Materials Chemistry and Physics. 2017; 194:206-218. doi: 10.1016/j.matchemphys.2017.03.028
  73. Ullah R, Bowmaker GA, Laslau C, et al. Synthesis of polyaniline by using CuCl2 as oxidizing agent. Synthetic Metals. 2014;198:203-211. doi: 10.1016/j.synthmet.2014.10.005
  74. Chuanyu S, Yu W. Synthesis of polyaniline nanotubes through UV light catalytic method. Materials Science-Poland. 2015;33(1):193-197. doi: 10.1515/msp-2015-0022
  75. Jangid NK, Jadoun S, Kaur N. A Review on high-throughput synthesis, deposition of thin films and properties of polyaniline. European Polymer Journal. 2020;125:109485. doi: 10.1016/j.eurpolymj.2020.109485
  76. Powar K, Vengurlekar P. Applications of electroactive polymer in electronics and Mechatronics. International Journal of Scientific & Engineering Research. 2018;9(2):21-34.
  77. Ćirić-Marjanović G. Recent advances in polyaniline composites with metals, metalloids and nonmetals. Synthetic Metals. 2013;170(1):31-56. doi: 10.1016/j.synthmet.2013.02.028
  78. Gu Y, Tsai JY. Enzymatic synthesis of conductive polyaniline in the presence of ionic liquid. Synthetic Metals. 2012;161(23-24):2743-2747. doi: 10.1016/j.synthmet.2011.10.013
  79. Guo Z, Hauser N, Moreno A, et al. AOT vesicles as templates for the horseradish peroxidase-triggered polymerization of aniline. Soft Matter. 2011;7:180-193. doi: 10.1039/C0SM00599A
  80. Ding Q, Qian R, Jing X, et al. Reaction of aniline with KMnO4 to synthesize polyaniline-supported Mn nanocomposites: An unexpected heterogeneous free radical scavenger. Materials Letters. 2019;251:222-225. doi: 10.1016/j.matlet.2019.05.076
  81. Dyachkova TP, Melezhyk AV, Morozova Zh.G, et al. Effect of the nature of oxidant and synthesis conditions on properties of nanocomposites polyaniline/carbon nanotubes. Vestnik Tambovskogo gosudarstvennogo tekhnicheskogo universiteta. 2012;18(3):718-730. (In Russ.)
  82. Bláha M, Zedník J, Vohlídal J. Self-doping of polyaniline prepared with the FeCl3/H2O2 system and the origin of the Raman band of emeraldine salt at around 1375 cm−1. Polymer International. 2015;64(12):1801-1807. doi: 10.1002/pi.4983
  83. Garcia-Bernabé A, Gil-Agustí M, Ortega G, et al. On the effect of the oxidative reagents on the conductivity of polyaniline/MMT nanocomposites. AIP Conference Proceedings. 2010;1255:273-275. doi: 10.1063/1.3455605
  84. Majeed A, Mohammed L, Hammoodi O, et al. A review on polyaniline: synthesis, properties, nanocomposites, and electrochemical applications. International Journal of Polymer Science. 2022;2022: 9047554. doi: 10.1155/2022/9047554
  85. Carrillo N, León-Silva U, Avalos T, et al. Enzymatically synthesized polyaniline film deposition studied by simultaneous open circuit potential and electrochemical quartz crystal microbalance measurements. Journal of Colloid and Interface Science. 2012;369(1):103-110. doi: 10.1016/j.jcis.2011.12.021
  86. Felix JF, Barros RA, M. de Azevedo W, et al. X-ray irradiation: A non-conventional route for the synthesis of conducting polymers. Synthetic Metals. 2011;161:173-176. doi: 10.1016/j.synthmet.2010.11.017
  87. Park JK, Kwon OP, Choi EY, et al. Enhanced electrical conductivity of polyaniline film by a low magnetic field. Synthetic Metals. 2010;160:728-731. doi: 10.1016/j.synthmet.2010.01.011
  88. Jackowska K, Bieguński AT, Tagowska M. Hard template synthesis of conducting polymers: A route to achieve nanostructures. Journal of Solid State Electrochemistry. 2008;12(4):437-443. doi: 10.1007/s10008-007-0453-7
  89. Konyushenko EN, Stejskal J, Trchová M, et al. Suspension polymerization of aniline hydrochloride in non-aqueous media. Polymer International. 2011;60(5): 794-797. doi: 10.1002/pi.3017
  90. Kim JY, Jang H, Lee YR, et al. Nanostructured polyaniline films functionalized through auxiliary nitrogen addition in atmospheric pressure plasma polymerization. Polymers. 2023;15(7):1626. doi: 10.3390/polym15071626
  91. Sury S, Ulianas A, Aini S. Synthesis of conducting polyaniline with photopolymerization method and characterization. Journal of Physics: Conference Series. 2020;1788:012004. doi: 10.1088/1742-6596/1788/1/012004
