Generalized solution of the initial-boundary-value problem for the wave equation with a mixed derivative and a general potential

Cover Page

Cite item

Full Text

Abstract

We study the initial-boundary-value problem in a half-strip for a second-order inhomogeneous hyperbolic equation with constant coefficients and a nonzero potential containing a mixed derivative. The equation considered is the equation of transverse vibrations of a moving finite string. The problems with general initial conditions (nonzero string profile and nonzero initial velocity of string points) and fixed ends (Dirichlet conditions) are examined. Theorems on the existence and uniqueness of a solution are formulated and formulas for the solution are obtained.

Full Text

1. Постановка задачи, история вопроса, определения и вспомогательные результаты. Рассмотрим начально-граничную задачу

2 u(x,t) x 2 + p 1 2 u(x,t) xt + p 2 2 u(x,t) t 2 =f(x,t), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWcaaqaaiabgkGi2oaaCaaaleqaba GaaGOmaaaakiaadwhacaaIOaGaamiEaiaaiYcacaWG0bGaaGykaaqa aiabgkGi2kaadIhadaahaaWcbeqaaiaaikdaaaaaaOGaey4kaSIaam iCamaaBaaaleaacaaIXaaabeaakmaalaaabaGaeyOaIy7aaWbaaSqa beaacaaIYaaaaOGaamyDaiaaiIcacaWG4bGaaGilaiaadshacaaIPa aabaGaeyOaIyRaamiEaiabgkGi2kaadshaaaGaey4kaSIaamiCamaa BaaaleaacaaIYaaabeaakmaalaaabaGaeyOaIy7aaWbaaSqabeaaca aIYaaaaOGaamyDaiaaiIcacaWG4bGaaGilaiaadshacaaIPaaabaGa eyOaIyRaamiDamaaCaaaleqabaGaaGOmaaaaaaGccaaI9aGaamOzai aaiIcacaWG4bGaaGilaiaadshacaaIPaGaaGilaaaa@5F8D@  (1.1)

u(0,t)=0,u(1,t)=0, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGikaiaaicdacaaISaGaam iDaiaaiMcacaaI9aGaaGimaiaaiYcacaaMf8UaamyDaiaaiIcacaaI XaGaaGilaiaadshacaaIPaGaaGypaiaaicdacaaISaaaaa@414A@  (1.2)

u(x,0)=φ(x), u(x,0) t =ψ(x), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGikaiaadIhacaaISaGaaG imaiaaiMcacaaI9aGaeqOXdOMaaGikaiaadIhacaaIPaGaaGilaiaa ywW7daWcaaqaaiabgkGi2kaadwhacaaIOaGaamiEaiaaiYcacaaIWa GaaGykaaqaaiabgkGi2kaadshaaaGaaGypaiabeI8a5jaaiIcacaWG 4bGaaGykaiaaiYcaaaa@4C01@  (1.3)

где (x,t)Q=[0,1]×[0,+) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaamiEaiaaiYcacaWG0bGaaG ykaiabgIGiolaadgfacaaI9aGaaG4waiaaicdacaaISaGaaGymaiaa i2facqGHxdaTcaaIBbGaaGimaiaaiYcacqGHRaWkcqGHEisPcaaIPa aaaa@4458@ ; p 1 , p 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGWbWaaSbaaSqaaiaaigdaaeqaaO GaaGilaiaadchadaWgaaWcbaGaaGOmaaqabaGccqGHiiIZtuuDJXwA K1uy0HMmaeHbfv3ySLgzG0uy0HgiuD3BaGabaiab=1risbaa@427B@ , все функции, входящие в (1.1) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (1.3), комплекснозначные.

Рассматривается случай волнового или гиперболического уравнения (1.1), т.е. выполняется условие

p 1 2 4 p 2 >0. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGWbWaa0baaSqaaiaaigdaaeaaca aIYaaaaOGaeyOeI0IaaGinaiaadchadaWgaaWcbaGaaGOmaaqabaGc caaI+aGaaGimaiaai6caaaa@3A2C@

В этом случае корни ω 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHjpWDdaWgaaWcbaGaaGymaaqaba aaaa@3471@ , ω 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHjpWDdaWgaaWcbaGaaGOmaaqaba aaaa@3472@  характеристического уравнения

ω 2 + p 1 ω+ p 2 =0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHjpWDdaahaaWcbeqaaiaaikdaaa GccqGHRaWkcaWGWbWaaSbaaSqaaiaaigdaaeqaaOGaeqyYdCNaey4k aSIaamiCamaaBaaaleaacaaIYaaabeaakiaai2dacaaIWaaaaa@3D5C@

вещественны и различны.

Требуется найти решение начально-граничной задачи (1.1) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (1.3) в области Q MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGrbaaaa@3293@  при как можно более слабых условиях на параметры задачи, т.е. на функции φ(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAcaaIOaGaamiEaiaaiMcaaa a@35DC@ , ψ(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHipqEcaaIOaGaamiEaiaaiMcaaa a@35ED@ , f(x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbGaaGikaiaadIhacaaISaGaam iDaiaaiMcaaaa@36B9@ .

Уравнение (1.1) является уравнением поперечных колебаний продольно движущейся конечной струны. Такие уравнения актуальны для производственных процессов, связанных с продольным движением материалов (например, бумажного полотна). Исследование таких колебаний началось около 60 лет назад (см. [50–52]).

Излагаемые в данной статье результаты получены с использованием резольвентного и аксиоматического методов решения начально-граничных задач для волнового уравнения в полуполосе плоскости, предложенных А. П. Хромовым и наиболее просто описанных в [38, 39]. Такой подход к решению задачи сформировался не сразу. Историю формирования и развития этого подхода, а также полученные с помощью него результаты можно найти в [1, 2, 4–7, 9, 28–35, 40–48]. Этот подход использует идеи А. Н. Крылова [8] об ускорении сходимости тригонометрического ряда, а также идеи Л. Эйлера [49] о расходящихся рядах.

Аналогичный подход решения начально-граничных задач в полуполосе плоскости для телеграфного уравнения при других краевых условиях используется в [10–14].

Другой подход, отличный от используемого в данной и вышеупомянутых статьях и при других постановках начально-граничных задач, в частности, в первой четверти плоскости, получил развитие в [15–20].

Рассматриваются и другие задачи для уравнения (1.1), например, задача гашения поперечных колебаний продольно движущейся струны [21, 22].

В зависимости от того, как будет пониматься решение задачи (1.1) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (1.3), накладываются различные требования на функции φ(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAcaaIOaGaamiEaiaaiMcaaa a@35DC@ , ψ(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHipqEcaaIOaGaamiEaiaaiMcaaa a@35ED@  и f(x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbGaaGikaiaadIhacaaISaGaam iDaiaaiMcaaaa@36B9@ .

Далее будем говорить, что функция f(x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbGaaGikaiaadIhacaaISaGaam iDaiaaiMcaaaa@36B9@  переменных (x,t)Q MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaamiEaiaaiYcacaWG0bGaaG ykaiabgIGiolaadgfaaaa@3828@  есть функция класса Q MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGabaiab=br8rbaa@3D1D@ , если f(x,t) L 1 ( Q T ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbGaaGikaiaadIhacaaISaGaam iDaiaaiMcacqGHiiIZcaWGmbWaaSbaaSqaaiaaigdaaeqaaOGaaGik aiaadgfadaWgaaWcbaGaamivaaqabaGccaaIPaaaaa@3D49@  при любом T>0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGubGaaGOpaiaaicdaaaa@3418@ , где Q T =[0,1]×[0,T] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGrbWaaSbaaSqaaiaadsfaaeqaaO GaaGypaiaaiUfacaaIWaGaaGilaiaaigdacaaIDbGaey41aqRaaG4w aiaaicdacaaISaGaamivaiaai2faaaa@3E8C@ , и будем кратко писать f(x,t)Q MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbGaaGikaiaadIhacaaISaGaam iDaiaaiMcacqGHiiIZtuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgi p5wzaGabaiab=br8rbaa@439D@ .

Определение 1.1. Классическим решением задачи (1.1) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (1.3) называется функция u(x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGikaiaadIhacaaISaGaam iDaiaaiMcaaaa@36C8@  переменных (x,t)Q MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaamiEaiaaiYcacaWG0bGaaG ykaiabgIGiolaadgfaaaa@3828@ , которая

(a) непрерывна вместе с частными производными u(x,t)/x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHciITcaWG1bGaaGikaiaadIhaca aISaGaamiDaiaaiMcacaaIVaGaeyOaIyRaamiEaaaa@3B4A@  и u(x,t)/t MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHciITcaWG1bGaaGikaiaadIhaca aISaGaamiDaiaaiMcacaaIVaGaeyOaIyRaamiDaaaa@3B46@ , при этом u(x,t)/x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHciITcaWG1bGaaGikaiaadIhaca aISaGaamiDaiaaiMcacaaIVaGaeyOaIyRaamiEaaaa@3B4A@  и u(x,t)/t MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHciITcaWG1bGaaGikaiaadIhaca aISaGaamiDaiaaiMcacaaIVaGaeyOaIyRaamiDaaaa@3B46@  абсолютно непрерывны и по x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4baaaa@32BA@ , и по t MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0baaaa@32B6@ , и почти всюду (п.в.) в Q MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGrbaaaa@3293@  выполняется равенство

2 u(x,t) xt = 2 u(x,t) tx ; MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWcaaqaaiabgkGi2oaaCaaaleqaba GaaGOmaaaakiaadwhacaaIOaGaamiEaiaaiYcacaWG0bGaaGykaaqa aiabgkGi2kaadIhacqGHciITcaWG0baaaiaai2dadaWcaaqaaiabgk Gi2oaaCaaaleqabaGaaGOmaaaakiaadwhacaaIOaGaamiEaiaaiYca caWG0bGaaGykaaqaaiabgkGi2kaadshacqGHciITcaWG4baaaiaaiU daaaa@4BB5@  (1.4)

(b) удовлетворяет условиям (1.2) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (1.3) на границе множества Q MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGrbaaaa@3293@  и уравнению (1.1) п.в. в Q MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGrbaaaa@3293@ .

Отметим, что необходимость в условии (1.4) обусловлена тем, что в случае, когда 2 u(x,t)/xt MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHciITdaahaaWcbeqaaiaaikdaaa GccaWG1bGaaGikaiaadIhacaaISaGaamiDaiaaiMcacaaIVaGaeyOa IyRaamiEaiabgkGi2kaadshaaaa@3E9C@  и 2 u(x,t)/tx MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHciITdaahaaWcbeqaaiaaikdaaa GccaWG1bGaaGikaiaadIhacaaISaGaamiDaiaaiMcacaaIVaGaeyOa IyRaamiDaiabgkGi2kaadIhaaaa@3E9C@  не являются непрерывными функциями, это равенство может не выполняться на множестве положительной меры (см. [36]).

Определение 1.2. Задачу (1.1) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (1.3), в которой ищется классическое решение, будем называть классической начально-граничной задачей.

Для классической задачи (1.1) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (1.3) по необходимости должны выполняться следующие условия (условия ( N MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGobaaaa@3290@  )):

(N1) гладкость: φ(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAcaaIOaGaamiEaiaaiMcaaa a@35DC@ , φ (x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacuaHgpGAgaqbaiaaiIcacaWG4bGaaG ykaaaa@35E8@ , ψ(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHipqEcaaIOaGaamiEaiaaiMcaaa a@35ED@  абсолютно непрерывны, функция f(x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbGaaGikaiaadIhacaaISaGaam iDaiaaiMcaaaa@36B9@  класса Q MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGabaiab=br8rbaa@3D1D@ ;

(N2) согласование: φ(0)=φ(1)=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAcaaIOaGaaGimaiaaiMcaca aI9aGaeqOXdOMaaGikaiaaigdacaaIPaGaaGypaiaaicdaaaa@3BBE@  и ψ(0)=ψ(1)=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHipqEcaaIOaGaaGimaiaaiMcaca aI9aGaeqiYdKNaaGikaiaaigdacaaIPaGaaGypaiaaicdaaaa@3BE0@ .

Если условия ( N MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGobaaaa@3290@  ) не выполняются, то речь о классическом решении уже не может идти. Возникает вопрос, как понимать эту задачу и ее решение.

Определение 1.3. Задачу (1.1) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (1.3), в которой f(x,t)Q MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbGaaGikaiaadIhacaaISaGaam iDaiaaiMcacqGHiiIZtuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgi p5wzaGabaiab=br8rbaa@439D@ , а φ(x),ψ(x) L 1 [0,1] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAcaaIOaGaamiEaiaaiMcaca aISaGaeqiYdKNaaGikaiaadIhacaaIPaGaeyicI4SaamitamaaBaaa leaacaaIXaaabeaakiaaiUfacaaIWaGaaGilaiaaigdacaaIDbaaaa@41FF@ , будем называть обобщённой начально-граничной задачей.

Определение обобщённого решения задачи (1.1) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (1.3) будет дано далее в разделе 0.2.

Обобщённая начально-граничная задача (1.1) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (1.3) является одним из наиболее сильных обобщений классической начально-граничной задачи. Внешний вид ее такой же, как и у классической задачи, но смысл совсем другой. В случае, когда φ(x),ψ(x) L 1 [0,1] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAcaaIOaGaamiEaiaaiMcaca aISaGaeqiYdKNaaGikaiaadIhacaaIPaGaeyicI4SaamitamaaBaaa leaacaaIXaaabeaakiaaiUfacaaIWaGaaGilaiaaigdacaaIDbaaaa@41FF@  и f(x,t)Q MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbGaaGikaiaadIhacaaISaGaam iDaiaaiMcacqGHiiIZtuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgi p5wzaGabaiab=br8rbaa@439D@ , задача (1.1) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (1.3) понимается чисто формально, так как ни о каком удовлетворении решения уравнению (1.1), граничным условиям (1.2) и начальным условиям (1.3) речь уже не может идти.

С задачей (1.1) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (1.3) тесно связана спектральная задача

L(λ)y=0, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGmbGaaGikaiabeU7aSjaaiMcaca WG5bGaaGypaiaaicdacaaISaaaaa@38DC@  (1.5)

порожденная оператор-функцией L(λ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGmbGaaGikaiabeU7aSjaaiMcaaa a@35A7@ , определяемой следующим дифференциальным выражением с параметром λ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH7oaBaaa@3371@ :

l(y,λ):= y +λ p 1 y + λ 2 p 2 y MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqWItecBcaaIOaGaamyEaiaaiYcacq aH7oaBcaaIPaGaaGOoaiaai2daceWG5bGbauGbauaacqGHRaWkcqaH 7oaBcaWGWbWaaSbaaSqaaiaaigdaaeqaaOGabmyEayaafaGaey4kaS Iaeq4UdW2aaWbaaSqabeaacaaIYaaaaOGaamiCamaaBaaaleaacaaI YaaabeaakiaadMhaaaa@464F@  (1.6)

и краевыми условиями типа Дирихле:

U 1 (y):=y(0)=0, U 2 (y):=y(1)=0. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGvbWaaSbaaSqaaiaaigdaaeqaaO GaaGikaiaadMhacaaIPaGaaGOoaiaai2dacaWG5bGaaGikaiaaicda caaIPaGaaGypaiaaicdacaaISaGaaGzbVlaadwfadaWgaaWcbaGaaG OmaaqabaGccaaIOaGaamyEaiaaiMcacaaI6aGaaGypaiaadMhacaaI OaGaaGymaiaaiMcacaaI9aGaaGimaiaai6caaaa@4969@  (1.7)

Пусть R λ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGsbWaaSbaaSqaaiabeU7aSbqaba aaaa@3474@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  резольвента оператор-функции L(λ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGmbGaaGikaiabeU7aSjaaiMcaaa a@35A7@ , а G(x,ξ,λ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbGaaGikaiaadIhacaaISaGaeq OVdGNaaGilaiabeU7aSjaaiMcaaaa@39CE@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  её функция Грина. Обозначим через R 1λ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGsbWaaSbaaSqaaiaaigdacqaH7o aBaeqaaaaa@352F@  интегральный оператор с ядром G ξ (x,ξ,λ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiabe67a4bqaba GccaaIOaGaamiEaiaaiYcacqaH+oaEcaaISaGaeq4UdWMaaGykaaaa @3BC7@ .

В качестве фундаментальной системы решений уравнения l(y,λ)=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqWItecBcaaIOaGaamyEaiaaiYcacq aH7oaBcaaIPaGaaGypaiaaicdaaaa@393C@  рассмотрим систему решений

y 1 (x,λ):= e λ ω 1 x , y 2 (x,λ):= e λ ω 2 x . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG5bWaaSbaaSqaaiaaigdaaeqaaO GaaGikaiaadIhacaaISaGaeq4UdWMaaGykaiaaiQdacaaI9aGaamyz amaaCaaaleqabaGaeq4UdWMaeqyYdC3aaSbaaeaacaaIXaaabeaaca WG4baaaOGaaGilaiaaywW7caWG5bWaaSbaaSqaaiaaikdaaeqaaOGa aGikaiaadIhacaaISaGaeq4UdWMaaGykaiaaiQdacaaI9aGaamyzam aaCaaaleqabaGaeq4UdWMaeqyYdC3aaSbaaeaacaaIYaaabeaacaWG 4baaaOGaaGOlaaaa@523D@

Тогда характеристический определитель L(λ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGmbGaaGikaiabeU7aSjaaiMcaaa a@35A7@  (см. [23] имеет вид

Δ(λ)= U 1 ( y 1 ) U 1 ( y 2 ) U 2 ( y 1 ) U 2 ( y 2 ) = 1 1 e λ ω 1 e λ ω 2 = e λ ω 2 e λ ω 1 ; MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHuoarcaaIOaGaeq4UdWMaaGykai aai2dadaabdaqaauaabeqaciaaaeaacaWGvbWaaSbaaSqaaiaaigda aeqaaOGaaGikaiaadMhadaWgaaWcbaGaaGymaaqabaGccaaIPaaaba GaamyvamaaBaaaleaacaaIXaaabeaakiaaiIcacaWG5bWaaSbaaSqa aiaaikdaaeqaaOGaaGykaaqaaiaadwfadaWgaaWcbaGaaGOmaaqaba GccaaIOaGaamyEamaaBaaaleaacaaIXaaabeaakiaaiMcaaeaacaWG vbWaaSbaaSqaaiaaikdaaeqaaOGaaGikaiaadMhadaWgaaWcbaGaaG OmaaqabaGccaaIPaaaaaGaay5bSlaawIa7aiaai2dadaabdaqaauaa beqaciaaaeaacaaIXaaabaGaaGymaaqaaiaadwgadaahaaWcbeqaai abeU7aSjabeM8a3naaBaaabaGaaGymaaqabaaaaaGcbaGaamyzamaa CaaaleqabaGaeq4UdWMaeqyYdC3aaSbaaeaacaaIYaaabeaaaaaaaa GccaGLhWUaayjcSdGaaGypaiaadwgadaahaaWcbeqaaiabeU7aSjab eM8a3naaBaaabaGaaGOmaaqabaaaaOGaeyOeI0IaamyzamaaCaaale qabaGaeq4UdWMaeqyYdC3aaSbaaeaacaaIXaaabeaaaaGccaaI7aaa aa@6C97@  (1.8)

его корни, очевидно, равны

λ k = 2kπi ω 2 ω 1 ,k=±1,±2,. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH7oaBdaWgaaWcbaGaam4Aaaqaba GccaaI9aWaaSaaaeaacaaIYaGaam4Aaiabec8aWjaadMgaaeaacqaH jpWDdaWgaaWcbaGaaGOmaaqabaGccqGHsislcqaHjpWDdaWgaaWcba GaaGymaaqabaaaaOGaaGilaiaaywW7caWGRbGaaGypaiabgglaXkaa igdacaaISaGaeyySaeRaaGOmaiaaiYcacqWIMaYscaaIUaaaaa@4CC3@  (1.9)

и λ 0 =0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH7oaBdaWgaaWcbaGaaGimaaqaba GccaaI9aGaaGimaaaa@35E2@ . Эти числа, кроме точки λ 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH7oaBdaWgaaWcbaGaaGimaaqaba aaaa@3457@ , являются простыми собственными значениями L(λ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGmbGaaGikaiabeU7aSjaaiMcaaa a@35A7@ . Число λ 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH7oaBdaWgaaWcbaGaaGimaaqaba aaaa@3457@ , как легко проверить, не является собственным значением.

Обозначим через γ k MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHZoWzdaWgaaWcbaGaam4Aaaqaba aaaa@3480@  окружности {λ:|λ λ k |=δ} MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI7bGaeq4UdWMaaGOoaiaaiYhacq aH7oaBcqGHsislcqaH7oaBdaWgaaWcbaGaam4AaaqabaGccaaI8bGa aGypaiabes7aKjaai2haaaa@4034@ , где δ>0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH0oazcaaI+aGaaGimaaaa@34E4@  настолько мало, что внутри γ k MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHZoWzdaWgaaWcbaGaam4Aaaqaba aaaa@3480@  находится по одному собственному значению.

Возможны только две принципиально разные ситуации:

ω 1 <0< ω 2 , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHjpWDdaWgaaWcbaGaaGymaaqaba GccaaI8aGaaGimaiaaiYdacqaHjpWDdaWgaaWcbaGaaGOmaaqabaGc caaISaaaaa@3A36@  (1.10)

0< ω 1 < ω 2 . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIWaGaaGipaiabeM8a3naaBaaale aacaaIXaaabeaakiaaiYdacqaHjpWDdaWgaaWcbaGaaGOmaaqabaGc caaIUaaaaa@3A38@  (1.11)

В случае (1.10) соответствующая спектральная задача (1.5) является регулярной по Биркгофу (см. [23, с. 66–67]), а в случае (1.11) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  нерегулярной. Далее будем рассматривать только случай (1.10). Нерегулярный случай рассмотрен, в частности, в [25, 26].

2. Определение обобщённого решения и формула для него. Для того, чтобы дать определение обобщенного решения задачи (1.1) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (1.3), сформулируем теорему о единственности классического решения и представлении решения в виде ряда (см. [27]).

Теорема 2.1. Если u(x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGikaiaadIhacaaISaGaam iDaiaaiMcaaaa@36C8@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuGajugGbabaaaaaaaaapeGaa8hfGaaa@3A93@  классическое решение задачи (1.1) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuGajugGbabaaaaaaaaapeGaa83eGaaa@3A92@ (1.3), выполняются условия (N) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaamOtaiaaiMcaaaa@33F5@ , (1.10) и дополнительное условие: u tt (x,t)Q MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bWaaSbaaSqaaiaadshacaWG0b aabeaakiaaiIcacaWG4bGaaGilaiaadshacaaIPaGaeyicI48efv3y SLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiqaacqWFqeFuaaa@45D4@ , то это решение единственно и находится по формуле

u(x,t)= 1 2πi k γ k ( p 1 e λt R 1λ φ+ p 2 e λt λ R λ φ+ p 2 e λt R λ ψ+ 0 t e λ(tτ) R λ f(,τ)dτ)dλ, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGikaiaadIhacaaISaGaam iDaiaaiMcacaaI9aWaaSaaaeaacaaIXaaabaGaaGOmaiabec8aWjaa dMgaaaWaaabuaeqaleaacaWGRbaabeqdcqGHris5aOWaa8quaeqale aacqaHZoWzdaWgaaqaaiaadUgaaeqaaaqab0Gaey4kIipakiaaiIca cqGHsislcaWGWbWaaSbaaSqaaiaaigdaaeqaaOGaamyzamaaCaaale qabaGaeq4UdWMaamiDaaaakiaadkfadaWgaaWcbaGaaGymaiabeU7a SbqabaGccqaHgpGAcqGHRaWkcaWGWbWaaSbaaSqaaiaaikdaaeqaaO GaamyzamaaCaaaleqabaGaeq4UdWMaamiDaaaakiabeU7aSjaadkfa daWgaaWcbaGaeq4UdWgabeaakiabeA8aQjabgUcaRiaadchadaWgaa WcbaGaaGOmaaqabaGccaWGLbWaaWbaaSqabeaacqaH7oaBcaWG0baa aOGaamOuamaaBaaaleaacqaH7oaBaeqaaOGaeqiYdKNaey4kaSYaa8 qmaeqaleaacaaIWaaabaGaamiDaaqdcqGHRiI8aOGaamyzamaaCaaa leqabaGaeq4UdWMaaGikaiaadshacqGHsislcqaHepaDcaaIPaaaaO GaamOuamaaBaaaleaacqaH7oaBaeqaaOGaamOzaiaaiIcacqGHflY1 caaISaGaeqiXdqNaaGykaiaayIW7caWGKbGaeqiXdqNaaGykaiaayI W7caWGKbGaeq4UdWMaaGilaaaa@88C1@  (2.1)

в которой ряд справа сходится абсолютно и равномерно по x[0,1] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bGaeyicI4SaaG4waiaaicdaca aISaGaaGymaiaai2faaaa@3835@  при любом фиксированном t>0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0bGaaGOpaiaaicdaaaa@3438@ .

Так как ряд справа в формуле (2.1) сходится абсолютно и равномерно по x[0,1] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bGaeyicI4SaaG4waiaaicdaca aISaGaaGymaiaai2faaaa@3835@ , то этот ряд равен сумме рядов, соответствующих каждому слагаемому суммы, стоящей во внутренних круглых скобках. Ряды в формуле (2.1), соответствующие первому и второму слагаемым, обозначим u 11 (x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bWaaSbaaSqaaiaaigdacaaIXa aabeaakiaaiIcacaWG4bGaaGilaiaadshacaaIPaaaaa@3874@  и u 12 (x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bWaaSbaaSqaaiaaigdacaaIYa aabeaakiaaiIcacaWG4bGaaGilaiaadshacaaIPaaaaa@3875@  соответственно. Пусть u 1 (x,t)= u 11 (x,t)+ u 12 (x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bWaaSbaaSqaaiaaigdaaeqaaO GaaGikaiaadIhacaaISaGaamiDaiaaiMcacaaI9aGaamyDamaaBaaa leaacaaIXaGaaGymaaqabaGccaaIOaGaamiEaiaaiYcacaWG0bGaaG ykaiabgUcaRiaadwhadaWgaaWcbaGaaGymaiaaikdaaeqaaOGaaGik aiaadIhacaaISaGaamiDaiaaiMcaaaa@46D1@ . Этот ряд соответствует задаче (1.1) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (1.3), в которой ψ(x)0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHipqEcaaIOaGaamiEaiaaiMcacq GHHjIUcaaIWaaaaa@3870@  и f(x,t)0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbGaaGikaiaadIhacaaISaGaam iDaiaaiMcacqGHHjIUcaaIWaaaaa@393C@ . Ряд, соответствующий третьему слагаемому во внутренних скобках формулы (2.1), обозначим u 2 (x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bWaaSbaaSqaaiaaikdaaeqaaO GaaGikaiaadIhacaaISaGaamiDaiaaiMcaaaa@37BA@ . Этот ряд соответствует задаче (1.1) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (1.3), в которой φ(x)0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAcaaIOaGaamiEaiaaiMcacq GHHjIUcaaIWaaaaa@385F@  и f(x,t)0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbGaaGikaiaadIhacaaISaGaam iDaiaaiMcacqGHHjIUcaaIWaaaaa@393C@ . Ряд в формуле (2.1), соответствующий четвертому слагаемому, обозначим u 3 (x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bWaaSbaaSqaaiaaiodaaeqaaO GaaGikaiaadIhacaaISaGaamiDaiaaiMcaaaa@37BB@ . Этот ряд соответствует задаче (1.1) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (1.3), в которой φ(x)0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAcaaIOaGaamiEaiaaiMcacq GHHjIUcaaIWaaaaa@385F@  и ψ(x)0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHipqEcaaIOaGaamiEaiaaiMcacq GHHjIUcaaIWaaaaa@3870@ . Следовательно, классическое решение u(x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGikaiaadIhacaaISaGaam iDaiaaiMcaaaa@36C8@  можно представить в виде

u(x,t)= u 1 (x,t)+ u 2 (x,t)+ u 3 (x,t). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGikaiaadIhacaaISaGaam iDaiaaiMcacaaI9aGaamyDamaaBaaaleaacaaIXaaabeaakiaaiIca caWG4bGaaGilaiaadshacaaIPaGaey4kaSIaamyDamaaBaaaleaaca aIYaaabeaakiaaiIcacaWG4bGaaGilaiaadshacaaIPaGaey4kaSIa amyDamaaBaaaleaacaaIZaaabeaakiaaiIcacaWG4bGaaGilaiaads hacaaIPaGaaGOlaaaa@4C02@  (2.2)

Из теоремы 2.1 следует, что задача (1.1) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (1.3) и ряд справа в (2.1) тесно связаны, а именно, если эта задача имеет классическое решение, то для него справедлива формула (2.1). При этом функции φ(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAcaaIOaGaamiEaiaaiMcaaa a@35DC@  и ψ(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHipqEcaaIOaGaamiEaiaaiMcaaa a@35ED@  должны удовлетворять условиям ( N MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGobaaaa@3290@  ). Следуя методу, используемому в [38, 39], расширим понятие этой связи.

Ряд справа в (2.1) имеет смысл для любых функций φ(x),ψ(x) L 1 [0,1] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAcaaIOaGaamiEaiaaiMcaca aISaGaeqiYdKNaaGikaiaadIhacaaIPaGaeyicI4SaamitamaaBaaa leaacaaIXaaabeaakiaaiUfacaaIWaGaaGilaiaaigdacaaIDbaaaa@41FF@  и f(x,t)Q MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbGaaGikaiaadIhacaaISaGaam iDaiaaiMcacqGHiiIZtuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgi p5wzaGabaiab=br8rbaa@439D@ , хотя теперь он может и не быть сходящимся, т.е., вообще говоря, расходящийся. Будем считать, что он является формальным решением задачи (1.1) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (1.3), но понимаемой теперь чисто формально. Эта задача (1.1) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (1.3) в случае f(x,t)Q MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbGaaGikaiaadIhacaaISaGaam iDaiaaiMcacqGHiiIZtuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgi p5wzaGabaiab=br8rbaa@439D@  и φ(x),ψ(x) L 1 [0,1] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAcaaIOaGaamiEaiaaiMcaca aISaGaeqiYdKNaaGikaiaadIhacaaIPaGaeyicI4SaamitamaaBaaa leaacaaIXaaabeaakiaaiUfacaaIWaGaaGilaiaaigdacaaIDbaaaa@41FF@ , в определении 1.3 была названа обобщенной начально-граничной задачей. Введём понятие обобщенного решения задачи (1.1) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (1.3).

Определение 2.1. В случае f(x,t)Q MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbGaaGikaiaadIhacaaISaGaam iDaiaaiMcacqGHiiIZtuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgi p5wzaGabaiab=br8rbaa@439D@  и φ(x),ψ(x) L 1 [0,1] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAcaaIOaGaamiEaiaaiMcaca aISaGaeqiYdKNaaGikaiaadIhacaaIPaGaeyicI4SaamitamaaBaaa leaacaaIXaaabeaakiaaiUfacaaIWaGaaGilaiaaigdacaaIDbaaaa@41FF@  будем называть ряд справа в (2.1) обобщённым решением задачи (1.1) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (1.3).

Найти обобщенное решение задачи (1.1) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (1.3) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  значит найти <<сумму>> ряда справа в (2.1) (слово «сумма» в кавычках означает, что это сумма понимается именно как сумма расходящегося ряда).

Трактуя ряд справа в формуле (2.1) изначально как расходящийся и соответствующим образом определяя (или, другими словами, назначая) <<сумму>> этого ряда можно, как и в [38, 39], значительно сократить выкладки при получении конечных формул для обобщенного решения и при этом не накладывать никаких дополнительных ограничений на φ(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAcaaIOaGaamiEaiaaiMcaaa a@35DC@ , ψ(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHipqEcaaIOaGaamiEaiaaiMcaaa a@35ED@  и f(x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbGaaGikaiaadIhacaaISaGaam iDaiaaiMcaaaa@36B9@ , предполагая лишь, что φ(x),ψ(x) L 1 [0,1] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAcaaIOaGaamiEaiaaiMcaca aISaGaeqiYdKNaaGikaiaadIhacaaIPaGaeyicI4SaamitamaaBaaa leaacaaIXaaabeaakiaaiUfacaaIWaGaaGilaiaaigdacaaIDbaaaa@41FF@  и f(x,t)Q MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbGaaGikaiaadIhacaaISaGaam iDaiaaiMcacqGHiiIZtuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgi p5wzaGabaiab=br8rbaa@439D@ .

Понятия, касающиеся расходящихся рядов, а именно, как понимать их суммы (можно их определять по-разному), каким естественным свойствам эти суммы должны удовлетворять, чтобы с их помощью можно было получать <<правильные>> результаты, как использовать расходящиеся ряды в математике и приложениях, а также другие связанные с этим явлением понятия активно обсуждали еще во времена Эйлера (см. [49]), который является основоположником теории суммирования таких рядов. Сведения об этом можно найти в [37].

Для получения конечных формул для обобщённого решения важнейшую роль играют введенные в [37, с. 19] естественные аксиомы для преобразования расходящихся рядов:

(A) a n =s MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaeabqabSqabeqaniabggHiLdGcca WGHbWaaSbaaSqaaiaad6gaaeqaaOGaaGypaiaadohaaaa@37AA@   MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHshI3aaa@341A@   k a n =ks MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaeabqabSqabeqaniabggHiLdGcca WGRbGaamyyamaaBaaaleaacaWGUbaabeaakiaai2dacaWGRbGaam4C aaaa@398A@ ;

(B) a n =s MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaeabqabSqabeqaniabggHiLdGcca WGHbWaaSbaaSqaaiaad6gaaeqaaOGaaGypaiaadohaaaa@37AA@ , b n =t MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaeabqabSqabeqaniabggHiLdGcca WGIbWaaSbaaSqaaiaad6gaaeqaaOGaaGypaiaadshaaaa@37AC@   MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHshI3aaa@341A@   ( a n + b n )=s+t MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaeabqabSqabeqaniabggHiLdGcca aIOaGaamyyamaaBaaaleaacaWGUbaabeaakiabgUcaRiaadkgadaWg aaWcbaGaamOBaaqabaGccaaIPaGaaGypaiaadohacqGHRaWkcaWG0b aaaa@3DDC@ ;

(C) n=0 a n =s MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaeWbqabSqaaiaad6gacaaI9aGaaG imaaqaaiabg6HiLcqdcqGHris5aOGaamyyamaaBaaaleaacaWGUbaa beaakiaai2dacaWGZbaaaa@3BBD@   MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHshI3aaa@341A@   n=1 a n =s a 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaeWbqabSqaaiaad6gacaaI9aGaaG ymaaqaaiabg6HiLcqdcqGHris5aOGaamyyamaaBaaaleaacaWGUbaa beaakiaai2dacaWGZbGaeyOeI0IaamyyamaaBaaaleaacaaIWaaabe aaaaa@3E77@ .

В [33] показано, что с использовнаием этих аксиом ряд справа в (2.1) сводится к сумме конечного числа рядов вида

k a k e 2kπix ,где a k = 0 1 f(ξ) e 2kπiξ dξ, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaeqbqabSqaaiaadUgaaeqaniabgg HiLdGccaWGHbWaaSbaaSqaaiaadUgaaeqaaOGaamyzamaaCaaaleqa baGaaGOmaiaadUgacqaHapaCcaWGPbGaamiEaaaakiaaiYcacaaMf8 Uaae4meiaabsdbcaqG1qGaaGzbVlaadggadaWgaaWcbaGaam4Aaaqa baGccaaI9aWaa8qCaeqaleaacaaIWaaabaGaaGymaaqdcqGHRiI8aO GaamOzaiaaiIcacqaH+oaEcaaIPaGaamyzamaaCaaaleqabaGaeyOe I0IaaGOmaiaadUgacqaHapaCcaWGPbGaeqOVdGhaaOGaaGjcVlaads gacqaH+oaEcaaISaaaaa@5B49@  (2.3)

а функция f(x) L 1 [0,1] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbGaaGikaiaadIhacaaIPaGaey icI4SaamitamaaBaaaleaacaaIXaaabeaakiaaiUfacaaIWaGaaGil aiaaigdacaaIDbaaaa@3C47@  выражается по простым формулам через функции φ(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAcaaIOaGaamiEaiaaiMcaaa a@35DC@ , ψ(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHipqEcaaIOaGaamiEaiaaiMcaaa a@35ED@ , f(x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbGaaGikaiaadIhacaaISaGaam iDaiaaiMcaaaa@36B9@  и суммируема в том и только в том случае, когда суммируемы функция φ(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAcaaIOaGaamiEaiaaiMcaaa a@35DC@  и ψ(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHipqEcaaIOaGaamiEaiaaiMcaaa a@35ED@ , а f(x,t)Q MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbGaaGikaiaadIhacaaISaGaam iDaiaaiMcacqGHiiIZtuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgi p5wzaGabaiab=br8rbaa@439D@ .

Таким образом, чтобы найти формулу для обобщённого решения, необходимо определить <<сумму>> ряда (2.3). Наиважнейшую роль в этом играет [24, теорема 3] об интегрировании тригонометрического ряда. Эта теорема потребуется далее в следующей формулировке.

Теорема 2.2. Пусть на промежутке [0,1] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIBbGaaGimaiaaiYcacaaIXaGaaG yxaaaa@35B4@  задана суммируемая функция f(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbGaaGikaiaadIhacaaIPaaaaa@350A@ , имеющая ряд (2.3) своим рядом Фурье. Если [A,B][0,1] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIBbGaamyqaiaaiYcacaWGcbGaaG yxaiabgkOimlaaiUfacaaIWaGaaGilaiaaigdacaaIDbaaaa@3BBF@ , то

A B f(x)dx= k A B a k e 2kπix dx. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWdXaqabSqaaiaadgeaaeaacaWGcb aaniabgUIiYdGccaWGMbGaaGikaiaadIhacaaIPaGaaGjcVlaadsga caWG4bGaaGypamaaqafabeWcbaGaam4Aaaqab0GaeyyeIuoakmaape dabeWcbaGaamyqaaqaaiaadkeaa0Gaey4kIipakiaadggadaWgaaWc baGaam4AaaqabaGccaWGLbWaaWbaaSqabeaacaaIYaGaam4Aaiabec 8aWjaadMgacaWG4baaaOGaaGjcVlaadsgacaWG4bGaaGOlaaaa@5098@

После формулировки этой теоремы в [24, c. 277] отмечено: «Иначе говоря, ряд Фурье суммируемой функции можно почленно интегрировать. Этот факт весьма замечателен, поскольку сам этот ряд может и не сходиться».

По сути эта теорема разрешает для тригонометрического ряда переставлять суммирование и интегрирование, даже если ряд расходится. Ввиду этого, в [38, 39] было предложено дополнить сформулированные выше три аксиомы для расходящихся рядов еще одной аксиомой:

(D) = MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWdbaqabSqabeqaniabgUIiYdGcda aeabqabSqabeqaniabggHiLdGccaaI9aWaaabqaeqaleqabeqdcqGH ris5aOWaa8qaaeqaleqabeqdcqGHRiI8aaaa@3AC4@ , где MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWdbaqabSqabeqaniabgUIiYdaaaa@33B9@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  определенный интеграл.

Используя теорему 2.2 (или иначе аксиому (D)), можно определить <<сумму>> расходящегося ряда (2.3). Справедливо следующее простое утверждение, полученное в [38, 39].

Теорема 2.3. Если (2.3) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuGajugGbabaaaaaaaaapeGaa8hfGaaa@3A93@  ряд Фурье функции f(x) L 1 [0,1] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbGaaGikaiaadIhacaaIPaGaey icI4SaamitamaaBaaaleaacaaIXaaabeaakiaaiUfacaaIWaGaaGil aiaaigdacaaIDbaaaa@3C47@  и его сумма есть функция g(x) L 1 [0,1] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbGaaGikaiaadIhacaaIPaGaey icI4SaamitamaaBaaaleaacaaIXaaabeaakiaaiUfacaaIWaGaaGil aiaaigdacaaIDbaaaa@3C48@ , то п.в. на [0,1] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIBbGaaGimaiaaiYcacaaIXaGaaG yxaaaa@35B4@   g(x)=f(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGNbGaaGikaiaadIhacaaIPaGaaG ypaiaadAgacaaIOaGaamiEaiaaiMcaaaa@391F@ .

Как указано в [37, с. 6-7], расходящиеся ряды не имеют суммы в обычном смысле (по Коши, как предела его частичных сумм), однако можно дать новое определение <<суммы>> ряда (иными словами, назначить <<сумму>>), применимое как ко всем сходящимся рядам, так и к некоторым расходящимся рядам. При этом от определения нужно требовать, чтобы для сходящихся рядов новая <<сумма>> совпадала с обычной (по Коши), т.е. определение <<суммы>> должно быть регулярным.