  92. Stejskal J, Riede A, Hlavatá D, et al. The effect of polymerization temperature on molecular weight, crystallinity, and electrical conductivity of polyaniline. Synthetic Metals. 1998;96:55-61. doi: 10.1016/S0379-6779(98)00064-2
  93. Adams PM, Abell L, Middleton A, et al. Low temperature synthesis of high molecular weight polyaniline using dichromate oxidant. Synthetic Metals. 1997;84(1-3): 61-62. doi: 10.1016/s0379-6779(96)03836-2
  94. Peng C, Zhang S, Jewell D, et al. Carbon nanotube and conducting polymer composites for supercapacitors. Progress in Natural Science. 2008;18(7):777-788. doi: 10.1016/j.pnsc.2008.03.002
  95. Wu G, Du H, Cha YL, et al. A wearable mask sensor based on polyaniline/CNT nanocomposites for monitoring ammonia gas and human breathing. Sensors and Actuators B: Chemical. 2023;375:132858. doi: 10.1016/j.snb.2022.132858
  96. Rodrigues de Souza VH, Oliveira M, Zarbin AJ. Thin and flexible all-solid supercapacitor prepared from novel single wall carbon nanotubes/polyaniline thin films obtained in liquid-liquid interfaces. Journal of Power Sources. 2014;260:34-42. doi: 10.1016/j.jpowsour.2014.02.070
  97. Yoo R, Kim J, Song M-J, et al. Nano-composite sensors composed of single-walled carbon nanotubes and polyaniline for the detection of a nerve agent simulant gas. Sensors and Actuators B: Chemical. 2015;209:444-448. doi: 10.1016/j.snb.2014.11.137
  98. Abdulla S, Lazar T, Pullithadathil M. Highly sensitive, room temperature gas sensor based on polyaniline-multiwalled carbon nanotubes (PANI/ MWCNTs) nanocomposite for trace-level ammonia detection. Sensors and Actuators B: Chemical. 2015;21:1523-1534. doi: 10.1016/j.snb.2015.08.002
  99. Wang Y, Zhang S, Deng Y. Semiconductor to metallic behavior transition in multi-wall carbon nanotubes/polyaniline composites with improved thermoelectric properties. Materials Letters. 2016;164:132-135. doi: 10.1016/j.matlet.2015.10.138
  100. Oueiny C, Berlioz S, Perrin F.-X. Carbon nanotube–polyaniline composites. Progress in Polymer Science. 2014;39(4):707-748. doi: 10.1016/j.progpolymsci.2013.08.009
  101. Wang Q, Qian X, Wang S, et al. Conductive polyaniline composite films from aqueous dispersion: Performance enhancement by multi-walled carbon nanotube. Synthetic Metals. 2015;199:1-7. doi: 10.1016/j.synthmet.2014.11.007
  102. Tan H, Xu X. Conductive properties and mechanism of various polymers doped with carbon nanotube/polyaniline hybrid nanoparticles. Composites Science and Technology. 2016;128:155-160. doi: 10.1016/j.compscitech.2016.03.027
  103. Bachhav SG, Patil DR. Synthesis and characterization of polyaniline-multiwalled carbon nanotube nanocomposites and its electrical percolation behavior. American Journal of Materials Science. 2015;5(4):90-95. doi: 10.5923/j.materials.20150504.03
  104. Xavier PAF, Benoy MD, Stephen SK, et al. Enhanced electrical properties of polyaniline carbon nanotube composites: Analysis of temperature dependence of electrical conductivity using variable range hopping and fluctuation induced tunneling models. Journal of Solid State Chemistry. 2021;300:122232. doi: 10.1016/j.jssc.2021.122232
  105. Zhang J, Zhu A. Study on the synthesis of PANI/CNT nanocomposite and its anticorrosion mechanism in waterborne coatings. Progress in Organic Coatings. 2021;159:106447. doi: 10.1016/j.porgcoat.2021.106447
  106. Bora A, Mohan K, Pegu D, et al. A room temperature methanol vapor sensor based on highly conducting carboxylated multi-walled carbon nanotube/polyaniline nanotube composite. Sensors and Actuators B: Chemical. 2017;253:977-986. doi: 10.1016/j.snb.2017.07.023
  107. Islam R, Papathanassiou A, Chan-Yu-King R, et al. Competing charge trapping and percolation in core-shell single wall carbon nanotubes/polyaniline nanostructured composites. Synthetic Metals. 2020;259:116259. doi: 10.1016/j.synthmet.2019.116259
  108. Mottaghitalab V, Spinks GM, Wallace GG. The influence of carbon nanotubes on mechanical and electrical properties of polyaniline fibers. Synthetic Metals. 2005;152(1-3):77-80. doi: 10.1016/j.synthmet.2005.07.154