Из теоремы 2.3 следует, что функцию f(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbGaaGikaiaadIhacaaIPaaaaa@350A@  можно назначить <<суммой>> ряда (2.3), которая очевидно является регулярной. Таким образом, можно дать следующее определение.

Определение 2.2. Если (2.3) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuGajugGbabaaaaaaaaapeGaa8hfGaaa@3A93@  ряд Фурье функции f(x) L 1 [0,1] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbGaaGikaiaadIhacaaIPaGaey icI4SaamitamaaBaaaleaacaaIXaaabeaakiaaiUfacaaIWaGaaGil aiaaigdacaaIDbaaaa@3C47@ , то эту функцию будем называть <<суммой>> ряда (2.3).

Это вполне согласуется с идеей Л. Эйлера (см. [49, с. 101]), что <<сумма>> некоторого бесконечного ряда есть конечное выражение, из разложения которого вытекает этот ряд.

На основании аксиом (A), (B) получаем, что для обобщенного решения (2.1) справедливо представление (2.2). Более того, для каждого ряда в сумме справа в (2.2) можно найти его <<сумму>> и, тем самым, получить конечную формулу для обобщённого решения (2.1).

Приведем конечную формулу для обобщённого решения задачи (1.1) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (1.3), полученную в [33, 34], которая потребуется в дальнейшем изложении. Чтобы сформулировать этот результат, введем необходимые обозначения:

Ψ(x):= 0 x ψ(ξ)dξ,F(x,t):= 0 x f(ξ,t)dξ, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqqHOoqwcaaIOaGaamiEaiaaiMcaca aI6aGaaGypamaapehabeWcbaGaaGimaaqaaiaadIhaa0Gaey4kIipa kiabeI8a5jaaiIcacqaH+oaEcaaIPaGaaGjcVlaadsgacqaH+oaEca aISaGaaGzbVlaadAeacaaIOaGaamiEaiaaiYcacaWG0bGaaGykaiaa iQdacaaI9aWaa8qCaeqaleaacaaIWaaabaGaamiEaaqdcqGHRiI8aO GaamOzaiaaiIcacqaH+oaEcaaISaGaamiDaiaaiMcacaaMi8Uaamiz aiabe67a4jaaiYcaaaa@5C22@  (2.4)

a:= ω 2 ω 2 ω 1 ,αα(x,t):= t+ ω 2 x ω 2 ω 1 ,ββ(x,t):= t+ ω 1 x ω 2 ω 1 , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGHbGaaGOoaiaai2dadaWcaaqaai abeM8a3naaBaaaleaacaaIYaaabeaaaOqaaiabeM8a3naaBaaaleaa caaIYaaabeaakiabgkHiTiabeM8a3naaBaaaleaacaaIXaaabeaaaa GccaaISaGaaGzbVlabeg7aHjabggMi6kabeg7aHjaaiIcacaWG4bGa aGilaiaadshacaaIPaGaaGOoaiaai2dadaWcaaqaaiaadshacqGHRa WkcqaHjpWDdaWgaaWcbaGaaGOmaaqabaGccaWG4baabaGaeqyYdC3a aSbaaSqaaiaaikdaaeqaaOGaeyOeI0IaeqyYdC3aaSbaaSqaaiaaig daaeqaaaaakiaaiYcacaaMf8UaeqOSdiMaeyyyIORaeqOSdiMaaGik aiaadIhacaaISaGaamiDaiaaiMcacaaI6aGaaGypamaalaaabaGaam iDaiabgUcaRiabeM8a3naaBaaaleaacaaIXaaabeaakiaadIhaaeaa cqaHjpWDdaWgaaWcbaGaaGOmaaqabaGccqGHsislcqaHjpWDdaWgaa WcbaGaaGymaaqabaaaaOGaaGilaaaa@7010@

φ ^ (ξ):= ω 2 φ( ξ a ), ξ[0,a), ω 1 φ( 1ξ 1a ), ξ[a,1], Ψ ˜ (ξ):= Ψ( ξ a ), ξ[0,a), Ψ( 1ξ 1a ), ξ[a,1], MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqiaaqaaiabeA8aQbGaayPadaGaaG ikaiabe67a4jaaiMcacaaI6aGaaGypamaaceaabaqbaeaabiabaaaa baaabaGaeqyYdC3aaSbaaSqaaiaaikdaaeqaaOGaeqOXdOMaaGikam aalaaabaGaeqOVdGhabaGaamyyaaaacaaIPaGaaGilaaqaaiaaywW7 aeaacqaH+oaEcqGHiiIZcaaIBbGaaGimaiaaiYcacaWGHbGaaGykai aaiYcaaeaaaeaacqaHjpWDdaWgaaWcbaGaaGymaaqabaGccqaHgpGA caaIOaWaaSaaaeaacaaIXaGaeyOeI0IaeqOVdGhabaGaaGymaiabgk HiTiaadggaaaGaaGykaiaaiYcaaeaacaaMf8oabaGaeqOVdGNaeyic I4SaaG4waiaadggacaaISaGaaGymaiaai2facaaISaaaaaGaay5Eaa GaaGzbVlaaywW7daaiaaqaaiabfI6azbGaay5adaGaaGikaiabe67a 4jaaiMcacaaI6aGaaGypamaaceaabaqbaeaabiabaaaabaaabaGaeu iQdKLaaGikamaalaaabaGaeqOVdGhabaGaamyyaaaacaaIPaGaaGil aaqaaiaaywW7aeaacqaH+oaEcqGHiiIZcaaIBbGaaGimaiaaiYcaca WGHbGaaGykaiaaiYcaaeaaaeaacqqHOoqwcaaIOaWaaSaaaeaacaaI XaGaeyOeI0IaeqOVdGhabaGaaGymaiabgkHiTiaadggaaaGaaGykai aaiYcaaeaacaaMf8oabaGaeqOVdGNaeyicI4SaaG4waiaadggacaaI SaGaaGymaiaai2facaaISaaaaaGaay5Eaaaaaa@91C0@  (2.5)

v(x,t):=ζ({α(x,t)})ζ({β(x,t)}),ζ(x):= 1 ω 2 ω 1 ( φ ^ (x) ω 1 ω 2 Ψ ˜ (x)); MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG2bGaaGikaiaadIhacaaISaGaam iDaiaaiMcacaaI6aGaaGypaiabeA7a6jaaiIcacaaI7bGaeqySdeMa aGikaiaadIhacaaISaGaamiDaiaaiMcacaaI9bGaaGykaiabgkHiTi abeA7a6jaaiIcacaaI7bGaeqOSdiMaaGikaiaadIhacaaISaGaamiD aiaaiMcacaaI9bGaaGykaiaaiYcacaaMf8UaeqOTdONaaGikaiaadI hacaaIPaGaaGOoaiaai2dadaWcaaqaaiaaigdaaeaacqaHjpWDdaWg aaWcbaGaaGOmaaqabaGccqGHsislcqaHjpWDdaWgaaWcbaGaaGymaa qabaaaaOGaaGikamaaHaaabaGaeqOXdOgacaGLcmaacaaIOaGaamiE aiaaiMcacqGHsislcqaHjpWDdaWgaaWcbaGaaGymaaqabaGccqaHjp WDdaWgaaWcbaGaaGOmaaqabaGcdaaiaaqaaiabfI6azbGaay5adaGa aGikaiaadIhacaaIPaGaaGykaiaaiUdaaaa@704A@  (2.6)

здесь {x} MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI7bGaamiEaiaai2haaaa@34C6@  обозначает дробную часть числа x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bGaeyicI48efv3ySLgznfgDOj daryqr1ngBPrginfgDObcv39gaiqaacqWFDeIuaaa@3EF5@ .

Теперь можно сформулировать теорему о конечной формуле для обобщённого решения задачи (1.1) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (1.3). Формула для решения дана в удобном для дальнейшего применения виде.

Теорема 2.4. Пусть φ(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAcaaIOaGaamiEaiaaiMcaaa a@35DC@ , ψ(x) L 1 [0,1] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHipqEcaaIOaGaamiEaiaaiMcacq GHiiIZcaWGmbWaaSbaaSqaaiaaigdaaeqaaOGaaG4waiaaicdacaaI SaGaaGymaiaai2faaaa@3D2A@ , f(x,t)Q MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbGaaGikaiaadIhacaaISaGaam iDaiaaiMcacqGHiiIZtuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgi p5wzaGabaiab=br8rbaa@439D@  и пусть выполняется условие (1.10). Тогда для обобщённого решения u(x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGikaiaadIhacaaISaGaam iDaiaaiMcaaaa@36C8@  задачи (1.1) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuGajugGbabaaaaaaaaapeGaa83eGaaa@3A92@ (1.3) имеет место следующая формула для п.в. (x,t)Q MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaamiEaiaaiYcacaWG0bGaaG ykaiabgIGiolaadgfaaaa@3828@ :

u(x,t)=v(x,t)+ 1 ω 2 ω 1 0 t dτ η(α(x,tτ)) η(β(x,tτ)) f(ξ,τ)dξ, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGikaiaadIhacaaISaGaam iDaiaaiMcacaaI9aGaamODaiaaiIcacaWG4bGaaGilaiaadshacaaI PaGaey4kaSYaaSaaaeaacaaIXaaabaGaeqyYdC3aaSbaaSqaaiaaik daaeqaaOGaeyOeI0IaeqyYdC3aaSbaaSqaaiaaigdaaeqaaaaakmaa pehabeWcbaGaaGimaaqaaiaadshaa0Gaey4kIipakiaadsgacqaHep aDdaWdXbqabSqaaiabeE7aOjaaiIcacqaHXoqycaaIOaGaamiEaiaa iYcacaWG0bGaeyOeI0IaeqiXdqNaaGykaiaaiMcaaeaacqaH3oaAca aIOaGaeqOSdiMaaGikaiaadIhacaaISaGaamiDaiabgkHiTiabes8a 0jaaiMcacaaIPaaaniabgUIiYdGccaWGMbGaaGikaiabe67a4jaaiY cacqaHepaDcaaIPaGaaGjcVlaadsgacqaH+oaEcaaISaaaaa@7064@  (2.7)

где

η(s)= {s} a χ(a{s})+ 1{s} 1a χ({s}a) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH3oaAcaaIOaGaam4CaiaaiMcaca aI9aWaaSaaaeaacaaI7bGaam4Caiaai2haaeaacaWGHbaaaiabeE8a JjaaiIcacaWGHbGaeyOeI0IaaG4EaiaadohacaaI9bGaaGykaiabgU caRmaalaaabaGaaGymaiabgkHiTiaaiUhacaWGZbGaaGyFaaqaaiaa igdacqGHsislcaWGHbaaaiabeE8aJjaaiIcacaaI7bGaam4Caiaai2 hacqGHsislcaWGHbGaaGykaaaa@5299@  (2.8)

является непрерывной кусочно линейной функцией при s(,+) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGZbGaeyicI4SaaGikaiabgkHiTi abg6HiLkaaiYcacqGHRaWkcqGHEisPcaaIPaaaaa@3B05@  (см. рис. 1) и удовлетворяет неравенству

0η(s)1. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIWaGaeyizImQaeq4TdGMaaGikai aadohacaaIPaGaeyizImQaaGymaiaai6caaaa@3B5D@  (9)

 

Рис. 1. Функция η(s) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH3oaAcaaIOaGaam4CaiaaiMcaaa a@35C6@ .

 

3. Обобщённыe решения в случае ненулевого потенциала. В данном разделе будут рассмотрены две начально-граничные задачи с потенциалом q MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGXbaaaa@32B3@ . Первая задача с потенциалом q=q(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGXbGaaGypaiaadghacaaIOaGaam iEaiaaiMcaaaa@36D2@  имеет вид

2 u(x,t) x 2 + p 1 2 u(x,t) xt + p 2 2 u(x,t) t 2 =q(x)u(x,t), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWcaaqaaiabgkGi2oaaCaaaleqaba GaaGOmaaaakiaadwhacaaIOaGaamiEaiaaiYcacaWG0bGaaGykaaqa aiabgkGi2kaadIhadaahaaWcbeqaaiaaikdaaaaaaOGaey4kaSIaam iCamaaBaaaleaacaaIXaaabeaakmaalaaabaGaeyOaIy7aaWbaaSqa beaacaaIYaaaaOGaamyDaiaaiIcacaWG4bGaaGilaiaadshacaaIPa aabaGaeyOaIyRaamiEaiabgkGi2kaadshaaaGaey4kaSIaamiCamaa BaaaleaacaaIYaaabeaakmaalaaabaGaeyOaIy7aaWbaaSqabeaaca aIYaaaaOGaamyDaiaaiIcacaWG4bGaaGilaiaadshacaaIPaaabaGa eyOaIyRaamiDamaaCaaaleqabaGaaGOmaaaaaaGccaaI9aGaamyCai aaiIcacaWG4bGaaGykaiaadwhacaaIOaGaamiEaiaaiYcacaWG0bGa aGykaiaaiYcaaaa@62F4@  (3.1)

u(0,t)=0,u(1,t)=0, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGikaiaaicdacaaISaGaam iDaiaaiMcacaaI9aGaaGimaiaaiYcacaaMf8UaamyDaiaaiIcacaaI XaGaaGilaiaadshacaaIPaGaaGypaiaaicdacaaISaaaaa@414A@  (3.2)

u(x,0)=φ(x), u(x,0) t =ψ(x), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGikaiaadIhacaaISaGaaG imaiaaiMcacaaI9aGaeqOXdOMaaGikaiaadIhacaaIPaGaaGilaiaa ywW7daWcaaqaaiabgkGi2kaadwhacaaIOaGaamiEaiaaiYcacaaIWa GaaGykaaqaaiabgkGi2kaadshaaaGaaGypaiabeI8a5jaaiIcacaWG 4bGaaGykaiaaiYcaaaa@4C01@  (3.3)

где (x,t)Q=[0,1]×[0,+) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaamiEaiaaiYcacaWG0bGaaG ykaiabgIGiolaadgfacaaI9aGaaG4waiaaicdacaaISaGaaGymaiaa i2facqGHxdaTcaaIBbGaaGimaiaaiYcacqGHRaWkcqGHEisPcaaIPa aaaa@4458@ ; p 1 , p 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGWbWaaSbaaSqaaiaaigdaaeqaaO GaaGilaiaadchadaWgaaWcbaGaaGOmaaqabaGccqGHiiIZtuuDJXwA K1uy0HMmaeHbfv3ySLgzG0uy0HgiuD3BaGabaiab=1risbaa@427B@ ; функции, входящие в (3.1) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (3.3), комплекснозначные, φ(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAcaaIOaGaamiEaiaaiMcaaa a@35DC@ , ψ(x) L 1 [0,1] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHipqEcaaIOaGaamiEaiaaiMcacq GHiiIZcaWGmbWaaSbaaSqaaiaaigdaaeqaaOGaaG4waiaaicdacaaI SaGaaGymaiaai2faaaa@3D2A@ , q(x) L 1 [0,1] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGXbGaaGikaiaadIhacaaIPaGaey icI4SaamitamaaBaaaleaacaaIXaaabeaakiaaiUfacaaIWaGaaGil aiaaigdacaaIDbaaaa@3C52@  и q(x)u(x,t)Q MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGXbGaaGikaiaadIhacaaIPaGaam yDaiaaiIcacaWG4bGaaGilaiaadshacaaIPaGaeyicI48efv3ySLgz nfgDOfdaryqr1ngBPrginfgDObYtUvgaiqaacqWFqeFuaaa@4704@ , а вторая задача с потенциалом q=q(x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGXbGaaGypaiaadghacaaIOaGaam iEaiaaiYcacaWG0bGaaGykaaaa@3881@  имеет вид

2 u(x,t) x 2 + p 1 2 u(x,t) xt + p 2 2 u(x,t) t 2 =q(x,t)u(x,t), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaWcaaqaaiabgkGi2oaaCaaaleqaba GaaGOmaaaakiaadwhacaaIOaGaamiEaiaaiYcacaWG0bGaaGykaaqa aiabgkGi2kaadIhadaahaaWcbeqaaiaaikdaaaaaaOGaey4kaSIaam iCamaaBaaaleaacaaIXaaabeaakmaalaaabaGaeyOaIy7aaWbaaSqa beaacaaIYaaaaOGaamyDaiaaiIcacaWG4bGaaGilaiaadshacaaIPa aabaGaeyOaIyRaamiEaiabgkGi2kaadshaaaGaey4kaSIaamiCamaa BaaaleaacaaIYaaabeaakmaalaaabaGaeyOaIy7aaWbaaSqabeaaca aIYaaaaOGaamyDaiaaiIcacaWG4bGaaGilaiaadshacaaIPaaabaGa eyOaIyRaamiDamaaCaaaleqabaGaaGOmaaaaaaGccaaI9aGaamyCai aaiIcacaWG4bGaaGilaiaadshacaaIPaGaamyDaiaaiIcacaWG4bGa aGilaiaadshacaaIPaGaaGilaaaa@64A3@  (3.4)

u(0,t)=0,u(1,t)=0, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGikaiaaicdacaaISaGaam iDaiaaiMcacaaI9aGaaGimaiaaiYcacaaMf8UaamyDaiaaiIcacaaI XaGaaGilaiaadshacaaIPaGaaGypaiaaicdacaaISaaaaa@414A@  (3.5)

u(x,0)=φ(x), u(x,0) t =ψ(x), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGikaiaadIhacaaISaGaaG imaiaaiMcacaaI9aGaeqOXdOMaaGikaiaadIhacaaIPaGaaGilaiaa ywW7daWcaaqaaiabgkGi2kaadwhacaaIOaGaamiEaiaaiYcacaaIWa GaaGykaaqaaiabgkGi2kaadshaaaGaaGypaiabeI8a5jaaiIcacaWG 4bGaaGykaiaaiYcaaaa@4C01@  (3.6)

где (x,t)Q=[0,1]×[0,+) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaamiEaiaaiYcacaWG0bGaaG ykaiabgIGiolaadgfacaaI9aGaaG4waiaaicdacaaISaGaaGymaiaa i2facqGHxdaTcaaIBbGaaGimaiaaiYcacqGHRaWkcqGHEisPcaaIPa aaaa@4458@ ; p 1 , p 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGWbWaaSbaaSqaaiaaigdaaeqaaO GaaGilaiaadchadaWgaaWcbaGaaGOmaaqabaGccqGHiiIZtuuDJXwA K1uy0HMmaeHbfv3ySLgzG0uy0HgiuD3BaGabaiab=1risbaa@427B@ ; функции, входящие в (3.4) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (3.6), комплекснозначные, φ(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAcaaIOaGaamiEaiaaiMcaaa a@35DC@ , ψ(x) L 1 [0,1] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHipqEcaaIOaGaamiEaiaaiMcacq GHiiIZcaWGmbWaaSbaaSqaaiaaigdaaeqaaOGaaG4waiaaicdacaaI SaGaaGymaiaai2faaaa@3D2A@ , q(x,t)Q MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGXbGaaGikaiaadIhacaaISaGaam iDaiaaiMcacqGHiiIZtuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgi p5wzaGabaiab=br8rbaa@43A8@  и q(x,t)u(x,t)Q MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGXbGaaGikaiaadIhacaaISaGaam iDaiaaiMcacaWG1bGaaGikaiaadIhacaaISaGaamiDaiaaiMcacqGH iiIZtuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGabaiab=b r8rbaa@48B3@ .

Как понимается обобщённое решение задач (3.1) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (3.3) и (3.4) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (3.6), будет пояснено далее.

3.1. Обобщённое решение в случае потенциала q(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGXbGaaGikaiaadIhacaaIPaaaaa@3515@ . В этом разделе будем рассматривать начально-граничную задачу (3.1) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (3.3). Применим к решению задачи подход, предложенный для потенциала q=q(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGXbGaaGypaiaadghacaaIOaGaam iEaiaaiMcaaaa@36D2@  в [5, 38, 39] (в случае p 1 =0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGWbWaaSbaaSqaaiaaigdaaeqaaO GaaGypaiaaicdaaaa@3524@  ), и обобщённый затем в [31, 33]] (в случае p 1 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGWbWaaSbaaSqaaiaaigdaaeqaaO GaeyiyIKRaaGimaaaa@3624@  ). Так же, как и в [5, 31, 33, 38, 39], будем считать правую часть q(x)u(x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGXbGaaGikaiaadIhacaaIPaGaam yDaiaaiIcacaWG4bGaaGilaiaadshacaaIPaaaaa@3A20@  в уравнении (3.1) как возмущение в уравнении (1.1) задачи (1.1) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (1.3). Тогда по теореме 2.4 от задачи (3.1) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (3.3) приходим к интегральному уравнению:

u(x,t)=v(x,t)+ 1 ω 2 ω 1 0 t dτ η(α(x,tτ)) η(β(x,tτ)) q(ξ)u(ξ,τ)dξ. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGikaiaadIhacaaISaGaam iDaiaaiMcacaaI9aGaamODaiaaiIcacaWG4bGaaGilaiaadshacaaI PaGaey4kaSYaaSaaaeaacaaIXaaabaGaeqyYdC3aaSbaaSqaaiaaik daaeqaaOGaeyOeI0IaeqyYdC3aaSbaaSqaaiaaigdaaeqaaaaakmaa pehabeWcbaGaaGimaaqaaiaadshaa0Gaey4kIipakiaadsgacqaHep aDdaWdXbqabSqaaiabeE7aOjaaiIcacqaHXoqycaaIOaGaamiEaiaa iYcacaWG0bGaeyOeI0IaeqiXdqNaaGykaiaaiMcaaeaacqaH3oaAca aIOaGaeqOSdiMaaGikaiaadIhacaaISaGaamiDaiabgkHiTiabes8a 0jaaiMcacaaIPaaaniabgUIiYdGccaWGXbGaaGikaiabe67a4jaaiM cacaWG1bGaaGikaiabe67a4jaaiYcacqaHepaDcaaIPaGaaGjcVlaa dsgacqaH+oaEcaaIUaaaaa@7493@  (3.7)

Отметим, что такой подход к построению обобщённого решения задачи (3.1) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (3.3) при наших предположениях относительно исходных данных задачи, состоящий в сведении задачи (3.1) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (3.3) к интегральному уравнению типа (3.7) и затем решения этого уравнения методом последовательных подстановок, был впервые использован в [5].

Таким образом, задача (3.1) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (3.3) и интегральное уравнение (3.7) тесно связаны. Но в интегральном уравнении (3.7) функции v(x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG2bGaaGikaiaadIhacaaISaGaam iDaiaaiMcaaaa@36C9@  и q(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGXbGaaGikaiaadIhacaaIPaaaaa@3515@  могут быть самого общего вида. А именно, v(x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG2bGaaGikaiaadIhacaaISaGaam iDaiaaiMcaaaa@36C9@  может быть функцией класса Q MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGabaiab=br8rbaa@3D1D@ , что верно при самых общих предположениях φ(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAcaaIOaGaamiEaiaaiMcaaa a@35DC@ , ψ(x) L 1 [0,1] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHipqEcaaIOaGaamiEaiaaiMcacq GHiiIZcaWGmbWaaSbaaSqaaiaaigdaaeqaaOGaaG4waiaaicdacaaI SaGaaGymaiaai2faaaa@3D2A@ , и функция q(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGXbGaaGikaiaadIhacaaIPaaaaa@3515@  также может быть самого общего вида, т.е. q(x) L 1 [0,1] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGXbGaaGikaiaadIhacaaIPaGaey icI4SaamitamaaBaaaleaacaaIXaaabeaakiaaiUfacaaIWaGaaGil aiaaigdacaaIDbaaaa@3C52@ , но при условии, что произведение q(x)u(x,t))Q MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGXbGaaGikaiaadIhacaaIPaGaam yDaiaaiIcacaWG4bGaaGilaiaadshacaaIPaGaaGykaiabgIGioprr 1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbaceaGae8heXhfaaa@47B7@ . Естественно дать следующее определение.

Определение 3.1. Будем называть решение u(x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGikaiaadIhacaaISaGaam iDaiaaiMcaaaa@36C8@  интегрального уравнения (3.7), в котором φ(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAcaaIOaGaamiEaiaaiMcaaa a@35DC@ , ψ(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHipqEcaaIOaGaamiEaiaaiMcaaa a@35ED@ , q(x) L 1 [0,1] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGXbGaaGikaiaadIhacaaIPaGaey icI4SaamitamaaBaaaleaacaaIXaaabeaakiaaiUfacaaIWaGaaGil aiaaigdacaaIDbaaaa@3C52@ , но при этом q(x)u(x,t)Q MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGXbGaaGikaiaadIhacaaIPaGaam yDaiaaiIcacaWG4bGaaGilaiaadshacaaIPaGaeyicI48efv3ySLgz nfgDOfdaryqr1ngBPrginfgDObYtUvgaiqaacqWFqeFuaaa@4704@ , обобщённым решением начально-граничной задачи (3.1) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (3.3), а саму задачу (3.1) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (3.3) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  обобщённой начально-граничной задачей.

Решим уравнение (3.7). Для этого введем оператор

(Bf)(x,t)= 1 ω 2 ω 1 0 t dτ η(α(x,tτ)) η(β(x,tτ)) q(ξ)f(ξ,τ)dξ, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaWefv3ySLgznfgDOfdaryqr1n gBPrginfgDObYtUvgaiqaacqWFSeIqcaWGMbGaaGykaiaaiIcacaWG 4bGaaGilaiaadshacaaIPaGaaGypamaalaaabaGaaGymaaqaaiabeM 8a3naaBaaaleaacaaIYaaabeaakiabgkHiTiabeM8a3naaBaaaleaa caaIXaaabeaaaaGcdaWdXbqabSqaaiaaicdaaeaacaWG0baaniabgU IiYdGccaWGKbGaeqiXdq3aa8qCaeqaleaacqaH3oaAcaaIOaGaeqyS deMaaGikaiaadIhacaaISaGaamiDaiabgkHiTiabes8a0jaaiMcaca aIPaaabaGaeq4TdGMaaGikaiabek7aIjaaiIcacaWG4bGaaGilaiaa dshacqGHsislcqaHepaDcaaIPaGaaGykaaqdcqGHRiI8aOGaamyCai aaiIcacqaH+oaEcaaIPaGaamOzaiaaiIcacqaH+oaEcaaISaGaeqiX dqNaaGykaiaayIW7caWGKbGaeqOVdGNaaGilaaaa@7A87@  (3.8)

отображающий свою область определения D(B) L 1 ( Q T ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGebGaaGikamrr1ngBPrwtHrhAXa qeguuDJXwAKbstHrhAG8KBLbaceaGae8hlHiKaaGykaiabgkOimlaa dYeadaWgaaWcbaGaaGymaaqabaGccaaIOaGaamyuamaaBaaaleaaca WGubaabeaakiaaiMcaaaa@4590@  в C( Q T ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbGaaGikaiaadgfadaWgaaWcba GaamivaaqabaGccaaIPaaaaa@35CF@ .

Очевидно оператор B MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGabaiab=Xsicbaa@3C5A@  есть линейный оператор. Сужение этого оператора на пространство C( Q T ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbGaaGikaiaadgfadaWgaaWcba GaamivaaqabaGccaaIPaaaaa@35CF@  будем обозначать B MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGcbaaaa@3284@ . С использованием этого оператора уравнение (3.7) кратко можно записать в виде

u(x,t)=v(x,t)+(Bu)(x,t). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGikaiaadIhacaaISaGaam iDaiaaiMcacaaI9aGaamODaiaaiIcacaWG4bGaaGilaiaadshacaaI PaGaey4kaSIaaGikamrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8 KBLbaceaGae8hlHiKaamyDaiaaiMcacaaIOaGaamiEaiaaiYcacaWG 0bGaaGykaiaai6caaaa@4F42@  (3.9)

Лемма 3.1. Оператор B MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGcbaaaa@3284@  является линейным ограниченным оператором из C( Q T ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbGaaGikaiaadgfadaWgaaWcba GaamivaaqabaGccaaIPaaaaa@35CF@  в C( Q T ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbGaaGikaiaadgfadaWgaaWcba GaamivaaqabaGccaaIPaaaaa@35CF@  и при n1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGUbGaeyyzImRaaGymaaaa@3531@  имеют место оценки

|( B n f)(x,t)|f(x,t) C( Q T ) ( tq(x) L 1 [0,1] 2 ω * ) n 1 n! (x,t) Q T ; MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI8bGaaGikaiaadkeadaahaaWcbe qaaiaad6gaaaGccaWGMbGaaGykaiaaiIcacaWG4bGaaGilaiaadsha caaIPaGaaGiFaiabgsMiJgbbfv3ySLgzGueE0jxyaGabaiab=vIiqj aadAgacaaIOaGaamiEaiaaiYcacaWG0bGaaGykaiab=vIiqnaaBaaa leaacaWGdbGaaGikaiaadgfadaWgaaqaaiaadsfaaeqaaiaaiMcaae qaaOGaaGikamaalaaabaGaamiDaiab=vIiqjaadghacaaIOaGaamiE aiaaiMcacqWFLicudaWgaaWcbaGaamitamaaBaaabaGaaGymaaqaba GaaG4waiaaicdacaaISaGaaGymaiaai2faaeqaaaGcbaGaaGOmaiab eM8a3naaBaaaleaacaaIQaaabeaaaaGccaaIPaWaaWbaaSqabeaaca WGUbaaaOWaaSaaaeaacaaIXaaabaGaamOBaiaaigcaaaGaaGzbVlab gcGiIiaaiIcacaWG4bGaaGilaiaadshacaaIPaGaeyicI4Saamyuam aaBaaaleaacaWGubaabeaakiaaiUdaaaa@6D4D@  (3.10)

( B n f)(x,t) C( Q T ) f(x,t) C( Q T ) ( Tq(x) L 1 [0,1] 2 ω * ) n 1 n! , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaarqqr1ngBPrgifHhDYfgaiqaacqWFLi cucaaIOaGaamOqamaaCaaaleqabaGaamOBaaaakiaadAgacaaIPaGa aGikaiaadIhacaaISaGaamiDaiaaiMcacqWFLicudaWgaaWcbaGaam 4qaiaaiIcacaWGrbWaaSbaaeaacaWGubaabeaacaaIPaaabeaakiab gsMiJkab=vIiqjaadAgacaaIOaGaamiEaiaaiYcacaWG0bGaaGykai ab=vIiqnaaBaaaleaacaWGdbGaaGikaiaadgfadaWgaaqaaiaadsfa aeqaaiaaiMcaaeqaaOGaaGikamaalaaabaGaamivaiab=vIiqjaadg hacaaIOaGaamiEaiaaiMcacqWFLicudaWgaaWcbaGaamitamaaBaaa baGaaGymaaqabaGaaG4waiaaicdacaaISaGaaGymaiaai2faaeqaaa GcbaGaaGOmaiabeM8a3naaBaaaleaacaaIQaaabeaaaaGccaaIPaWa aWbaaSqabeaacaWGUbaaaOWaaSaaaeaacaaIXaaabaGaamOBaiaaig caaaGaaGilaaaa@67A5@  (3.11)

где ω * =min{| ω 1 |, ω 2 } MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHjpWDdaWgaaWcbaGaaGOkaaqaba GccaaI9aGaciyBaiaacMgacaGGUbGaaG4EaiaaiYhacqaHjpWDdaWg aaWcbaGaaGymaaqabaGccaaI8bGaaGilaiabeM8a3naaBaaaleaaca aIYaaabeaakiaai2haaaa@4258@ .

Доказательство. Линейность оператора B MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGcbaaaa@3284@  очевидна. Далее, если f(x,t)C( Q T ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbGaaGikaiaadIhacaaISaGaam iDaiaaiMcacqGHiiIZcaWGdbGaaGikaiaadgfadaWgaaWcbaGaamiv aaqabaGccaaIPaaaaa@3C4F@ , то из формулы для оператора B MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGabaiab=Xsicbaa@3C5A@  и его сужения на C( Q T ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbGaaGikaiaadgfadaWgaaWcba GaamivaaqabaGccaaIPaaaaa@35CF@  непосредственно следует, что функция (Bf)(x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaamOqaiaadAgacaaIPaGaaG ikaiaadIhacaaISaGaamiDaiaaiMcaaaa@38E5@  также непрерывна.

Неравенства (3.11) являются прямым следствием неравенств (3.10). Поэтому, достаточно установить лишь неравенства (3.10). Воспользуемся принципом математической индукции.

При n=1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGUbGaaGypaiaaigdaaaa@3432@  из определения оператора B MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGcbaaaa@3284@  будем иметь

|(Bf)(x,t)| 1 ω 2 +| ω 1 0 t dτ| η(α(x,tτ)) η(β(x,tτ)) |q(ξ)||f(ξ,τ)||dξ. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI8bGaaGikaiaadkeacaWGMbGaaG ykaiaaiIcacaWG4bGaaGilaiaadshacaaIPaGaaGiFaiabgsMiJoaa laaabaGaaGymaaqaaiabeM8a3naaBaaaleaacaaIYaaabeaakiabgU caRiaaiYhacqaHjpWDdaWgaaWcbaGaaGymaaqabaaaaOWaa8qCaeqa leaacaaIWaaabaGaamiDaaqdcqGHRiI8aOGaaGjcVlaadsgacqaHep aDcaaI8bWaa8qCaeqaleaacqaH3oaAcaaIOaGaeqySdeMaaGikaiaa dIhacaaISaGaamiDaiabgkHiTiabes8a0jaaiMcacaaIPaaabaGaeq 4TdGMaaGikaiabek7aIjaaiIcacaWG4bGaaGilaiaadshacqGHsisl cqaHepaDcaaIPaGaaGykaaqdcqGHRiI8aOGaaGiFaiaadghacaaIOa GaeqOVdGNaaGykaiaaiYhacaaI8bGaamOzaiaaiIcacqaH+oaEcaaI SaGaeqiXdqNaaGykaiaaiYhacaaI8bGaaGjcVlaadsgacqaH+oaEca aIUaaaaa@7C5D@

Учитывая неравенства (9) для функции η(s) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH3oaAcaaIOaGaam4CaiaaiMcaaa a@35C6@  и определение ω * MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHjpWDdaWgaaWcbaGaaGOkaaqaba aaaa@346A@ , далее получим при (x,t) Q T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaamiEaiaaiYcacaWG0bGaaG ykaiabgIGiolaadgfadaWgaaWcbaGaamivaaqabaaaaa@392D@  

|(Bf)(x,t)| 1 2 ω * 0 t dτ 0 1 |q(ξ)||f(ξ,τ)|dξf(x,t) C( Q T ) ( tq(x) L 1 [0,1] 2 ω * ) 1 1! . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI8bGaaGikaiaadkeacaWGMbGaaG ykaiaaiIcacaWG4bGaaGilaiaadshacaaIPaGaaGiFaiabgsMiJoaa laaabaGaaGymaaqaaiaaikdacqaHjpWDdaWgaaWcbaGaaGOkaaqaba aaaOWaa8qCaeqaleaacaaIWaaabaGaamiDaaqdcqGHRiI8aOGaamiz aiabes8a0naapehabeWcbaGaaGimaaqaaiaaigdaa0Gaey4kIipaki aaiYhacaWGXbGaaGikaiabe67a4jaaiMcacaaI8bGaaGiFaiaadAga caaIOaGaeqOVdGNaaGilaiabes8a0jaaiMcacaaI8bGaaGjcVlaads gacqaH+oaEcqGHKjYOrqqr1ngBPrgifHhDYfgaiqaacqWFLicucaWG MbGaaGikaiaadIhacaaISaGaamiDaiaaiMcacqWFLicudaWgaaWcba Gaam4qaiaaiIcacaWGrbWaaSbaaeaacaWGubaabeaacaaIPaaabeaa kiaaiIcadaWcaaqaaiaadshacqWFLicucaWGXbGaaGikaiaadIhaca aIPaGae8xjIa1aaSbaaSqaaiaadYeadaWgaaqaaiaaigdaaeqaaiaa iUfacaaIWaGaaGilaiaaigdacaaIDbaabeaaaOqaaiaaikdacqaHjp WDdaWgaaWcbaGaaGOkaaqabaaaaOGaaGykamaalaaabaGaaGymaaqa aiaaigdacaaIHaaaaiaai6caaaa@848E@

Это и есть оценка (3.10) при n=1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGUbGaaGypaiaaigdaaaa@3432@ , из которой непосредственно вытекает оценка (3.11) при n=1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGUbGaaGypaiaaigdaaaa@3432@ , а это означает, что оператор B MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGcbaaaa@3284@  является ограниченным в C( Q T ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbGaaGikaiaadgfadaWgaaWcba GaamivaaqabaGccaaIPaaaaa@35CF@ .

Предположим, что оценка (3.10) выполняется при некотором n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGUbGaeyicI48efv3ySLgznfgDOj daryqr1ngBPrginfgDObcv39gaiqaacqWFveItaaa@3EDF@ . Покажем, что она выполянется и при n+1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGUbGaey4kaSIaaGymaaaa@344D@ . В самом деле, справедливы соотношения

|( B n+1 f)(x,t)|=|B( B n f)(x,t)|= MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI8bGaaGikaiaadkeadaahaaWcbe qaaiaad6gacqGHRaWkcaaIXaaaaOGaamOzaiaaiMcacaaIOaGaamiE aiaaiYcacaWG0bGaaGykaiaaiYhacaaI9aGaaGiFaiaadkeacaaIOa GaamOqamaaCaaaleqabaGaamOBaaaakiaadAgacaaIPaGaaGikaiaa dIhacaaISaGaamiDaiaaiMcacaaI8bGaaGypaaaa@4A6B@

= 1 ω 2 +| ω 1 | 0 t dτ η(α(x,tτ)) η(β(x,tτ)) q(ξ)( B n f)(ξ,τ)dξ| 1 2 ω * 0 t dτ 0 1 |q(ξ)||( B n f)(ξ,τ)|dξ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI9aWaaSaaaeaacaaIXaaabaGaeq yYdC3aaSbaaSqaaiaaikdaaeqaaOGaey4kaSIaaGiFaiabeM8a3naa BaaaleaacaaIXaaabeaaaaGccaaI8bWaa8qCaeqaleaacaaIWaaaba GaamiDaaqdcqGHRiI8aOGaamizaiabes8a0naapehabeWcbaGaeq4T dGMaaGikaiabeg7aHjaaiIcacaWG4bGaaGilaiaadshacqGHsislcq aHepaDcaaIPaGaaGykaaqaaiabeE7aOjaaiIcacqaHYoGycaaIOaGa amiEaiaaiYcacaWG0bGaeyOeI0IaeqiXdqNaaGykaiaaiMcaa0Gaey 4kIipakiaadghacaaIOaGaeqOVdGNaaGykaiaaiIcacaWGcbWaaWba aSqabeaacaWGUbaaaOGaamOzaiaaiMcacaaIOaGaeqOVdGNaaGilai abes8a0jaaiMcacaaMi8Uaamizaiabe67a4jaaiYhacqGHKjYOdaWc aaqaaiaaigdaaeaacaaIYaGaeqyYdC3aaSbaaSqaaiaaiQcaaeqaaa aakmaapehabeWcbaGaaGimaaqaaiaadshaa0Gaey4kIipakiaadsga cqaHepaDdaWdXbqabSqaaiaaicdaaeaacaaIXaaaniabgUIiYdGcca aI8bGaamyCaiaaiIcacqaH+oaEcaaIPaGaaGiFaiaaiYhacaaIOaGa amOqamaaCaaaleqabaGaamOBaaaakiaadAgacaaIPaGaaGikaiabe6 7a4jaaiYcacqaHepaDcaaIPaGaaGiFaiaayIW7caWGKbGaeqOVdGNa eyizImkaaa@97ED@

1 2 ω * f(x,t) C( Q T ) |( q(x) L 1 [0,1] 2 ω * ) n 0 t τ n n! dτ 0 1 |q(ξ)|dξ= MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHKjYOdaWcaaqaaiaaigdaaeaaca aIYaGaeqyYdC3aaSbaaSqaaiaaiQcaaeqaaaaarqqr1ngBPrgifHhD Yfgaiqaakiab=vIiqjaadAgacaaIOaGaamiEaiaaiYcacaWG0bGaaG ykaiab=vIiqnaaBaaaleaacaWGdbGaaGikaiaadgfadaWgaaqaaiaa dsfaaeqaaiaaiMcaaeqaaOGaaGiFaiaaiIcadaWcaaqaaiab=vIiqj aadghacaaIOaGaamiEaiaaiMcacqWFLicudaWgaaWcbaGaamitamaa BaaabaGaaGymaaqabaGaaG4waiaaicdacaaISaGaaGymaiaai2faae qaaaGcbaGaaGOmaiabeM8a3naaBaaaleaacaaIQaaabeaaaaGccaaI PaWaaWbaaSqabeaacaWGUbaaaOWaa8qCaeqaleaacaaIWaaabaGaam iDaaqdcqGHRiI8aOWaaSaaaeaacqaHepaDdaahaaWcbeqaaiaad6ga aaaakeaacaWGUbGaaGyiaaaacaaMi8Uaamizaiabes8a0naapehabe WcbaGaaGimaaqaaiaaigdaa0Gaey4kIipakiaaiYhacaWGXbGaaGik aiabe67a4jaaiMcacaaI8bGaaGjcVlaadsgacqaH+oaEcaaI9aaaaa@764E@

=f(x,t) C( Q T ) ( tq(x) L 1 [0,1] 2 ω * ) n+1 1 (n+1)! ; MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI9aqeeuuDJXwAKbsr4rNCHbacea Gae8xjIaLaamOzaiaaiIcacaWG4bGaaGilaiaadshacaaIPaGae8xj Ia1aaSbaaSqaaiaadoeacaaIOaGaamyuamaaBaaabaGaamivaaqaba GaaGykaaqabaGccaaIOaWaaSaaaeaacaWG0bGae8xjIaLaamyCaiaa iIcacaWG4bGaaGykaiab=vIiqnaaBaaaleaacaWGmbWaaSbaaeaaca aIXaaabeaacaaIBbGaaGimaiaaiYcacaaIXaGaaGyxaaqabaaakeaa caaIYaGaeqyYdC3aaSbaaSqaaiaaiQcaaeqaaaaakiaaiMcadaahaa Wcbeqaaiaad6gacqGHRaWkcaaIXaaaaOWaaSaaaeaacaaIXaaabaGa aGikaiaad6gacqGHRaWkcaaIXaGaaGykaiaaigcaaaGaaG4oaaaa@5CC8@

это и есть оценка (3.10) в случае n+1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGUbGaey4kaSIaaGymaaaa@344D@ . Тем самым, оценка (3.10), а следовательно, и оценка (3.11), установлены для всех n1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGUbGaeyyzImRaaGymaaaa@3531@ . Лемма доказана.