  109. Huang J, Liu X, Du Y. Highly efficient and wearable thermoelectric composites based on carbon nanotube film/polyaniline. Journal of Materiomics. 2024;10(1):173-178. doi: 10.1016/j.jmat.2023.04.014
  110. Wu T.-M, Lin Y.-W. Doped polyaniline/multi-walled carbon nanotube composites: Preparation, characterization and properties. Polymer. 2006;47(10): 3576-3582. doi: 10.1016/j.polymer.2006.03
  111. Snook GA, Kao P, Best AS. Conducting-polymer-based supercapacitor devices and electrodes. Journal of Power Sources. 2011;196(1):1-12. doi: 10.1016/j.jpowsour.2010
  112. Singh G, Kumar Y, Husain S. Fabrication of high energy density symmetric polyaniline/functionalized multiwalled carbon nanotubes supercapacitor device with swift charge transport in different electrolytic mediums. Journal of Energy Storage. 2023;65. doi: 10.1016/j.est.2023.107328
  113. Ali ES, Issa Sh, Zakaly H, et al. Exploration of optical and gamma radiation shielding characteristics of zinc oxide nanoparticles doped functionalized multi-walled carbon nanotubes nanohybrids based polyaniline ternary nanocomposites. Diamond and Related Materials. 2024;143:110882. doi: 10.1016/j.diamond.2024.110882
  114. Dyachkova TP, Anosova IV, Tkachev AG, et al. Synthesis of composites from functionalized carbon nanotubes and polyaniline. Inorganic Materials: Applied Research. 2018;9(2):305-310. doi: 10.1134/S2075113318020089
  115. Gutnik IV, Dyachkova TP, Rukhov AV, et al. Polyaniline/carbon nanotubes composites: kinetic laws of synthesis, morphology and properties. Advanced Materials and Technologies. 2018;4:54-68. doi: 10.17277/amt.2018.04.pp.054-068
  116. Geim AK, Novoselov KS. The rise of grapheme. Nature Materials. 2007;6(3):183-191. doi: 10.1038/nmat1849
  117. Mehmooda Ah, Mubaraka NM, Khalidb M, et al. Graphene based nanomaterials for strain sensor application – a review. Journal of Environmental Chemical Engineering. 2020;8:103743. doi: 10.1016/j.jece.2020.103743
  118. Yang Y, Wei Y, Guo Z, et al. From materials to devices: graphene toward practical applications (Review). Small Methods. 2022;6(10):2200671. doi: 10.1002/smtd.202200671
  119. Sahoo PK, Kumar N, Jena A, et al. Recent progress in graphene and its derived hybrid materials for high-performance supercapacitor electrode applications. RSC Advances. 2024;14(2):1284-1303. doi: 10.1039/d3ra06904d
  120. Avinash K, Patolsky F. Laser-induced graphene structures: From synthesis and applications to future prospects. Materials Today. 2023;70:104-136. doi: 10.1016/j.mattod.2023.10.009
  121. Nair AS, Sreejakumari SS, Venkatesan J, et al. A novel top-down approach for high yield production of graphene from natural graphite and its supercapacitor applications. Diamond and Related Materials. 2024;144:111025. doi: 10.1016/j.diamond.2024.111025
  122. Ahmad F, Ghazal H, Rasheed F, et al. Graphene and its derivatives in medical applications: A comprehensive review. Synthetic Metals. 2024;304:117594. doi: 10.1016/j.synthmet.2024.117594
  123. Nam J, Yang J, Zhao Y, et al. Chemical vapor deposition of graphene and its characterizations and applications. Current Applied Physics. 2024;61:55-70. doi: 10.1016/j.cap.2024.02.010
  124. Prasannakumar AT, Rohith R, Manju V, et al. Graphene nanoflake-self stabilized dispersion polymerized PANI hybrids as efficient, binder-free electrode materials for high-performance flexible symmetric supercapacitors. Journal of Electroanalytical Chemistry. 2024;952:117952. doi: 10.1016/j.jelechem.2023.117952
  125. Kerli S, Bhardwaj S, Lın W, et al. Silver-doped reduced graphene oxide/PANI composite synthesis and their supercapacitor applications. Journal of Organometallic Chemistry. 2023,995:122725. doi: 10.1016/j.jorganchem.2023.122725
  126. Kenesi AG, Ghorbani M, Lashkenari MS. High electrochemical performance of PANI/CdO nanocomposite based on graphene oxide as a hybrid electrode materials for supercapacitor application. International Journal of Hydrogen Energy. 2022;47(91):38849-38861. doi: 10.1016/j.ijhydene.2022.09.047