Лемма 3.2. Если φ(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAcaaIOaGaamiEaiaaiMcaaa a@35DC@ , ψ(x) L 1 [0,1] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHipqEcaaIOaGaamiEaiaaiMcacq GHiiIZcaWGmbWaaSbaaSqaaiaaigdaaeqaaOGaaG4waiaaicdacaaI SaGaaGymaiaai2faaaa@3D2A@ , то и ζ(x) L 1 [0,1] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH2oGEcaaIOaGaamiEaiaaiMcacq GHiiIZcaWGmbWaaSbaaSqaaiaaigdaaeqaaOGaaG4waiaaicdacaaI SaGaaGymaiaai2faaaa@3D19@  и выполняется оценка

ζ(x) L 1 [0,1] C T (φ()x L 1 [0,1] +ψ(x) L 1 [0,1] ), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaarqqr1ngBPrgifHhDYfgaiqaacqWFLi cucqaH2oGEcaaIOaGaamiEaiaaiMcacqWFLicudaWgaaWcbaGaamit amaaBaaabaGaaGymaaqabaGaaG4waiaaicdacaaISaGaaGymaiaai2 faaeqaaOGaeyizImQaam4qamaaBaaaleaacaWGubaabeaakiaaiIca cqWFLicucqaHgpGAcaaIOaGaaGykaiaadIhacqWFLicudaWgaaWcba GaamitamaaBaaabaGaaGymaaqabaGaaG4waiaaicdacaaISaGaaGym aiaai2faaeqaaOGaey4kaSIae8xjIaLaeqiYdKNaaGikaiaadIhaca aIPaGae8xjIa1aaSbaaSqaaiaadYeadaWgaaqaaiaaigdaaeqaaiaa iUfacaaIWaGaaGilaiaaigdacaaIDbaabeaakiaaiMcacaaISaaaaa@6185@  (3.12)

где постоянная C T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbWaaSbaaSqaaiaadsfaaeqaaa aa@338A@  не зависит от φ(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAcaaIOaGaamiEaiaaiMcaaa a@35DC@  и ψ(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHipqEcaaIOaGaamiEaiaaiMcaaa a@35ED@ .

Доказательство. На основании формулы (2.6) имеет место оценка

ζ(x) 1 ω 2 ω 1 ( φ ^ (x) L 1 [0,1] + Ψ ˜ (x) L 1 [0,1] ). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaarqqr1ngBPrgifHhDYfgaiqaacqWFLi cucqaH2oGEcaaIOaGaamiEaiaaiMcacqWFLicucqGHKjYOdaWcaaqa aiaaigdaaeaacqaHjpWDdaWgaaWcbaGaaGOmaaqabaGccqGHsislcq aHjpWDdaWgaaWcbaGaaGymaaqabaaaaOGaaGikaiab=vIiqnaaHaaa baGaeqOXdOgacaGLcmaacaaIOaGaamiEaiaaiMcacqWFLicudaWgaa WcbaGaamitamaaBaaabaGaaGymaaqabaGaaG4waiaaicdacaaISaGa aGymaiaai2faaeqaaOGaey4kaSIae8xjIa1aaacaaeaacqqHOoqwai aawoWaaiaaiIcacaWG4bGaaGykaiab=vIiqnaaBaaaleaacaWGmbWa aSbaaeaacaaIXaaabeaacaaIBbGaaGimaiaaiYcacaaIXaGaaGyxaa qabaGccaaIPaGaaGOlaaaa@6250@  (3.13)

Далее, из определений (2.5) функции φ ^ (x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqiaaqaaiabeA8aQbGaayPadaGaaG ikaiaadIhacaaIPaaaaa@369E@  и функции Ψ ˜ (x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiabfI6azbGaay5adaGaaG ikaiaadIhacaaIPaaaaa@3670@  получаем соотношения

φ ^ (x) L 1 [0,1] = ω 1 2 + ω 2 2 ω 2 ω 1 φ(x) L 1 [0,1] , Ψ ˜ (x) L 1 [0,1] =Ψ(x) L 1 [0,1] ψ(x) L 1 [0,1] . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaarqqr1ngBPrgifHhDYfgaiqaacqWFLi cudaqiaaqaaiabeA8aQbGaayPadaGaaGikaiaadIhacaaIPaGae8xj Ia1aaSbaaSqaaiaadYeadaWgaaqaaiaaigdaaeqaaiaaiUfacaaIWa GaaGilaiaaigdacaaIDbaabeaakiaai2dadaWcaaqaaiabeM8a3naa DaaaleaacaaIXaaabaGaaGOmaaaakiabgUcaRiabeM8a3naaDaaale aacaaIYaaabaGaaGOmaaaaaOqaaiabeM8a3naaBaaaleaacaaIYaaa beaakiabgkHiTiabeM8a3naaBaaaleaacaaIXaaabeaaaaGccqWFLi cucqaHgpGAcaaIOaGaamiEaiaaiMcacqWFLicudaWgaaWcbaGaamit amaaBaaabaGaaGymaaqabaGaaG4waiaaicdacaaISaGaaGymaiaai2 faaeqaaOGaaGilaiaaywW7cqWFLicudaaiaaqaaiabfI6azbGaay5a daGaaGikaiaadIhacaaIPaGae8xjIa1aaSbaaSqaaiaadYeadaWgaa qaaiaaigdaaeqaaiaaiUfacaaIWaGaaGilaiaaigdacaaIDbaabeaa kiaai2dacqWFLicucqqHOoqwcaaIOaGaamiEaiaaiMcacqWFLicuda WgaaWcbaGaamitamaaBaaabaGaaGymaaqabaGaaG4waiaaicdacaaI SaGaaGymaiaai2faaeqaaOGaeyizImQae8xjIaLaeqiYdKNaaGikai aadIhacaaIPaGae8xjIa1aaSbaaSqaaiaadYeadaWgaaqaaiaaigda aeqaaiaaiUfacaaIWaGaaGilaiaaigdacaaIDbaabeaakiaai6caaa a@8918@  (3.14)

Из (3.13) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (3.14) тогда следует утверждение леммы (3.13). Тем самым лемма 3.2 установлена.

Введем теперь пока чисто формально функцию

w(x,t):= 1 ω 2 ω 1 0 t dτ η(α(x,tτ)) η(β(x,tτ)) q(ξ)v(ξ,τ)dξ(=(Bv)(x,t)). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG3bGaaGikaiaadIhacaaISaGaam iDaiaaiMcacaaI6aGaaGypamaalaaabaGaaGymaaqaaiabeM8a3naa BaaaleaacaaIYaaabeaakiabgkHiTiabeM8a3naaBaaaleaacaaIXa aabeaaaaGcdaWdXbqabSqaaiaaicdaaeaacaWG0baaniabgUIiYdGc caWGKbGaeqiXdq3aa8qCaeqaleaacqaH3oaAcaaIOaGaeqySdeMaaG ikaiaadIhacaaISaGaamiDaiabgkHiTiabes8a0jaaiMcacaaIPaaa baGaeq4TdGMaaGikaiabek7aIjaaiIcacaWG4bGaaGilaiaadshacq GHsislcqaHepaDcaaIPaGaaGykaaqdcqGHRiI8aOGaamyCaiaaiIca cqaH+oaEcaaIPaGaamODaiaaiIcacqaH+oaEcaaISaGaeqiXdqNaaG ykaiaayIW7caWGKbGaeqOVdGNaaGikaiaai2dacaaIOaWefv3ySLgz nfgDOfdaryqr1ngBPrginfgDObYtUvgaiqaacqWFSeIqcaWG2bGaaG ykaiaaiIcacaWG4bGaaGilaiaadshacaaIPaGaaGykaiaai6caaaa@82A6@  (3.15)

Ввиду специальной структуры этой функции справедлива следующая лемма.

Лемма 3.3. Если φ(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAcaaIOaGaamiEaiaaiMcaaa a@35DC@ , ψ(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHipqEcaaIOaGaamiEaiaaiMcaaa a@35ED@ , q(x) L 1 [0,1] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGXbGaaGikaiaadIhacaaIPaGaey icI4SaamitamaaBaaaleaacaaIXaaabeaakiaaiUfacaaIWaGaaGil aiaaigdacaaIDbaaaa@3C52@ , то w(x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG3bGaaGikaiaadIhacaaISaGaam iDaiaaiMcaaaa@36CA@  является функцией из пространства C( Q T ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbGaaGikaiaadgfadaWgaaWcba GaamivaaqabaGccaaIPaaaaa@35CF@  при любом T>0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGubGaaGOpaiaaicdaaaa@3418@  и выполняется оценка

w(x,t) C( Q T ) C T q(x) L 1 [0,1] (φ(x) L 1 [0,1] +ψ(x) L 1 [0,1] ), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaarqqr1ngBPrgifHhDYfgaiqaacqWFLi cucaWG3bGaaGikaiaadIhacaaISaGaamiDaiaaiMcacqWFLicudaWg aaWcbaGaam4qaiaaiIcacaWGrbWaaSbaaeaacaWGubaabeaacaaIPa aabeaakiabgsMiJkaadoeadaWgaaWcbaGaamivaaqabaGccqWFLicu caWGXbGaaGikaiaadIhacaaIPaGae8xjIa1aaSbaaSqaaiaadYeada WgaaqaaiaaigdaaeqaaiaaiUfacaaIWaGaaGilaiaaigdacaaIDbaa beaakiaaiIcacqWFLicucqaHgpGAcaaIOaGaamiEaiaaiMcacqWFLi cudaWgaaWcbaGaamitamaaBaaabaGaaGymaaqabaGaaG4waiaaicda caaISaGaaGymaiaai2faaeqaaOGaey4kaSIae8xjIaLaeqiYdKNaaG ikaiaadIhacaaIPaGae8xjIa1aaSbaaSqaaiaadYeadaWgaaqaaiaa igdaaeqaaiaaiUfacaaIWaGaaGilaiaaigdacaaIDbaabeaakiaaiM cacaaISaaaaa@6C36@  (3.16)

где постоянная C T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbWaaSbaaSqaaiaadsfaaeqaaa aa@338A@  не зависит от q(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGXbGaaGikaiaadIhacaaIPaaaaa@3515@ , φ(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAcaaIOaGaamiEaiaaiMcaaa a@35DC@  и ψ(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHipqEcaaIOaGaamiEaiaaiMcaaa a@35ED@ .

Доказательство. Из леммы 3.2 в случае, если φ(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAcaaIOaGaamiEaiaaiMcaaa a@35DC@ , ψ(x) L 1 [0,1] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHipqEcaaIOaGaamiEaiaaiMcacq GHiiIZcaWGmbWaaSbaaSqaaiaaigdaaeqaaOGaaG4waiaaicdacaaI SaGaaGymaiaai2faaaa@3D2A@ , следует, что ζ(x) L 1 [0,1] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH2oGEcaaIOaGaamiEaiaaiMcacq GHiiIZcaWGmbWaaSbaaSqaaiaaigdaaeqaaOGaaG4waiaaicdacaaI SaGaaGymaiaai2faaaa@3D19@ . Далее, с учетом формулы (2.6) для v(x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG2bGaaGikaiaadIhacaaISaGaam iDaiaaiMcaaaa@36C9@  можно получить следующее представление для w(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG3bGaaGikaiaadIhacaaIPaaaaa@351B@ :

w(x,t):= 1 ω 2 ω 1 0 t dτ η(α(x,tτ)) η(β(x,tτ)) q(ξ)(ζ({α(ξ,τ)})ζ({β(ξ,τ)}))dξ= MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG3bGaaGikaiaadIhacaaISaGaam iDaiaaiMcacaaI6aGaaGypamaalaaabaGaaGymaaqaaiabeM8a3naa BaaaleaacaaIYaaabeaakiabgkHiTiabeM8a3naaBaaaleaacaaIXa aabeaaaaGcdaWdXbqabSqaaiaaicdaaeaacaWG0baaniabgUIiYdGc caWGKbGaeqiXdq3aa8qCaeqaleaacqaH3oaAcaaIOaGaeqySdeMaaG ikaiaadIhacaaISaGaamiDaiabgkHiTiabes8a0jaaiMcacaaIPaaa baGaeq4TdGMaaGikaiabek7aIjaaiIcacaWG4bGaaGilaiaadshacq GHsislcqaHepaDcaaIPaGaaGykaaqdcqGHRiI8aOGaamyCaiaaiIca cqaH+oaEcaaIPaGaaGikaiabeA7a6jaaiIcacaaI7bGaeqySdeMaaG ikaiabe67a4jaaiYcacqaHepaDcaaIPaGaaGyFaiaaiMcacqGHsisl cqaH2oGEcaaIOaGaaG4Eaiabek7aIjaaiIcacqaH+oaEcaaISaGaeq iXdqNaaGykaiaai2hacaaIPaGaaGykaiaayIW7caWGKbGaeqOVdGNa aGypaaaa@8411@

= 1 ω 2 ω 1 ( K 1 (x,t) K 2 (x,t)). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI9aWaaSaaaeaacaaIXaaabaGaeq yYdC3aaSbaaSqaaiaaikdaaeqaaOGaeyOeI0IaeqyYdC3aaSbaaSqa aiaaigdaaeqaaaaakiaaiIcacaWGlbWaaSbaaSqaaiaaigdaaeqaaO GaaGikaiaadIhacaaISaGaamiDaiaaiMcacqGHsislcaWGlbWaaSba aSqaaiaaikdaaeqaaOGaaGikaiaadIhacaaISaGaamiDaiaaiMcaca aIPaGaaGOlaaaa@4868@  (3.17)

Проведем дальнейшие рассуждения только для K 1 (x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGlbWaaSbaaSqaaiaaigdaaeqaaO GaaGikaiaadIhacaaISaGaamiDaiaaiMcaaaa@378F@ , так как для K 2 (x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGlbWaaSbaaSqaaiaaikdaaeqaaO GaaGikaiaadIhacaaISaGaamiDaiaaiMcaaaa@3790@  рассуждения аналогичны. Итак, докажем непрерывность функции

K 1 (x,t)= 0 t dτ η(α(x,tτ)) η(β(x,tτ)) q(ξ)ζ({α(ξ,τ)})dξ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGlbWaaSbaaSqaaiaaigdaaeqaaO GaaGikaiaadIhacaaISaGaamiDaiaaiMcacaaI9aWaa8qCaeqaleaa caaIWaaabaGaamiDaaqdcqGHRiI8aOGaamizaiabes8a0naapehabe WcbaGaeq4TdGMaaGikaiabeg7aHjaaiIcacaWG4bGaaGilaiaadsha cqGHsislcqaHepaDcaaIPaGaaGykaaqaaiabeE7aOjaaiIcacqaHYo GycaaIOaGaamiEaiaaiYcacaWG0bGaeyOeI0IaeqiXdqNaaGykaiaa iMcaa0Gaey4kIipakiaadghacaaIOaGaeqOVdGNaaGykaiabeA7a6j aaiIcacaaI7bGaeqySdeMaaGikaiabe67a4jaaiYcacqaHepaDcaaI PaGaaGyFaiaaiMcacaaMi8Uaamizaiabe67a4baa@6D52@  (3.18)

в области Q T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGrbWaaSbaaSqaaiaadsfaaeqaaa aa@3398@ . Так как η(s) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH3oaAcaaIOaGaam4CaiaaiMcaaa a@35C6@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  непрерывная функция (теорема 2.4), а α(x,tτ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHXoqycaaIOaGaamiEaiaaiYcaca WG0bGaeyOeI0IaeqiXdqNaaGykaaaa@3A1F@  и β(x,tτ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHYoGycaaIOaGaamiEaiaaiYcaca WG0bGaeyOeI0IaeqiXdqNaaGykaaaa@3A21@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  линейные функции своих аргументов, то область интегрирования Q(x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGrbGaaGikaiaadIhacaaISaGaam iDaiaaiMcaaaa@36A4@  в интеграле (3.18) является измеримым множеством при всех (x,t) Q T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaamiEaiaaiYcacaWG0bGaaG ykaiabgIGiolaadgfadaWgaaWcbaGaamivaaqabaaaaa@392D@  и ее мера Лебега есть непрерывная функция по x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4baaaa@32BA@  и t MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0baaaa@32B6@ . Таким образом, в силу абсолютной непрерывности интеграла Лебега (см. [3, теорема 5, с. 301]), чтобы доказать непрерывность функции K 1 (x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGlbWaaSbaaSqaaiaaigdaaeqaaO GaaGikaiaadIhacaaISaGaamiDaiaaiMcaaaa@378F@ , достаточно установить суммируемость функции q(ξ)ζ({α(ξ,τ)}) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGXbGaaGikaiabe67a4jaaiMcacq aH2oGEcaaIOaGaaG4Eaiabeg7aHjaaiIcacqaH+oaEcaaISaGaeqiX dqNaaGykaiaai2hacaaIPaaaaa@424B@  в Q T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGrbWaaSbaaSqaaiaadsfaaeqaaa aa@3398@ .

Лемма 3.4. Функция ζ({α(ξ,τ)}) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH2oGEcaaIOaGaaG4Eaiabeg7aHj aaiIcacqaH+oaEcaaISaGaeqiXdqNaaGykaiaai2hacaaIPaaaaa@3E2D@  есть измеримая функция в Q T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGrbWaaSbaaSqaaiaadsfaaeqaaa aa@3398@ .

Доказательство. Обозначим ζ (s):=ζ({s}) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacuaH2oGEgaafaiaaiIcacaWGZbGaaG ykaiaaiQdacaaI9aGaeqOTdONaaGikaiaaiUhacaWGZbGaaGyFaiaa iMcaaaa@3DA3@ , s MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGZbGaeyicI48efv3ySLgznfgDOj daryqr1ngBPrginfgDObcv39gaiqaacqWFDeIuaaa@3EF0@ . Тогда

ζ({α(ξ,τ)}) ζ (α(ξ,τ)). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH2oGEcaaIOaGaaG4Eaiabeg7aHj aaiIcacqaH+oaEcaaISaGaeqiXdqNaaGykaiaai2hacaaIPaGaeyyy IORafqOTdONbaqbacaaIOaGaeqySdeMaaGikaiabe67a4jaaiYcacq aHepaDcaaIPaGaaGykaiaai6caaaa@4B2D@

Так как (ξ,τ) Q T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaeqOVdGNaaGilaiabes8a0j aaiMcacqGHiiIZcaWGrbWaaSbaaSqaaiaadsfaaeqaaaaa@3ABF@ , то

0α(ξ,τ)) τ+ ω 2 ξ ω 2 ω 1 T+ ω 2 ω 2 ω 1 =: b T . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIWaGaeyizImQaeqySdeMaaGikai abe67a4jaaiYcacqaHepaDcaaIPaGaaGykaiabggMi6oaalaaabaGa eqiXdqNaey4kaSIaeqyYdC3aaSbaaSqaaiaaikdaaeqaaOGaeqOVdG habaGaeqyYdC3aaSbaaSqaaiaaikdaaeqaaOGaeyOeI0IaeqyYdC3a aSbaaSqaaiaaigdaaeqaaaaakiabgsMiJoaalaaabaGaamivaiabgU caRiabeM8a3naaBaaaleaacaaIYaaabeaaaOqaaiabeM8a3naaBaaa leaacaaIYaaabeaakiabgkHiTiabeM8a3naaBaaaleaacaaIXaaabe aaaaGccaaI9aGaaGOoaiaadkgadaWgaaWcbaGaamivaaqabaGccaaI Uaaaaa@5C6F@

Поскольку из определения (2.6) видно, что ζ(s) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH2oGEcaaIOaGaam4CaiaaiMcaaa a@35D7@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  измеримая функция на [0,1] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIBbGaaGimaiaaiYcacaaIXaGaaG yxaaaa@35B4@  (ввиду измеримости функций φ ^ (x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaqiaaqaaiabeA8aQbGaayPadaGaaG ikaiaadIhacaaIPaaaaa@369E@  и Ψ ˜ (x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaiaaqaaiabfI6azbGaay5adaGaaG ikaiaadIhacaaIPaaaaa@3670@  ), то и функция ζ (s) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacuaH2oGEgaafaiaaiIcacaWGZbGaaG ykaaaa@35F2@  также будет измеримой функцией на любом конечном отрезке, в частности на [0, b T ] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIBbGaaGimaiaaiYcacaWGIbWaaS baaSqaaiaadsfaaeqaaOGaaGyxaaaa@36EF@ . Это следует из того, что ζ (s) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacuaH2oGEgaafaiaaiIcacaWGZbGaaG ykaaaa@35F2@  есть 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIXaaaaa@3278@  -периодическая функция на всей вещественной оси и на каждом промежутке [k,k+1) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIBbGaam4AaiaaiYcacaWGRbGaey 4kaSIaaGymaiaaiMcaaaa@3788@ , k MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGRbGaeyicI48efv3ySLgznfgDOj daryqr1ngBPrginfgDObcv39gaiqaacqWFKeIwaaa@3EF7@ , совпадает с измеримой функцией ζ(sk) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH2oGEcaaIOaGaam4CaiabgkHiTi aadUgacaaIPaaaaa@37B4@ . Следовательно, по определению измеримой по Лебегу функции измеримыми будут линейные (или, что то же самое, одномерные) множества

Y Tc :={s[0, b T ]| ζ (s)<c} MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGzbWaaSbaaSqaaiaadsfacaWGJb aabeaakiaaiQdacaaI9aGaaG4EaiaadohacqGHiiIZcaaIBbGaaGim aiaaiYcacaWGIbWaaSbaaSqaaiaadsfaaeqaaOGaaGyxaiaaysW7ca aI8bGaaGjbVlqbeA7a6zaauaGaaGikaiaadohacaaIPaGaaGipaiaa dogacaaI9baaaa@49DA@  (3.19)

при любом c>0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGJbGaaGOpaiaaicdaaaa@3427@ . Зафиксируем T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGubaaaa@3296@  и c MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGJbaaaa@32A5@  и для краткости обозначим Y:= Y Tc MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGzbGaaGOoaiaai2dacaWGzbWaaS baaSqaaiaadsfacaWGJbaabeaaaaa@36F1@ . Таким образом, для доказательства измеримости по Лебегу в Q T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGrbWaaSbaaSqaaiaadsfaaeqaaa aa@3398@  функции двух переменных ζ (α(ξ,τ)) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacuaH2oGEgaafaiaaiIcacqaHXoqyca aIOaGaeqOVdGNaaGilaiabes8a0jaaiMcacaaIPaaaaa@3C3C@  нужно доказать измеримость по Лебегу плоского (или, что то же самое, двумерного) множества

Y:= Y Tc ={(ξ,τ) Q T | ζ ( τ+ ω 2 ξ ω 2 ω 1 )<c}. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGabaiab=Hr8zjaaiQdacaaI9aGae8hgXN1aaSbaaSqa aiaadsfacaWGJbaabeaakiaai2dacaaI7bGaaGikaiabe67a4jaaiY cacqaHepaDcaaIPaGaeyicI4SaamyuamaaBaaaleaacaWGubaabeaa kiaaysW7caaI8bGafqOTdONbaqbacaaIOaWaaSaaaeaacqaHepaDcq GHRaWkcqaHjpWDdaWgaaWcbaGaaGOmaaqabaGccqaH+oaEaeaacqaH jpWDdaWgaaWcbaGaaGOmaaqabaGccqGHsislcqaHjpWDdaWgaaWcba GaaGymaaqabaaaaOGaaGykaiaaiYdacaWGJbGaaGyFaiaai6caaaa@644E@

С учетом (3.19) это множество можно представить в виде

Y={(ξ,τ) Q T | τ+ ω 2 ξ ω 2 ω 1 =s,sY}={(ξ,τ) Q T |τ+ ω 2 ξ= s , s Y :=( ω 2 ω 1 )Y}. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGabaiab=Hr8zjaai2dacaaI7bGaaGikaiabe67a4jaa iYcacqaHepaDcaaIPaGaeyicI4SaamyuamaaBaaaleaacaWGubaabe aakiaaysW7caaI8bGaaGjbVpaalaaabaGaeqiXdqNaey4kaSIaeqyY dC3aaSbaaSqaaiaaikdaaeqaaOGaeqOVdGhabaGaeqyYdC3aaSbaaS qaaiaaikdaaeqaaOGaeyOeI0IaeqyYdC3aaSbaaSqaaiaaigdaaeqa aaaakiaai2dacaWGZbGaaGilaiaaysW7caWGZbGaeyicI4Saamywai aai2hacaaI9aGaaG4EaiaaiIcacqaH+oaEcaaISaGaeqiXdqNaaGyk aiabgIGiolaadgfadaWgaaWcbaGaamivaaqabaGccaaMe8UaaGiFai aaysW7cqaHepaDcqGHRaWkcqaHjpWDdaWgaaWcbaGaaGOmaaqabaGc cqaH+oaEcaaI9aGabm4CayaauaGaaGilaiaaysW7ceWGZbGbaqbacq GHiiIZceWGzbGbaqbacaaI6aGaaGypaiaaiIcacqaHjpWDdaWgaaWc baGaaGOmaaqabaGccqGHsislcqaHjpWDdaWgaaWcbaGaaGymaaqaba GccaaIPaGaamywaiaai2hacaaIUaaaaa@8BF0@

Ясно, что множество Y [0,T+ ω 2 ] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGzbGbaqbacqGHckcZcaaIBbGaaG imaiaaiYcacaWGubGaey4kaSIaeqyYdC3aaSbaaSqaaiaaikdaaeqa aOGaaGyxaaaa@3C68@  есть измеримое линейное множество, так как измеримо множество Y MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGzbaaaa@329B@ .

Докажем прежде измеримость не множества Y MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGabaiab=Hr8zbaa@3D2D@ , а множества

Y ={(ξ,τ) Q T |τ+ ω 2 ξ= s , s Y }, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGabaiqb=Hr8zzaauaGaaGypaiaaiUhacaaIOaGaeqOV dGNaaGilaiabes8a0jaaiMcacqGHiiIZceWGrbGbaqbadaWgaaWcba GaamivaaqabaGccaaMe8UaaGiFaiabes8a0jabgUcaRiabeM8a3naa BaaaleaacaaIYaaabeaakiabe67a4jaai2daceWGZbGbaqbacaaISa GaaGjbVlqadohagaafaiabgIGiolqadMfagaafaiaai2hacaaISaaa aa@5B61@

где множество Q T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGrbGbaqbadaWgaaWcbaGaamivaa qabaaaaa@33B3@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  параллелограмм OABC MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGpbGaamyqaiaadkeacaWGdbaaaa@34E6@  на рис. 2. На этом же рисунке изображено множество Q T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGrbWaaSbaaSqaaiaadsfaaeqaaa aa@3398@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  прямоугольник OMBN MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGpbGaamytaiaadkeacaWGobaaaa@34FD@ .

 

Рис. 2. Множества Q T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGrbWaaSbaaSqaaiaadsfaaeqaaa aa@3398@  и Q T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGrbGbaqbadaWgaaWcbaGaamivaa qabaaaaa@33B3@ .

 

По определению измеримого по Лебегу линейного множества (см. [24, c. 68]) и определения внутренней меры μ 1* MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH8oqBdaWgaaWcbaGaaGymaiaaiQ caaeqaaaaa@350E@ , внешней меры μ 1 * MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH8oqBdaqhaaWcbaGaaGymaaqaai aaiQcaaaaaaa@350F@  и просто линейной меры Лебега μ 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH8oqBdaWgaaWcbaGaaGymaaqaba aaaa@345A@  (см. [24, c. 65]) справедливы соотношения

sup F Y μ 1 F= μ 1* Y = μ 1 Y = μ 1 * Y = inf G Y μ 1 G, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaGfqbqabSqaaiaadAeacqGHckcZce WGzbGbaqbaaeqakeaaciGGZbGaaiyDaiaacchaaaGaeqiVd02aaSba aSqaaiaaigdaaeqaaOGaamOraiaai2dacqaH8oqBdaWgaaWcbaGaaG ymaiaaiQcaaeqaaOGabmywayaauaGaaGypaiabeY7aTnaaBaaaleaa caaIXaaabeaakiqadMfagaafaiaai2dacqaH8oqBdaqhaaWcbaGaaG ymaaqaaiaaiQcaaaGcceWGzbGbaqbacaaI9aWaaybuaeqaleaacaWG hbGaey4GIKSabmywayaauaaabeGcbaGaciyAaiaac6gacaGGMbaaai abeY7aTnaaBaaaleaacaaIXaaabeaakiaadEeacaaISaaaaa@56F5@  (3.20)

где inf MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaciGGPbGaaiOBaiaacAgaaaa@3488@  берется по всевозможным замкнутым ограниченным множествам F MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGgbaaaa@3288@ , а inf MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaciGGPbGaaiOBaiaacAgaaaa@3488@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  по всевозможным открытым ограниченным множествам G MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbaaaa@3289@ . Следовательно, существуют такие последовательность закнутых множеств

F 1 F 2 F n Y MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGgbWaaSbaaSqaaiaaigdaaeqaaO GaeyOGIWSaamOramaaBaaaleaacaaIYaaabeaakiabgkOimlablAci ljabgkOimlaadAeadaWgaaWcbaGaamOBaaqabaGccqGHckcZcqWIMa YscqGHckcZceWGzbGbaqbaaaa@4453@

и последовательность открытых множеств

G 1 G 2 G n Y MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiaaigdaaeqaaO Gaey4GIKSaam4ramaaBaaaleaacaaIYaaabeaakiabgoOijlablAci ljabgoOijlaadEeadaWgaaWcbaGaamOBaaqabaGccqGHdksYcqWIMa YscqGHdksYceWGzbGbaqbaaaa@444C@

что

lim n μ 1 F n = μ 1 Y = lim n μ 1 G n . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaGfqbqabSqaaiaad6gacqGHsgIRcq GHEisPaeqakeaaciGGSbGaaiyAaiaac2gaaaGaeqiVd02aaSbaaSqa aiaaigdaaeqaaOGaamOramaaBaaaleaacaWGUbaabeaakiaai2dacq aH8oqBdaWgaaWcbaGaaGymaaqabaGcceWGzbGbaqbacaaI9aWaaybu aeqaleaacaWGUbGaeyOKH4QaeyOhIukabeGcbaGaciiBaiaacMgaca GGTbaaaiabeY7aTnaaBaaaleaacaaIXaaabeaakiaadEeadaWgaaWc baGaamOBaaqabaGccaaIUaaaaa@5024@  (3.21)

Введем множества

Fnξ,τQTτ+ω2ξs,sFn

Gnξ,τQTτ+ω2ξs,sGn

которые являются соответственно замкнутыми и открытыми и для которых справедливы вложения

F 1 F 2 F n Y , G 1 G 2 G n Y . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGabaiqb=ftigzaauaWaaSbaaSqaaiaaigdaaeqaaOGa eyOGIWSaf8xmHyKbaqbadaWgaaWcbaGaaGOmaaqabaGccqGHckcZcq WIMaYscqGHckcZcuWFXeIrgaafamaaBaaaleaacaWGUbaabeaakiab gkOimlablAciljabgkOimlqb=Hr8zzaauaGaaGilaiaaywW7cuWFge =rgaafamaaBaaaleaacaaIXaaabeaakiabgoOijlqb=zq8hzaauaWa aSbaaSqaaiaaikdaaeqaaOGaey4GIKSaeSOjGSKaey4GIKSaf8NbXF KbaqbadaWgaaWcbaGaamOBaaqabaGccqGHdksYcqWIMaYscqGHdksY cuWFyeFwgaafaiaai6caaaa@69F6@

Ясно (см. рис. 2), что наряду с точкой s Y [0,T+ ω 2 ] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGZbGbaqbacqGHiiIZceWGzbGbaq bacqGHckcZcaaIBbGaaGimaiaaiYcacaWGubGaey4kaSIaeqyYdC3a aSbaaSqaaiaaikdaaeqaaOGaaGyxaaaa@3EFF@  плоскому множеству Y MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGabaiqb=Hr8zzaauaaaaa@3D48@  принадлежит и весь отрезок DE MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGebGaamyraaaa@3350@  прямой τ= ω 2 ξ+ s MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHepaDcaaI9aGaeyOeI0IaeqyYdC 3aaSbaaSqaaiaaikdaaeqaaOGaeqOVdGNaey4kaSIabm4Cayaauaaa aa@3BAD@ , для точек которого (ξ,τ) Q T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaeqOVdGNaaGilaiabes8a0j aaiMcacqGHiiIZceWGrbGbaqbadaWgaaWcbaGaamivaaqabaaaaa@3ADA@ . Аналогично обстоит дело и для плоских множеств F n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGabaiab=ftignaaBaaaleaacaWGUbaabeaaaaa@3D82@  и G n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGabaiab=zq8hnaaBaaaleaacaWGUbaabeaaaaa@3E28@ , определяемых линейными множествами F n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGgbWaaSbaaSqaaiaad6gaaeqaaa aa@33A7@  и G n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGhbWaaSbaaSqaaiaad6gaaeqaaa aa@33A8@  соответственно.

Учитывая формулу для подсчета площади параллелограмма и тот факт, что по построению замкнутые множества F n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGabaiab=ftignaaBaaaleaacaWGUbaabeaaaaa@3D82@  и открытые множества G n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGabaiab=zq8hnaaBaaaleaacaWGUbaabeaaaaa@3E28@  суть объединения некоторого количества замкнутых и открытых параллелограммов, имеющих единичные высоты, получим

μ 2 F n = μ 1 F n 1= μ 1 F n , μ 2 G n = μ 1 G n 1= μ 1 G n , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH8oqBdaWgaaWcbaGaaGOmaaqaba Wefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiqaakiab=fti gnaaBaaaleaacaWGUbaabeaakiaai2dacqaH8oqBdaWgaaWcbaGaaG ymaaqabaGccaWGgbWaaSbaaSqaaiaad6gaaeqaaOGaeyyXICTaaGym aiaai2dacqaH8oqBdaWgaaWcbaGaaGymaaqabaGccaWGgbWaaSbaaS qaaiaad6gaaeqaaOGaaGilaiaaywW7cqaH8oqBdaWgaaWcbaGaaGOm aaqabaGccqWFge=rdaWgaaWcbaGaamOBaaqabaGccaaI9aGaeqiVd0 2aaSbaaSqaaiaaigdaaeqaaOGaam4ramaaBaaaleaacaWGUbaabeaa kiabgwSixlaaigdacaaI9aGaeqiVd02aaSbaaSqaaiaaigdaaeqaaO Gaam4ramaaBaaaleaacaWGUbaabeaakiaaiYcaaaa@6456@

где μ 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH8oqBdaWgaaWcbaGaaGOmaaqaba aaaa@345B@  обозначает плоскую меру Лебега. Следовательно,

lim n μ 2 F n = lim n μ 1 F n = μ 1 Y , lim n μ 2 G n = lim n μ 1 G n = μ 1 Y . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaGfqbqabSqaaiaad6gacqGHsgIRcq GHEisPaeqakeaaciGGSbGaaiyAaiaac2gaaaGaeqiVd02aaSbaaSqa aiaaikdaaeqaamrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLb aceaGccqWFXeIrdaWgaaWcbaGaamOBaaqabaGccaaI9aWaaybuaeqa leaacaWGUbGaeyOKH4QaeyOhIukabeGcbaGaciiBaiaacMgacaGGTb aaaiabeY7aTnaaBaaaleaacaaIXaaabeaakiaadAeadaWgaaWcbaGa amOBaaqabaGccaaI9aGaeqiVd02aaSbaaSqaaiaaigdaaeqaaOGabm ywayaauaGaaGilaiaaywW7daGfqbqabSqaaiaad6gacqGHsgIRcqGH EisPaeqakeaaciGGSbGaaiyAaiaac2gaaaGaeqiVd02aaSbaaSqaai aaikdaaeqaaOGae8NbXF0aaSbaaSqaaiaad6gaaeqaaOGaaGypamaa wafabeWcbaGaamOBaiabgkziUkabg6HiLcqabOqaaiGacYgacaGGPb GaaiyBaaaacqaH8oqBdaWgaaWcbaGaaGymaaqabaGccaWGhbWaaSba aSqaaiaad6gaaeqaaOGaaGypaiabeY7aTnaaBaaaleaacaaIXaaabe aakiqadMfagaafaiaai6caaaa@7AEB@

Но тогда

μ 1 Y = lim n μ 2 F n sup F Y μ 2 F= μ 2* Y μ 2 * Y = inf G Y μ 2 G lim n μ 2 G n = μ 1 Y ; MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH8oqBdaWgaaWcbaGaaGymaaqaba GcceWGzbGbaqbacaaI9aWaaybuaeqaleaacaWGUbGaeyOKH4QaeyOh IukabeGcbaGaciiBaiaacMgacaGGTbaaaiabeY7aTnaaBaaaleaaca aIYaaabeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGab aOGae8xmHy0aaSbaaSqaaiaad6gaaeqaaOGaeyizIm6aaybuaeqale aacqWFXeIrcqGHckcZcuWFyeFwgaafaaqabOqaaiGacohacaGG1bGa aiiCaaaacqaH8oqBdaWgaaWcbaGaaGOmaaqabaGccqWFXeIrcaaI9a GaeqiVd02aaSbaaSqaaiaaikdacaaIQaaabeaakiqb=Hr8zzaauaGa eyizImQaeqiVd02aa0baaSqaaiaaikdaaeaacaaIQaaaaOGaf8hgXN LbaqbacaaI9aWaaybuaeqaleaacqWFge=rcqGHdksYcuWFyeFwgaaf aaqabOqaaiGacMgacaGGUbGaaiOzaaaacqaH8oqBdaWgaaWcbaGaaG OmaaqabaGccqWFge=rcqGHKjYOdaGfqbqabSqaaiaad6gacqGHsgIR cqGHEisPaeqakeaaciGGSbGaaiyAaiaac2gaaaGaeqiVd02aaSbaaS qaaiaaikdaaeqaaOGaf8NbXFKbaqbadaWgaaWcbaGaamOBaaqabaGc caaI9aGaeqiVd02aaSbaaSqaaiaaigdaaeqaaOGabmywayaauaGaaG 4oaaaa@89ED@

следовательно, Y MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGabaiqb=Hr8zzaauaaaaa@3D48@  есть измеримое по Лебегу плоское множество.

Измеримость множества Y MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGabaiab=Hr8zbaa@3D2D@  является следствием того, что Y= Y Q T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGabaiab=Hr8zjaai2dacuWFyeFwgaafaiabgMIihlaa dgfadaWgaaWcbaGaamivaaqabaaaaa@436F@ , т.е. является пересечением измеримых множеств (см. [3, с. 257]). Итак, измеримость функции ζ({α(ξ,τ)}) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH2oGEcaaIOaGaaG4Eaiabeg7aHj aaiIcacqaH+oaEcaaISaGaeqiXdqNaaGykaiaai2hacaaIPaaaaa@3E2D@  в Q T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGrbWaaSbaaSqaaiaadsfaaeqaaa aa@3398@  установлена и лемма 3.4 доказана.