  127. Mourya P, Goswami R, Saini R, et al. Epoxy coating reinforced with graphene-PANI nanocomposites for enhancement of corrosion-resistance performance of mild steel in saline water. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2024;687: 133500. doi: 10.1016/j.colsurfa.2024.133500
  128. Yan J, Wei T, Shao B, at al. Preparation of a graphene nanosheet/polyaniline composite with high specific capacitance. Carbon. 2010;48:487-493. doi: 10.1016/j.carbon.2009.09.066
  129. Zhang Q-Y, Yang Y-J, Tang M-Y, et al. Electrochemical preparation and features of newly cross-stacking multi-layered reduced graphene oxide (rGO) and polyaniline (PANI) modified carbon-based electrode. Current Research in Biotechnology. 2024;7:100196. doi: 10.1016/j.crbiot.2024.100196
  130. Okhay O, Tkach A. Polyaniline-graphene electrodes prepared by electropolymerization for high-performance capacitive electrodes: a brief review. Batteries. 2022;8(10):191. doi: 10.3390/batteries8100191
  131. Ma B, Zhou X, Bao H, et al. Hierarchical composites of sulfonated graphene-supported vertically aligned polyaniline nanorods for high-performance supercapacitors. Journal of Power Sources. 2012;215:36-42. doi: 10.1016/j.jpowsour.2012.04.083
  132. Jianhua L, Junwei A, Yecheng Z, et al. Preparation of an amide group-connected graphene–polyaniline nanofiber hybrid and its application in supercapacitors. ACS Applied Materials and Interfaces. 2012;4:2870-2876. doi: 10.1021/am300640y
  133. Umar Ah, Ahmed F, Ullah N, et al. Exploring the potential of reduced graphene oxide/polyaniline (rGO@PANI) nanocomposites for high-performance supercapacitor application. Electrochimica Acta. 2024;479:143743. doi: 10.1016/j.electacta.2023.143743
  134. Huang Z, Li L, Wang Y, et al. Polyaniline/graphene nanocomposites towards high-performance supercapacitors: A review. Composites Communications. 2018;8:83-91. doi: 10.1016/j.coco.2017.11.005
  135. Li Y, Zhao X, Yu P, et al. Oriented arrays of polyaniline nanorods grown on graphite nanosheets for an electrochemical supercapacitor. Langmuir. 2013;29:493-500. doi: 10.1021/la303632d
  136. Wang DW, Li F, Zhao J, et al. Fabrication of graphene/polyaniline composite paper via in situ anodic electropolymerization for high-performance flexible electrode. ACS Nano. 2009;3:1745-1752. doi: 10.1021/nn900297m
  137. Huang YF, Lin CW. Facile synthesis and morphology control of graphene oxide/polyaniline nanocomposites via in-situ polymerization process. Polymer. 2012;53(13):2574-2582. doi: 10.1016/j.polymer.2012.04.022
  138. Gutnik IV, Dyachkova TP, Burakova EA, et al. Polyaniline/mesoporous carbon composites as promising materials for supercapacitors. IOP Conference Series: Materials Science and Engineering: 3, Synthesis, Production, and Application. Tambov. 2019;693:012026. doi: 10.1088/1757-899X/693/1/012026
  139. Kumar M, Singh K, Dhawan SK, et al. Synthesis and characterization of covalently-grafted graphene– polyaniline nanocomposites and its use in a supercapacitor. Chemical Engineering Journal. 2013;231:397-405. doi: 10.1016/j.cej.2013.07.043
  140. Shen J, Yang C, Li X, et al. High–performance asymmetric supercapacitor based on nanoarchitectured polyaniline/graphene/carbon nanotube and activated graphene electrodes. ACS Applied Materials and Interfaces. 2013;5:8467-8476. doi: 10.1021/am4028235
  141. Yan J, Wei T, Fan Z, et al. Preparation of graphene nanosheet / carbon nanotube / polyaniline composite as electrode material for supercapacitors. Journal of Power Sources. 2010;195(9):3041-3045. doi: 10.1016/j.jpowsour.2009.11.028
  142. Ali I, Burakov AE, Burakova IV, et al. Polyaniline modified CNTs and graphene nanocomposite for removal of lead and zinc metal ions: kinetics, thermodynamics and desorption studies. Molecules. 2022;27(17):5623. doi: 10.3390/molecules27175623
  143. Kuznetsova TS, Burakov AE, Pasko TV, et al. Physico-chemical and sorption properties of nanocomposite aerogels based on modified carbon nanotubes and grapheme. Izvestiya vysshih uchebnyh zavedenij. Seriya: himiya i himicheskaya tekhnologiya. = ChemChemTech. 2023;66(3);66-76. doi: 10.6060/ivkkt.20236603.6726 (In Russ.)