Если ζ({α(ξ,τ)}) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH2oGEcaaIOaGaaG4Eaiabeg7aHj aaiIcacqaH+oaEcaaISaGaeqiXdqNaaGykaiaai2hacaaIPaaaaa@3E2D@  измерима в Q T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGrbWaaSbaaSqaaiaadsfaaeqaaa aa@3398@ , то произведение q(ξ)ζ({α(ξ,τ)}) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGXbGaaGikaiabe67a4jaaiMcacq aH2oGEcaaIOaGaaG4Eaiabeg7aHjaaiIcacqaH+oaEcaaISaGaeqiX dqNaaGykaiaai2hacaaIPaaaaa@424B@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  также измеримая функция в Q T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGrbWaaSbaaSqaaiaadsfaaeqaaa aa@3398@  как произведение измеримых функций (см. [3, с.~283]).

Справедливы неравенства

| K 1 (x,t)| 0 t dτ| η(α(x,tτ)) η(β(x,tτ)) |q(ξ)||ζ({α(ξ,τ)})|dξ| 0 T dτ 0 1 |q(ξ)||ζ({α(ξ,τ)})|dξ=: K 1T '. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI8bGaam4samaaBaaaleaacaaIXa aabeaakiaaiIcacaWG4bGaaGilaiaadshacaaIPaGaaGiFaiabgsMi JoaapehabeWcbaGaaGimaaqaaiaadshaa0Gaey4kIipakiaadsgacq aHepaDcaaI8bWaa8qCaeqaleaacqaH3oaAcaaIOaGaeqySdeMaaGik aiaadIhacaaISaGaamiDaiabgkHiTiabes8a0jaaiMcacaaIPaaaba Gaeq4TdGMaaGikaiabek7aIjaaiIcacaWG4bGaaGilaiaadshacqGH sislcqaHepaDcaaIPaGaaGykaaqdcqGHRiI8aOGaaGiFaiaadghaca aIOaGaeqOVdGNaaGykaiaaiYhacaaI8bGaeqOTdONaaGikaiaaiUha cqaHXoqycaaIOaGaeqOVdGNaaGilaiabes8a0jaaiMcacaaI9bGaaG ykaiaaiYhacaaMi8Uaamizaiabe67a4jaaiYhacqGHKjYOdaWdXbqa bSqaaiaaicdaaeaacaWGubaaniabgUIiYdGccaWGKbGaeqiXdq3aa8 qCaeqaleaacaaIWaaabaGaaGymaaqdcqGHRiI8aOGaaGiFaiaadgha caaIOaGaeqOVdGNaaGykaiaaiYhacaaI8bGaeqOTdONaaGikaiaaiU hacqaHXoqycaaIOaGaeqOVdGNaaGilaiabes8a0jaaiMcacaaI9bGa aGykaiaaiYhacaaMi8Uaamizaiabe67a4jaai2dacaaI6aGaam4sam aaBaaaleaacaaIXaGaamivaaqabaGccaaINaGaaGOlaaaa@A134@  (3.22)

Далее, имеют место равенства

K 1T ' := 0 1 dξ 0 T |q(ξ)||ζ({α(ξ,τ)})|dτ= MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGlbWaaSbaaSqaaiaaigdacaWGub aabeaakiqaiEcagaqbaiaaiQdacaaI9aWaa8qCaeqaleaacaaIWaaa baGaaGymaaqdcqGHRiI8aOGaamizaiabe67a4naapehabeWcbaGaaG imaaqaaiaadsfaa0Gaey4kIipakiaaiYhacaWGXbGaaGikaiabe67a 4jaaiMcacaaI8bGaaGiFaiabeA7a6jaaiIcacaaI7bGaeqySdeMaaG ikaiabe67a4jaaiYcacqaHepaDcaaIPaGaaGyFaiaaiMcacaaI8bGa aGjcVlaadsgacqaHepaDcaaI9aaaaa@5AE7@

= 0 1 |q(ξ)|dξ 0 T |ζ({α(ξ,τ)})|dτ= 0 1 |q(ξ)|dξ 0 T | ζ ( τ+ ω 2 ξ ω 2 ω 1 )|dτ. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI9aWaa8qCaeqaleaacaaIWaaaba GaaGymaaqdcqGHRiI8aOGaaGiFaiaadghacaaIOaGaeqOVdGNaaGyk aiaaiYhacaWGKbGaeqOVdG3aa8qCaeqaleaacaaIWaaabaGaamivaa qdcqGHRiI8aOGaaGiFaiabeA7a6jaaiIcacaaI7bGaeqySdeMaaGik aiabe67a4jaaiYcacqaHepaDcaaIPaGaaGyFaiaaiMcacaaI8bGaaG jcVlaadsgacqaHepaDcaaI9aWaa8qCaeqaleaacaaIWaaabaGaaGym aaqdcqGHRiI8aOGaaGiFaiaadghacaaIOaGaeqOVdGNaaGykaiaaiY hacaaMi8Uaamizaiabe67a4naapehabeWcbaGaaGimaaqaaiaadsfa a0Gaey4kIipakiaaiYhacuaH2oGEgaafaiaaiIcadaWcaaqaaiabes 8a0jabgUcaRiabeM8a3naaBaaaleaacaaIYaaabeaakiabe67a4bqa aiabeM8a3naaBaaaleaacaaIYaaabeaakiabgkHiTiabeM8a3naaBa aaleaacaaIXaaabeaaaaGccaaIPaGaaGiFaiaayIW7caWGKbGaeqiX dqNaaGOlaaaa@8106@

Делая в интеграле по τ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHepaDaaa@3382@  замену переменной интегрирования

s= τ+ ω 2 ξ ω 2 ω 1 dτ=( ω 2 ω 1 )ds, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGZbGaaGypamaalaaabaGaeqiXdq Naey4kaSIaeqyYdC3aaSbaaSqaaiaaikdaaeqaaOGaeqOVdGhabaGa eqyYdC3aaSbaaSqaaiaaikdaaeqaaOGaeyOeI0IaeqyYdC3aaSbaaS qaaiaaigdaaeqaaaaakiabgkziUkaadsgacqaHepaDcaaI9aGaaGik aiabeM8a3naaBaaaleaacaaIYaaabeaakiabgkHiTiabeM8a3naaBa aaleaacaaIXaaabeaakiaaiMcacaWGKbGaam4CaiaaiYcaaaa@50E7@

получим, учитывая 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIXaaaaa@3278@  -периодичность функции ζ (s) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacuaH2oGEgaafaiaaiIcacaWGZbGaaG ykaaaa@35F2@ ,

K 1T ' =( ω 2 ω 1 ) 0 1 |q(ξ)|dξ ω 2 ξ ω 2 ω 1 T+ ω 2 ξ ω 2 ω 1 | ζ (s)|ds MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGlbWaaSbaaSqaaiaaigdacaWGub aabeaakiqaiEcagaqbaiaai2dacaaIOaGaeqyYdC3aaSbaaSqaaiaa ikdaaeqaaOGaeyOeI0IaeqyYdC3aaSbaaSqaaiaaigdaaeqaaOGaaG ykamaapehabeWcbaGaaGimaaqaaiaaigdaa0Gaey4kIipakiaaiYha caWGXbGaaGikaiabe67a4jaaiMcacaaI8bGaamizaiabe67a4naape habeWcbaWaaSaaaeaacqaHjpWDdaWgaaqaaiaaikdaaeqaaiabe67a 4bqaaiabeM8a3naaBaaabaGaaGOmaaqabaGaeyOeI0IaeqyYdC3aaS baaeaacaaIXaaabeaaaaaabaWaaSaaaeaacaWGubGaey4kaSIaeqyY dC3aaSbaaeaacaaIYaaabeaacqaH+oaEaeaacqaHjpWDdaWgaaqaai aaikdaaeqaaiabgkHiTiabeM8a3naaBaaabaGaaGymaaqabaaaaaqd cqGHRiI8aOGaaGiFaiqbeA7a6zaauaGaaGikaiaadohacaaIPaGaaG iFaiaayIW7caWGKbGaam4CaiabgsMiJcaa@6F7A@

2 ω * 0 1 |q(ξ)|dξ 0 T+ ω 2 ω 2 ω 1 | ζ (s)|ds2 ω * q(x) L 1 [0,1] 0 [ T+ ω 2 ξ ω 2 ω 1 ]+1 | ζ (s)|ds= MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHKjYOcaaIYaGaeqyYdC3aaWbaaS qabeaacaaIQaaaaOWaa8qCaeqaleaacaaIWaaabaGaaGymaaqdcqGH RiI8aOGaaGiFaiaadghacaaIOaGaeqOVdGNaaGykaiaaiYhacaWGKb GaeqOVdG3aa8qCaeqaleaacaaIWaaabaWaaSaaaeaacaWGubGaey4k aSIaeqyYdC3aaSbaaeaacaaIYaaabeaaaeaacqaHjpWDdaWgaaqaai aaikdaaeqaaiabgkHiTiabeM8a3naaBaaabaGaaGymaaqabaaaaaqd cqGHRiI8aOGaaGiFaiqbeA7a6zaauaGaaGikaiaadohacaaIPaGaaG iFaiaayIW7caWGKbGaam4CaiabgsMiJkaaikdacqaHjpWDdaahaaWc beqaaiaaiQcaaaqeeuuDJXwAKbsr4rNCHbaceaGccqWFLicucaWGXb GaaGikaiaadIhacaaIPaGae8xjIa1aaSbaaSqaaiaadYeadaWgaaqa aiaaigdaaeqaaiaaiUfacaaIWaGaaGilaiaaigdacaaIDbaabeaakm aapehabeWcbaGaaGimaaqaaiaaiUfadaWcaaqaaiaadsfacqGHRaWk cqaHjpWDdaWgaaqaaiaaikdaaeqaaiabe67a4bqaaiabeM8a3naaBa aabaGaaGOmaaqabaGaeyOeI0IaeqyYdC3aaSbaaeaacaaIXaaabeaa aaGaaGyxaiabgUcaRiaaigdaa0Gaey4kIipakiaaiYhacuaH2oGEga afaiaaiIcacaWGZbGaaGykaiaaiYhacaaMi8UaamizaiaadohacaaI 9aaaaa@8DF2@

=2 ω * q(x) L 1 [0,1] ([ T+ ω 2 ω 2 ω 1 ]+1) 0 1 |ζ(s)|ds C T q(x) L 1 [0,1] ζ(x) L 1 [0,1] , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI9aGaaGOmaiabeM8a3naaCaaale qabaGaaGOkaaaarqqr1ngBPrgifHhDYfgaiqaakiab=vIiqjaadgha caaIOaGaamiEaiaaiMcacqWFLicudaWgaaWcbaGaamitamaaBaaaba GaaGymaaqabaGaaG4waiaaicdacaaISaGaaGymaiaai2faaeqaaOGa aGikaiaaiUfadaWcaaqaaiaadsfacqGHRaWkcqaHjpWDdaWgaaWcba GaaGOmaaqabaaakeaacqaHjpWDdaWgaaWcbaGaaGOmaaqabaGccqGH sislcqaHjpWDdaWgaaWcbaGaaGymaaqabaaaaOGaaGyxaiabgUcaRi aaigdacaaIPaWaa8qCaeqaleaacaaIWaaabaGaaGymaaqdcqGHRiI8 aOGaaGiFaiabeA7a6jaaiIcacaWGZbGaaGykaiaaiYhacaaMi8Uaam izaiaadohacqGHKjYOcaWGdbWaaSbaaSqaaiaadsfaaeqaaOGae8xj IaLaamyCaiaaiIcacaWG4bGaaGykaiab=vIiqnaaBaaaleaacaWGmb WaaSbaaeaacaaIXaaabeaacaaIBbGaaGimaiaaiYcacaaIXaGaaGyx aaqabaGccqWFLicucqaH2oGEcaaIOaGaamiEaiaaiMcacqWFLicuda WgaaWcbaGaamitamaaBaaabaGaaGymaaqabaGaaG4waiaaicdacaaI SaGaaGymaiaai2faaeqaaOGaaGilaaaa@7F1D@  (3.23)

где ω * :=max{| ω 1 |, ω 2 } MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHjpWDdaahaaWcbeqaaiaaiQcaaa GccaaI6aGaaGypaiGac2gacaGGHbGaaiiEaiaaiUhacaaI8bGaeqyY dC3aaSbaaSqaaiaaigdaaeqaaOGaaGiFaiaaiYcacqaHjpWDdaWgaa WcbaGaaGOmaaqabaGccaaI9baaaa@431F@ , а [x] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIBbGaamiEaiaai2faaaa@3486@  обозначает целую часть числа x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4bGaeyicI48efv3ySLgznfgDOj daryqr1ngBPrginfgDObcv39gaiqaacqWFDeIuaaa@3EF5@ . Используя полученную в лемме 3.2 оценку (3.12), будем иметь

K 1T ' C T q(x) L 1 [0,1] (φ(x) L 1 [0,1] +ψ(x) L 1 [0,1] ). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGlbWaaSbaaSqaaiaaigdacaWGub aabeaakiqaiEcagaqbaiabgsMiJkaadoeadaWgaaWcbaGaamivaaqa baqeeuuDJXwAKbsr4rNCHbaceaGccqWFLicucaWGXbGaaGikaiaadI hacaaIPaGae8xjIa1aaSbaaSqaaiaadYeadaWgaaqaaiaaigdaaeqa aiaaiUfacaaIWaGaaGilaiaaigdacaaIDbaabeaakiaaiIcacqWFLi cucqaHgpGAcaaIOaGaamiEaiaaiMcacqWFLicudaWgaaWcbaGaamit amaaBaaabaGaaGymaaqabaGaaG4waiaaicdacaaISaGaaGymaiaai2 faaeqaaOGaey4kaSIae8xjIaLaeqiYdKNaaGikaiaadIhacaaIPaGa e8xjIa1aaSbaaSqaaiaadYeadaWgaaqaaiaaigdaaeqaaiaaiUfaca aIWaGaaGilaiaaigdacaaIDbaabeaakiaaiMcacaaIUaaaaa@6417@  (3.24)

Отсюда на основании теоремы Фубини (см. [24, теорема 2, с. 235]) следует суммируемость функции q(ξ)ζ({α(ξ,τ)}) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGXbGaaGikaiabe67a4jaaiMcacq aH2oGEcaaIOaGaaG4Eaiabeg7aHjaaiIcacqaH+oaEcaaISaGaeqiX dqNaaGykaiaai2hacaaIPaaaaa@424B@  в Q T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGrbWaaSbaaSqaaiaadsfaaeqaaa aa@3398@  и справедливость равенства K 1T '= K 1T ' MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGlbWaaSbaaSqaaiaaigdacaWGub aabeaakiaaiEcacaaI9aGaam4samaaBaaaleaacaaIXaGaamivaaqa baGcceaINaGbauaaaaa@3926@ . С учетом (3.22) и (3.24), получим

| K 1 (x,t)| C T q(x) L 1 [0,1] (φ(x) L 1 [0,1] +ψ(x) L 1 [0,1] ). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI8bGaam4samaaBaaaleaacaaIXa aabeaakiaaiIcacaWG4bGaaGilaiaadshacaaIPaGaaGiFaiabgsMi JkaadoeadaWgaaWcbaGaamivaaqabaqeeuuDJXwAKbsr4rNCHbacea GccqWFLicucaWGXbGaaGikaiaadIhacaaIPaGae8xjIa1aaSbaaSqa aiaadYeadaWgaaqaaiaaigdaaeqaaiaaiUfacaaIWaGaaGilaiaaig dacaaIDbaabeaakiaaiIcacqWFLicucqaHgpGAcaaIOaGaamiEaiaa iMcacqWFLicudaWgaaWcbaGaamitamaaBaaabaGaaGymaaqabaGaaG 4waiaaicdacaaISaGaaGymaiaai2faaeqaaOGaey4kaSIae8xjIaLa eqiYdKNaaGikaiaadIhacaaIPaGae8xjIa1aaSbaaSqaaiaadYeada WgaaqaaiaaigdaaeqaaiaaiUfacaaIWaGaaGilaiaaigdacaaIDbaa beaakiaaiMcacaaIUaaaaa@689E@  (3.25)

Следовательно, функция q(ξ)ζ({α(ξ,τ)}) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGXbGaaGikaiabe67a4jaaiMcacq aH2oGEcaaIOaGaaG4Eaiabeg7aHjaaiIcacqaH+oaEcaaISaGaeqiX dqNaaGykaiaai2hacaaIPaaaaa@424B@  суммируема в Q T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGrbWaaSbaaSqaaiaadsfaaeqaaa aa@3398@ , а из этого следует непрерывность функции K 1 (x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGlbWaaSbaaSqaaiaaigdaaeqaaO GaaGikaiaadIhacaaISaGaamiDaiaaiMcaaaa@378F@ , как уже было отмечено, в силу абсолютной непрерывности интеграла Лебега (см. [3, теорема 5, с. 301]). Аналогичными рассуждениями устанавливается непрерывность функции K 2 (x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGlbWaaSbaaSqaaiaaikdaaeqaaO GaaGikaiaadIhacaaISaGaamiDaiaaiMcaaaa@3790@  и аналогичная (3.25) оценка

| K 2 (x,t)| C T q(x) L 1 [0,1] (φ(x) L 1 [0,1] +ψ(x) L 1 [0,1] ). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI8bGaam4samaaBaaaleaacaaIYa aabeaakiaaiIcacaWG4bGaaGilaiaadshacaaIPaGaaGiFaiabgsMi JkaadoeadaWgaaWcbaGaamivaaqabaqeeuuDJXwAKbsr4rNCHbacea GccqWFLicucaWGXbGaaGikaiaadIhacaaIPaGae8xjIa1aaSbaaSqa aiaadYeadaWgaaqaaiaaigdaaeqaaiaaiUfacaaIWaGaaGilaiaaig dacaaIDbaabeaakiaaiIcacqWFLicucqaHgpGAcaaIOaGaamiEaiaa iMcacqWFLicudaWgaaWcbaGaamitamaaBaaabaGaaGymaaqabaGaaG 4waiaaicdacaaISaGaaGymaiaai2faaeqaaOGaey4kaSIae8xjIaLa eqiYdKNaaGikaiaadIhacaaIPaGae8xjIa1aaSbaaSqaaiaadYeada WgaaqaaiaaigdaaeqaaiaaiUfacaaIWaGaaGilaiaaigdacaaIDbaa beaakiaaiMcacaaIUaaaaa@689F@  (3.26)

Следовательно, на основании представления (3.17) отсюда получаем непрерывность функции w(x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG3bGaaGikaiaadIhacaaISaGaam iDaiaaiMcaaaa@36CA@  в любом Q T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGrbWaaSbaaSqaaiaadsfaaeqaaa aa@3398@ .

Из оценок (3.25) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (3.26) на основании формулы (3.17) вытекает оценка (3.16). Лемма 3.3 полностью доказана.

Так как w(x,t)C( Q T ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG3bGaaGikaiaadIhacaaISaGaam iDaiaaiMcacqGHiiIZcaWGdbGaaGikaiaadgfadaWgaaWcbaGaamiv aaqabaGccaaIPaaaaa@3C60@  по лемме 3.3, то можно образовать ряд

W(x,t)= n=0 ( B n w)(x,t). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGxbGaaGikaiaadIhacaaISaGaam iDaiaaiMcacaaI9aWaaabCaeqaleaacaWGUbGaaGypaiaaicdaaeaa cqGHEisPa0GaeyyeIuoakiaaiIcacaWGcbWaaWbaaSqabeaacaWGUb aaaOGaam4DaiaaiMcacaaIOaGaamiEaiaaiYcacaWG0bGaaGykaiaa i6caaaa@46BE@  (3.27)

Определение 3.2. Будем говорить, что числовой ряд n=0 a n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaadaaeWbqabSqaaiaad6gacaaI9aGaaG imaaqaaiabg6HiLcqdcqGHris5aOGaamyyamaaBaaaleaacaWGUbaa beaaaaa@39F4@  сходится не медленнее γ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHZoWzaaa@3364@  -экспоненциального ряда ( γ>0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHZoWzcaaI+aGaaGimaaaa@34E6@  ), если при некоторой константе C>0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbGaaGOpaiaaicdaaaa@3407@  и при всех n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGUbaaaa@32B0@  будет | a n | C n /(n !) γ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI8bGaamyyamaaBaaaleaacaWGUb aabeaakiaaiYhacqGHKjYOcaWGdbWaaWbaaSqabeaacaWGUbaaaOGa aG4laiaaiIcacaWGUbGaaGyiaiaaiMcadaahaaWcbeqaaiabeo7aNb aaaaa@3F0F@ . 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIXaaaaa@3278@  -экспоненциальный ряд MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  это обычный экспоненциальный ряд.