  144. Kuznetsova TS, Burakov AE, Burakova IV, et al. Preparation of a polyaniline-modified hybrid graphene aerogel-like nanocomposite for efficient adsorption of heavy metal ions from aquatic media. Polymers. 2023;15(5):1101. doi: 10.3390/polym15051101
  145. Rattanakunsong N, Bunkoed O. A porous composite monolith sorbent of polyaniline, multiwall carbon nanotubes and chitosan cryogel for aromatic compounds extraction. Microchemical Journal. 2020;154:104562. doi: 10.1016/j.microc.2019.104562
  146. Wang X, Ouyang J, Wang L, et al. Wood shavings combined with polyaniline and carbon nanotube film for flexible high-performance energy storage devices. Journal of Energy Storage. 2024;77:109927. doi: 10.1016/j.est.2023.109927
  147. Liu Sh, Chen Y, P.-K. Dorsel P, et al. Facile preparation of nanocellulose/multi-walled carbon nanotube/polyaniline composite aerogel electrodes with high area-specific capacitance for supercapacitors. International Journal of Biological Macromolecules. 2023;238:124158. doi: 10.1016/j.ijbiomac.2023.124158
  148. Lee KS, Park ChW, Phiri I, et al. New design for Polyaniline@Multiwalled carbon nanotubes composites with bacteria doping for supercapacitor electrodes. Polymer. 2020;210:123014. doi: 10.1016/j.polymer.2020.123014
  149. Yu T, Zhu P, Xiong Y, et al. Synthesis of microspherical polyaniline/graphene composites and their application in supercapacitors. Electrochimica Acta. 2016;222:12-19. doi: 10.1016/j.electacta.2016.11.033
  150. Zhang Y, Si L, Zhou B, et al. Synthesis of novel graphene oxide/pristine graphene/polyaniline ternary composites and application to supercapacitor. Chemical Engineering Journal. 2016;288:689-700. doi: 10.1016/j.cej.2015.12.058
  151. Shao F, Niu Y, Li B, et al. Binary nanosheet frameworks of graphene/polyaniline composite for high-areal flexible supercapacitors. Materials Chemistry and Physics. 2021;273:125128. doi: 10.1016/j.matchemphys.2021.125128
  152. Li B, Li Z, Zhang L, et al. Facile synthesis of polyaniline nanofibers/porous carbon microspheres composite for high performance supercapacitors. Journal of the Taiwan Institute of Chemical Engineers. 2017;81:465-471. doi: 10.1016/j.jtice.2017.08.009
  153. Zhou J, Sun Y, Zhou Ch, et al. Polyaniline/ carbon hybrids: Synthesis and application for alizarin red S removal from water. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2023;676(A):132204. doi: 10.1016/j.colsurfa.2023.132204
  154. Ansari MO, Kumar R, Ansari SA, et al. Anion selective pTSA doped polyaniline@graphene oxide-multiwalled carbon nanotube composite for Cr(VI) and Congo red adsorption. Journal of Colloid and Interface Science. 2017;496:407-415. doi: 10.1016/j.jcis.2017.02.034
  155. Al-Hamry A, Lu T, Bai J, et al. Versatile sensing capabilities of layer-by-layer deposited polyaniline-reduced graphene oxide composite-based sensors. Sensors and Actuators B: Chemical. 2023;390:133988. doi: 10.1016/j.snb.2023.133988
  156. Aghamiri ZS, Mohsennia M, Rafiee-Pour H-A. Fabrication and characterization of cytochrome c-immobilized polyaniline/multi-walled carbon nanotube composite thin film layers for biosensor applications. Thin Solid Films. 2018;660:484-492. doi: 10.1016/j.tsf.2018.06.055
  157. Gautam V, Singh KP, Yadav VL. Polyaniline/ multiwall carbon nanotubes/starch nanocomposite material and hemoglobin modified carbon paste electrode for hydrogen peroxide and glucose biosensing. International Journal of Biological Macromolecules. 2018;111:1124-1132. doi: 10.1016/j.ijbiomac.2018.01.094
  158. Shao Y, Dong Y, Bin L, et al. Application of gold nanoparticles/polyaniline-multi-walled carbon nanotubes modified screen-printed carbon electrode for electrochemical sensing of zinc, lead, and copper. Microchemical Journal. 2021;170:106726. doi: 10.1016/j.microc.2021.106726
  159. Pontes K, Soares BG. Segregated structure of poly (vinylidene fluoride-co-hexafluoropropylene) composites loaded with polyaniline@carbon nanotube hybrids with enhanced microwave absorbing properties. Synthetic Metals. 2022;288:117096. doi: 10.1016/j.synthmet.2022.117096
  160. Ebrahim S, El-Raey R, Hefnawy A, et al. Electrochemical sensor based on polyanilinenanofibers/ single wall carbon nanotubes composite for detection of malathion. Synthetic Metals. 2014;190:13-19. doi: 10.1016/j.synthmet.2014.01.021
  161. Dhawan SK, Singh N, Rodrigues D. Electromagnetic shielding behaviour of conducting polyaniline composites. Science and Technology of Advanced Materials. 2003;4(2):105-113. doi: 10.1016/S1468-6996(02)00053-0
  162. Batool K, Rani M, Osman SM, et al. High electrochemical capacity of novel ternary graphene oxide based PANI/Co3O4 nanocomposite as supercapacitor electrode material. Diamond and Related Materials. 2024;143:110904. doi: 10.1016/j.diamond.2024.110904
  163. Mahato N, Faisal M, Sreekanth TVM, et al. In-situ engineered polycrystalline phases in polyaniline-multiwalled carbon nanotubes composite exhibiting unique mechanism of charge storage. Materials Letters. 2023;350:134867. doi: 10.1016/j.matlet.2023.134867
  164. Liu S, Chen Y, Dorsel P-KP, et al. Facile preparation of nanocellulose/multi-walled carbon nanotube/polyaniline composite aerogel electrodes with high area-specific capacitance for supercapacitors. International Journal of Biological Macromolecules. 2023;238:124158. doi: 10.1016/j.ijbiomac.2023.124158
  165. Anukul KTh, Deshmukh AB, Choudhary RB, et al. Facile synthesis and electrochemical evaluation of PANI/CNT/MoS2 ternary composite as an electrode material for high performance supercapacitor. Materials Science and Engineering: B. 2017;223:24-34. doi: 10.1016/j.mseb.2017.05.001
  166. Rahman MdM, Shawon MR, Rahman MdH, et al. Synthesis of polyaniline-graphene oxide based ternary nanocomposite for supercapacitor application. Journal of Energy Storage. 2023;67:107615. doi: 10.1016/j.est.2023.107615
  167. Singu BS, Male U, Srinivasan P, et al. Preparation and performance of polyaniline–multiwall carbon nanotubes–titanium dioxide ternary composite electrode material for supercapacitors. Journal of Industrial and Engineering Chemistry. 2017;49:82-87. doi: 10.1016/j.jiec.2017.01.010
  168. Thomas L, Pete S, Chaitra K, et al. Facile synthesis of PANI-MWCNT-Ni(OH)2 ternary composites and study of their performance as electrode material for supercapacitors. Diamond and Related Materials. 2020;106:107853. doi: 10.1016/j.diamond.2020.107853
  169. Zaghloul MMY, Ebrahim Sh, Anas M, et al. Synthesis and characterization of nanocomposites of polyaniline and polyindole with multiwalled carbon nanotubes for high performance supercapacitor electrodes. Electrochimica Acta. 2024;475:143631. doi: 10.1016/j.electacta.2023.143631
  170. Lu X, Dou H, Yang S, et al. Fabrication and electrochemical capacitance of hierarchical graphene/polyaniline/carbon nanotube ternary composite film. Electrochimica Acta. 2011;56(25):9224-9232. doi: 10.1016/j.electacta.2011.07.142
  171. Mezgebe MM, Yan Zh, Wei G, et al. 3D graphene-Fe3O4-polyaniline, a novel ternary composite for supercapacitor electrodes with improved electrochemical properties. Materials Today Energy. 2017;5:164-172. doi: 10.1016/j.mtener.2017.06.007
  172. Huang Ch, Hao Ch, Zheng W, et al. Synthesis of polyaniline/nickel oxide/sulfonated graphene ternary composite for all-solid-state asymmetric supercapacitor. Applied Surface Science. 2020;505:144589. doi: 10.1016/j.apsusc.2019.144589
  173. Hao M, Chen Y, Xiong W, et al. Coherent polyaniline/graphene oxides/multi-walled carbon nanotubes ternary composites for asymmetric supercapacitors. Electrochimica Acta. 2016;191:165-172. doi: 10.1016/j.electacta.2016.01.076
  174. Verma S, Das T, Pandey VK, et al. Nanoarchitectonics of GO/PANI/CoFe2O4 (Graphene Oxide/polyaniline/Cobalt Ferrite) based hybrid composite and its use in fabricating symmetric supercapacitor devices. Journal of Molecular Structure. 2022;1266: 133515. doi: 10.1016/j.molstruc.2022.133515
  175. Muhammad Z, Rukhsar A, Sabahat S, et al. Polyaniline-based nanocomposites for electromagnetic interference shielding applications: A review. Journal of Thermoplastic Composite Materials. 2021;36(4): 089270572110224. doi: 10.1177/08927057211022408
  176. Hanifah N, Subadra ST. UI, Hidayat Nl, et al. A novel Fe3O4/ZnO/PANI/rGO nanohybrid material for radar wave absorbing. Materials Chemistry and Physics. 2024;317:129169. doi: 10.1016/j.matchemphys.2024.129169
  177. Souto LFC, Soares BG. Electromagnetic wave absorption, EMI shielding effectiveness and electrical properties of ethylene – vinyl Acetate (EVA)/ Polyaniline (PANI) blends prepared by in situ polymerization. Synthetic Metals. 2023;298:117441. doi: 10.1016/j.synthmet.2023.117441
  178. Xie Zh, Chen H, Xie M, et al. Electrical percolation networks of MWCNT/Graphene/Polyaniline nanocomposites with enhanced electromagnetic interference shielding efficiency. Applied Surface Science. 2024;655(51):159613. doi: 10.1016/j.apsusc.2024.159613
  179. Goswami RN, Mourya P, Saini R, et al. Polyaniline-wrapped nitrogen-doped graphene nanocomposites as protective functional fillers in epoxy coatings for remarkable enhancement of corrosion inhibition performance. Progress in Organic Coatings. 2024;189:108335. doi: 10.1016/j.porgcoat.2024.108335
  180. Kang Y, Wang C, Chen C. Preparation of 2D leaf‐shaped and 3D flower‐shaped sandwich‐like polyaniline nanocomposites and application on anticorrosion. Journal of Applied Polymer Science. 2020;138(4):49729. doi: 10.1002/app.49729
  181. Yuan T, Zhang ZH, Li J, et al. Corrosion protection of aluminum alloy by epoxy coatings containing polyaniline modified graphene additives. Materials and Corrosion. 2019;70:1298-1305. doi: 10.1002/maco.201810549
  182. Raj GK, Singh E, Hani U, et al. Conductive polymers and composites-based systems: An incipient stride in drug delivery and therapeutics realm. Journal of Controlled Release. 2023;355:709-729. doi: 10.1016/j.jconrel.2023.02.017
  183. Liu R, Li A, Lang Y, et al. Stimuli-responsive polymer microneedles: A rising transdermal drug delivery system and Its applications in biomedical. Journal of Drug Delivery Science and Technology. 2023;88:104922. doi: 10.1016/j.jddst.2023.104922
  184. Jose A, Bansal M, Svirskis D, et al. Synthesis and characterization of antimicrobial colloidal polyanilines. Colloids and Surfaces B: Biointerfaces. 2024;238:113912. doi: 10.1016/j.colsurfb.2024.113912
  185. Sun S, Xu Y, Maimaitiyiming X. 3D printed carbon nanotube/polyaniline/gelatin flexible NH3, stress, strain, temperature. Reactive and Functional Polymers. 2023;190(11):105625. doi: 10.1016/j.reactfunctpolym.2023.105625
  186. Wu G, Du H, Cha YL, et al. A wearable mask sensor based on polyaniline/CNT nanocomposites for monitoring ammonia gas and human breathing. Sensors and Actuators B: Chemical. 2023;375:132858. doi: 10.1016/j.snb.2022.132858.
  187. Matindoust S, Farzi A, Nejad MB, et al. Ammonia gas sensor based on flexible polyaniline films for rapid detection of spoilage in protein-rich foods. Journal of Materials Science: Materials in Electronics. 2017;28(11):7760-7768. doi: 10.1007/s10854-017-6471-z
  188. Pegu B, Konwar M, Sarma D, et al. Cu nanoparticle anchored highly conducting, reusable multifunctional rGO/PANI nanocomposite: A novel material for methanol sensor and a catalyst for click reaction. Synthetic Metals. 2024;301:117516. doi: 10.1016/j.synthmet.2023.117516
  189. Sahoo S, Sahoo PK, Sharma A, et al. Interfacial polymerized RGO/MnFe2O4/polyaniline fibrous nanocomposite supported glassy carbon electrode for selective and ultrasensitive detection of nitrite. Sensors and Actuators B: Chemical. 2020;309:127763-127763. doi: 10.1016/j.snb.2020.127763
  190. Jiang Sh, Zhang H, Li Zh, et al. High-sensitivity integrated detector with nanostructured hydrogel electrode for ascorbic acid determination. Microchemical Journal. 2023;189:108510. doi: 10.1016/j.microc.2023.108510
  191. Morais JPL, Bernardino DV, Batista BdaS, et al. Conductive polymer blend based on polyaniline and galactomannan: Optical and electrical properties. Synthetic Metals. 2023;295:117346. doi: 10.1016/j.synthmet.2023.117346
  192. Chajanovsky I, Cohen S, Muthukumar D, et al. Enhancement of integrated nano-sensor performance comprised of electrospun PANI/carbonaceous material fibers for phenolic detection in aqueous solutions. Water Research. 2023;246:120709. doi: 10.1016/j.watres.2023.120709
  193. Virutkar PD, Mahajan AP, Meshram BH, et al. Conductive polymer nanocomposite enzyme immobilized biosensor for pesticide detection. Journal of Materials NanoScience. 2019;6(1):7-12.
  194. Gautam V, Singh KP, Yadav VL. Polyaniline/MWCNTs/starch modified carbon paste electrode for non-enzymatic detection of cholesterol: application to real sample (cow milk). Analytical and Bioanalytical Chemistry. 2018;410:2173-2181. doi: 10.1007/s00216-018-0880-6
  195. Hassan Z, Alsalhi SA, Drissi N, et al. Graphene nanoplatelets-polyaniline composite for the detection of cortisol. Journal of Physics and Chemistry of Solids. 2024;191:112031. doi: 10.1016/j.jpcs.2024.112031
  196. Charekhah R, Jarrahi Z, Darabi M, et al. Bulk heterojunction solar cells based on polyaniline/multi wall carbon nanotube: from morphology control to cell efficiency. Journal of Materials Science: Materials in Electronics. 2019;30:26–36. doi: 10.1007/s10854-018-0169-8
  197. Yazdi M, Saeidi H, Zarrintaj P, et al. PANI-CNT nanocomposites. In: Mozafari M, Chauhan N. (eds.) Fundamentals and Emerging Applications of Polyaniline. Elsevier; 2019. p. 143-163. doi: 10.1016/B978-0-12-817915-4.00009-9
  198. Dawo Ch, Iyer PK, Chaturvedi H. Carbon nanotubes/PANI composite as an efficient counter electrode material for dye sensitized solar cell. Materials Science and Engineering: B. 2023;297:116722. doi: 10.1016/j.mseb.2023.116722
  199. Maponya TC, Hato MJ, Somo TR, et al. Polyaniline-based nanocomposites for environmental remediation. In: Trace metals in the environment – new approaches and recent advances. IntechOpen; 2021. doi: 10.5772/intechopen.82384
  200. Mondal S, Rana U, Das P, et al. Network of polyaniline nanotubes for wastewater treatment and oil/water separation. ACS Applied Polymer Materials. 2019;1(7):1624-1633. doi: 10.1021/acsapm.9b00199
  201. Kumar A, Kumar V, Awasthi K. Polyaniline–carbon nanotube composites: preparation methods, properties, and applications. Polymer-Plastics Technology and Engineering. 2018;57:70-97. doi: 10.1080/03602559.2017.1300817
  202. Samadi A, Xie M, Li J, et al. Polyaniline-based adsorbents for aqueous pollutants removal: A review. Chemical Engineering Journal. 2021;418:129425. doi: 10.1016/j.cej.2021.129425
  203. Dyachkova TP, Melezhyk АV, Morozova ZhG, et al. The study of absorption of copper and nickel ions by polyaniline and its nanocomposite with carbon nanotubes. Vestnik Tambovskogo gosudarstvennogo tekhnicheskogo universiteta. 2012;18(4):1067-1073. (In Russ.)
  204. Dyachkova TP, Anosova IV, Galunin EV, et al. Synthesis of composites based on polyaniline-modified dispersed nanocarbon supports and prospects of their application as sorbents. Nano Hybrids and Composites. 2017;13:135-141. doi: 10.4028/ href='www.scientific.net/NHC.13.135' target='_blank'>www.scientific.net/NHC.13.135
  205. Wai MA, Marchenko MV, Troshkina ID, et al. Scandium adsorption from sulfuric-chloride solutions by PANI/CNTs Nanocomposite. Advanced Materials and Technologies. 2019;4(16):58-65. doi: 10.17277/amt.2019.04.pp.058-065
  206. Dayyoub T, Maksimkin AV, Kaloshkin S, et al. The structure and mechanical properties of the uhmwpe films modified by the mixture of graphene nanoplates with polyaniline. Polymers. 2019;11(1):23. doi: 10.3390/polym11010023
  207. Dyachkova T, Gutnik I, Nagdaev V, et al. Studying the surface of UHMWPE films modified with graphene nanoplatelets using a Raman mapping method. Fullerenes, Nanotubes and Carbon Nanostructures. 2020;28(7):561-564. doi: 10.1080/1536383X.2020.1724103

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».