Теорема 3.1. Если φ(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAcaaIOaGaamiEaiaaiMcaaa a@35DC@ , ψ(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHipqEcaaIOaGaamiEaiaaiMcaaa a@35ED@ , q(x) L 1 [0,1] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGXbGaaGikaiaadIhacaaIPaGaey icI4SaamitamaaBaaaleaacaaIXaaabeaakiaaiUfacaaIWaGaaGil aiaaigdacaaIDbaaaa@3C52@  и выполняется условие (1.10), то ряд (3.27) сходится абсолютно и равномерно в пространстве C( Q T ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbGaaGikaiaadgfadaWgaaWcba GaamivaaqabaGccaaIPaaaaa@35CF@  к непрерывной функции W(x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGxbGaaGikaiaadIhacaaISaGaam iDaiaaiMcaaaa@36AA@ , при этом сходимость ряда не медленнее экспоненциального, и функция

u(x,t)=v(x,t)+W(x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGikaiaadIhacaaISaGaam iDaiaaiMcacaaI9aGaamODaiaaiIcacaWG4bGaaGilaiaadshacaaI PaGaey4kaSIaam4vaiaaiIcacaWG4bGaaGilaiaadshacaaIPaaaaa@426A@  (3.28)

является единственным обобщённым решением задачи (3.1) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuGajugGbabaaaaaaaaapeGaa83eGaaa@3A92@ (3.3).

Доказательство. В доказательстве используются основные идеи доказательства аналогичного результата (см. [39, теорема 5]). Из оценок (3.11) следует, что ряд (3.27) с непрерывными членами абсолютно и равномерно сходится в Q T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGrbWaaSbaaSqaaiaadsfaaeqaaa aa@3398@ , причем сходимость ряда не медленнее экспоненциального. Следовательно, W(x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGxbGaaGikaiaadIhacaaISaGaam iDaiaaiMcaaaa@36AA@  есть непрерывная функция в Q T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGrbWaaSbaaSqaaiaadsfaaeqaaa aa@3398@ .

Рассмотрим функцию (3.28). Учитывая определение (3.27) функции W(x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGxbGaaGikaiaadIhacaaISaGaam iDaiaaiMcaaaa@36AA@ , определение (3.15) функции ‘ w(x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG3bGaaGikaiaadIhacaaISaGaam iDaiaaiMcaaaa@36CA@ , линейность операторов B MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGabaiab=Xsicbaa@3C5A@  и B MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGcbaaaa@3284@ , а также ограниченность B MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGcbaaaa@3284@  на основании леммы 3.1, получим

u=v+ n=0 B n w=v+w+ n=1 B n w=v+Bv+B n=0 B n w= MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGypaiaadAhacqGHRaWkda aeWbqabSqaaiaad6gacaaI9aGaaGimaaqaaiabg6HiLcqdcqGHris5 aOGaamOqamaaCaaaleqabaGaamOBaaaakiaadEhacaaI9aGaamODai abgUcaRiaadEhacqGHRaWkdaaeWbqabSqaaiaad6gacaaI9aGaaGym aaqaaiabg6HiLcqdcqGHris5aOGaamOqamaaCaaaleqabaGaamOBaa aakiaadEhacaaI9aGaamODaiabgUcaRmrr1ngBPrwtHrhAXaqeguuD JXwAKbstHrhAG8KBLbaceaGae8hlHiKaamODaiabgUcaRiaadkeada aeWbqabSqaaiaad6gacaaI9aGaaGimaaqaaiabg6HiLcqdcqGHris5 aOGaamOqamaaCaaaleqabaGaamOBaaaakiaadEhacaaI9aaaaa@65E7@

=v+Bv+B n=0 B n w=v+B(v+ n=0 B n w)=v+B(v+W)=v+Bu, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI9aGaamODaiabgUcaRmrr1ngBPr wtHrhAXaqeguuDJXwAKbstHrhAG8KBLbaceaGae8hlHiKaamODaiab gUcaRiab=XsicnaaqahabeWcbaGaamOBaiaai2dacaaIWaaabaGaey OhIukaniabggHiLdGccaWGcbWaaWbaaSqabeaacaWGUbaaaOGaam4D aiaai2dacaWG2bGaey4kaSIae8hlHiKaaGikaiaadAhacqGHRaWkda aeWbqabSqaaiaad6gacaaI9aGaaGimaaqaaiabg6HiLcqdcqGHris5 aOGaamOqamaaCaaaleqabaGaamOBaaaakiaadEhacaaIPaGaaGypai aadAhacqGHRaWkcqWFSeIqcaaIOaGaamODaiabgUcaRiaadEfacaaI PaGaaGypaiaadAhacqGHRaWkcqWFSeIqcaWG1bGaaGilaaaa@6865@

т.е. функция u(x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGikaiaadIhacaaISaGaam iDaiaaiMcaaaa@36C8@  вида (3.28) является решением уравнения (3.9).

Уравнение (3.9) нельзя рассматривать в пространстве C( Q T ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbGaaGikaiaadgfadaWgaaWcba GaamivaaqabaGccaaIPaaaaa@35CF@ , так как v(x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG2bGaaGikaiaadIhacaaISaGaam iDaiaaiMcaaaa@36C9@  не является, вообще говоря, непрерывной функцией. Удобнее перейти к эквивалентному уравнению, действующему в C( Q T ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbGaaGikaiaadgfadaWgaaWcba GaamivaaqabaGccaaIPaaaaa@35CF@ .

Лемма 3.5. Функция u(x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGikaiaadIhacaaISaGaam iDaiaaiMcaaaa@36C8@  является решением интегрального уравнения (3.9) в том и только том случае, когда функция r(x,t):=u(x,t)v(x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGYbGaaGikaiaadIhacaaISaGaam iDaiaaiMcacaaI6aGaaGypaiaadwhacaaIOaGaamiEaiaaiYcacaWG 0bGaaGykaiabgkHiTiaadAhacaaIOaGaamiEaiaaiYcacaWG0bGaaG ykaaaa@4354@  является решением интегрального уравнения

r(x,t):=w(x,t)+(Br)(x,t). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGYbGaaGikaiaadIhacaaISaGaam iDaiaaiMcacaaI6aGaaGypaiaadEhacaaIOaGaamiEaiaaiYcacaWG 0bGaaGykaiabgUcaRiaaiIcatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGabaiab=XsicjaadkhacaaIPaGaaGikaiaadIhacaaI SaGaamiDaiaaiMcacaaIUaaaaa@5001@  (3.29)

Доказательство. Докажем необходимость утверждения леммы. Пусть u(x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGikaiaadIhacaaISaGaam iDaiaaiMcaaaa@36C8@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  решение уравнения (3.9). Положим r(x,t):=u(x,t)v(x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGYbGaaGikaiaadIhacaaISaGaam iDaiaaiMcacaaI6aGaaGypaiaadwhacaaIOaGaamiEaiaaiYcacaWG 0bGaaGykaiabgkHiTiaadAhacaaIOaGaamiEaiaaiYcacaWG0bGaaG ykaaaa@4354@ . Тогда справедливо представление

u(x,t)=v(x,t)+r(x,t). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGikaiaadIhacaaISaGaam iDaiaaiMcacaaI9aGaamODaiaaiIcacaWG4bGaaGilaiaadshacaaI PaGaey4kaSIaamOCaiaaiIcacaWG4bGaaGilaiaadshacaaIPaGaaG Olaaaa@433D@  (3.30)

С учетом (3.30) уравнение (3.9) можно записать в виде

r(x,t):=(B(v+r))(x,t), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGYbGaaGikaiaadIhacaaISaGaam iDaiaaiMcacaaI6aGaaGypaiaaiIcatuuDJXwAK1uy0HwmaeHbfv3y SLgzG0uy0Hgip5wzaGabaiab=XsicjaaiIcacaWG2bGaey4kaSIaam OCaiaaiMcacaaIPaGaaGikaiaadIhacaaISaGaamiDaiaaiMcacaaI Saaaaa@4D52@

а учитывая (3.15), отсюда получим, что r(x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGYbGaaGikaiaadIhacaaISaGaam iDaiaaiMcaaaa@36C5@  является решением уравнения (3.29).

Докажем теперь достаточность утверждения леммы. Пусть r(x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGYbGaaGikaiaadIhacaaISaGaam iDaiaaiMcaaaa@36C5@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  решение уравнения (3.29). Прибавим к обеим частям этого уравнения функцию v(x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG2bGaaGikaiaadIhacaaISaGaam iDaiaaiMcaaaa@36C9@  и, учитывая (3.30), в результате получим

u(x,t)=v(x,t)+w(x,t)+(Br)(x,t), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGikaiaadIhacaaISaGaam iDaiaaiMcacaaI9aGaamODaiaaiIcacaWG4bGaaGilaiaadshacaaI PaGaey4kaSIaam4DaiaaiIcacaWG4bGaaGilaiaadshacaaIPaGaey 4kaSIaaGikamrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbac eaGae8hlHiKaamOCaiaaiMcacaaIOaGaamiEaiaaiYcacaWG0bGaaG ykaiaaiYcaaaa@552C@

или

u(x,t)=v(x,t)+(Bv)(x,t)+(Br)(x,t), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGikaiaadIhacaaISaGaam iDaiaaiMcacaaI9aGaamODaiaaiIcacaWG4bGaaGilaiaadshacaaI PaGaey4kaSIaaGikamrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8 KBLbaceaGae8hlHiKaamODaiaaiMcacaaIOaGaamiEaiaaiYcacaWG 0bGaaGykaiabgUcaRiaaiIcacqWFSeIqcaWGYbGaaGykaiaaiIcaca WG4bGaaGilaiaadshacaaIPaGaaGilaaaa@57A4@

В силу линейности оператора B MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGabaiab=Xsicbaa@3C5A@  отсюда найдем

u(x,t)=v(x,t)+(B(v+r))(x,t). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGikaiaadIhacaaISaGaam iDaiaaiMcacaaI9aGaamODaiaaiIcacaWG4bGaaGilaiaadshacaaI PaGaey4kaSIaaGikamrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8 KBLbaceaGae8hlHiKaaGikaiaadAhacqGHRaWkcaWGYbGaaGykaiaa iMcacaaIOaGaamiEaiaaiYcacaWG0bGaaGykaiaai6caaaa@5281@

Учитывая теперь представление (3.30), получим, что функция u(x,t)=v(x,t)+r(x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGikaiaadIhacaaISaGaam iDaiaaiMcacaaI9aGaamODaiaaiIcacaWG4bGaaGilaiaadshacaaI PaGaey4kaSIaamOCaiaaiIcacaWG4bGaaGilaiaadshacaaIPaaaaa@4285@  является решением уравнения (3.9). Таким образом, лемма (3.5) доказана.

Так как w(x,t)C( Q T ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG3bGaaGikaiaadIhacaaISaGaam iDaiaaiMcacqGHiiIZcaWGdbGaaGikaiaadgfadaWgaaWcbaGaamiv aaqabaGccaaIPaaaaa@3C60@  в силу леммы (3.3), то рассматриваем уравнение (3.29) в пространстве C( Q T ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbGaaGikaiaadgfadaWgaaWcba GaamivaaqabaGccaaIPaaaaa@35CF@ . Иными словами, r(x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGYbGaaGikaiaadIhacaaISaGaam iDaiaaiMcaaaa@36C5@  является решением уравнения

r(x,t):=w(x,t)+(Br)(x,t). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGYbGaaGikaiaadIhacaaISaGaam iDaiaaiMcacaaI6aGaaGypaiaadEhacaaIOaGaamiEaiaaiYcacaWG 0bGaaGykaiabgUcaRiaaiIcacaWGcbGaamOCaiaaiMcacaaIOaGaam iEaiaaiYcacaWG0bGaaGykaiaai6caaaa@462B@  (3.31)

Это уравнение имеет решение W(x,t)= n=0 B n w MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGxbGaaGikaiaadIhacaaISaGaam iDaiaaiMcacaaI9aWaaabCaeqaleaacaWGUbGaaGypaiaaicdaaeaa cqGHEisPa0GaeyyeIuoakiaadkeadaahaaWcbeqaaiaad6gaaaGcca WG3baaaa@4090@ . В самом деле, поскольку B MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGcbaaaa@3284@  есть линейный и ограниченный оператор в C( Q T ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbGaaGikaiaadgfadaWgaaWcba GaamivaaqabaGccaaIPaaaaa@35CF@ , то

(BW)(x,t)= n=1 ( B n w)(x,t). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaamOqaiaadEfacaaIPaGaaG ikaiaadIhacaaISaGaamiDaiaaiMcacaaI9aWaaabCaeqaleaacaWG UbGaaGypaiaaigdaaeaacqGHEisPa0GaeyyeIuoakiaaiIcacaWGcb WaaWbaaSqabeaacaWGUbaaaOGaam4DaiaaiMcacaaIOaGaamiEaiaa iYcacaWG0bGaaGykaiaai6caaaa@48EB@

Отсюда следует, что функция W(x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGxbGaaGikaiaadIhacaaISaGaam iDaiaaiMcaaaa@36AA@  является решением уравнения (3.31).

Покажем, что решение уравнения (3.31) единственно. Допустим, что кроме W(x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGxbGaaGikaiaadIhacaaISaGaam iDaiaaiMcaaaa@36AA@  есть еще другое решение W (x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGxbGbaqbacaaIOaGaamiEaiaaiY cacaWG0bGaaGykaaaa@36C5@  этого уравнения. Тогда z(x,t):=W(x,t) W (x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bGaaGikaiaadIhacaaISaGaam iDaiaaiMcacaaI6aGaaGypaiaadEfacaaIOaGaamiEaiaaiYcacaWG 0bGaaGykaiabgkHiTiqadEfagaafaiaaiIcacaWG4bGaaGilaiaads hacaaIPaaaaa@433A@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  решение уравнения z(x,t)=(Bz)(x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bGaaGikaiaadIhacaaISaGaam iDaiaaiMcacaaI9aGaaGikaiaadkeacaWG6bGaaGykaiaaiIcacaWG 4bGaaGilaiaadshacaaIPaaaaa@3ED0@ , а, значит, z(x,t)=( B n z)(x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG6bGaaGikaiaadIhacaaISaGaam iDaiaaiMcacaaI9aGaaGikaiaadkeadaahaaWcbeqaaiaad6gaaaGc caWG6bGaaGykaiaaiIcacaWG4bGaaGilaiaadshacaaIPaaaaa@3FFA@  при любом натуральном n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGUbaaaa@32B0@ . Тогда из (3.11) следует оценка

z(x,t) C( Q T ) =( B n z)(x,t) C( Q T ) z(x,t) C( Q T ) ( Tq(x) L 1 [0,1] 2 ω * ) n 1 n! . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaarqqr1ngBPrgifHhDYfgaiqaacqWFLi cucaWG6bGaaGikaiaadIhacaaISaGaamiDaiaaiMcacqWFLicudaWg aaWcbaGaam4qaiaaiIcacaWGrbWaaSbaaeaacaWGubaabeaacaaIPa aabeaakiaai2dacqWFLicucaaIOaGaamOqamaaCaaaleqabaGaamOB aaaakiaadQhacaaIPaGaaGikaiaadIhacaaISaGaamiDaiaaiMcacq WFLicudaWgaaWcbaGaam4qaiaaiIcacaWGrbWaaSbaaeaacaWGubaa beaacaaIPaaabeaakiabgsMiJkab=vIiqjaadQhacaaIOaGaamiEai aaiYcacaWG0bGaaGykaiab=vIiqnaaBaaaleaacaWGdbGaaGikaiaa dgfadaWgaaqaaiaadsfaaeqaaiaaiMcaaeqaaOGaaGikamaalaaaba Gaamivaiab=vIiqjaadghacaaIOaGaamiEaiaaiMcacqWFLicudaWg aaWcbaGaamitamaaBaaabaGaaGymaaqabaGaaG4waiaaicdacaaISa GaaGymaiaai2faaeqaaaGcbaGaaGOmaiabeM8a3naaBaaaleaacaaI QaaabeaaaaGccaaIPaWaaWbaaSqabeaacaWGUbaaaOWaaSaaaeaaca aIXaaabaGaamOBaiaaigcaaaGaaGOlaaaa@7411@

Отсюда в силу произвольности n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGUbaaaa@32B0@  получим z(x,t) C( Q T ) =0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaarqqr1ngBPrgifHhDYfgaiqaacqWFLi cucaWG6bGaaGikaiaadIhacaaISaGaamiDaiaaiMcacqWFLicudaWg aaWcbaGaam4qaiaaiIcacaWGrbWaaSbaaeaacaWGubaabeaacaaIPa aabeaakiaai2dacaaIWaaaaa@4354@  или W(x,t) W (x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGxbGaaGikaiaadIhacaaISaGaam iDaiaaiMcacqGHHjIUceWGxbGbaqbacaaIOaGaamiEaiaaiYcacaWG 0bGaaGykaaaa@3D7B@ , т.е. единственным решением уравнения (3.31) является функция W(x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGxbGaaGikaiaadIhacaaISaGaam iDaiaaiMcaaaa@36AA@ . Учитывая лемму 3.5, получаем, что уравнение (3.9) имеет единственное решение (3.28). Теорема 3.1 полностью доказана.

3.2. Обобщённое решение в случае потенциала q(x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGXbGaaGikaiaadIhacaaISaGaam iDaiaaiMcaaaa@36C4@ В этом разделе будем рассматривать начально-граничную задачу (3.4) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (3.6). Применим к решению этой задачи подход, предложенный в [7] для потенциала q=q(x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGXbGaaGypaiaadghacaaIOaGaam iEaiaaiYcacaWG0bGaaGykaaaa@3881@  (в случае p 1 =0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGWbWaaSbaaSqaaiaaigdaaeqaaO GaaGypaiaaicdaaaa@3524@  ). Излагаемый делее результат анонсирован в [35]. Так же, как и в [7], будем считать правую часть q(x,t)u(x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGXbGaaGikaiaadIhacaaISaGaam iDaiaaiMcacaWG1bGaaGikaiaadIhacaaISaGaamiDaiaaiMcaaaa@3BCF@  в уравнении (3.4) как возмущение в уравнении (1.1) задачи (1.1) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (1.3). Тогда по теореме 2.4 от задачи (3.4) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (3.6) приходим к интегральному уравнению

u(x,t)=v(x,t)+ 1 ω 2 ω 1 0 t dτ η(α(x,tτ)) η(β(x,tτ)) q(ξ,τ)u(ξ,τ)dξ. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGikaiaadIhacaaISaGaam iDaiaaiMcacaaI9aGaamODaiaaiIcacaWG4bGaaGilaiaadshacaaI PaGaey4kaSYaaSaaaeaacaaIXaaabaGaeqyYdC3aaSbaaSqaaiaaik daaeqaaOGaeyOeI0IaeqyYdC3aaSbaaSqaaiaaigdaaeqaaaaakmaa pehabeWcbaGaaGimaaqaaiaadshaa0Gaey4kIipakiaadsgacqaHep aDdaWdXbqabSqaaiabeE7aOjaaiIcacqaHXoqycaaIOaGaamiEaiaa iYcacaWG0bGaeyOeI0IaeqiXdqNaaGykaiaaiMcaaeaacqaH3oaAca aIOaGaeqOSdiMaaGikaiaadIhacaaISaGaamiDaiabgkHiTiabes8a 0jaaiMcacaaIPaaaniabgUIiYdGccaWGXbGaaGikaiabe67a4jaaiY cacqaHepaDcaaIPaGaamyDaiaaiIcacqaH+oaEcaaISaGaeqiXdqNa aGykaiaayIW7caWGKbGaeqOVdGNaaGOlaaaa@770E@  (3.32)

Таким образом, задача (3.4) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (3.6) и интегральное уравнение (3.32) тесно связаны. Но в интегральном уравнении (3.32) функции v(x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG2bGaaGikaiaadIhacaaISaGaam iDaiaaiMcaaaa@36C9@  и q(x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGXbGaaGikaiaadIhacaaISaGaam iDaiaaiMcaaaa@36C4@  могут быть самого общего вида, а именно, v(x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG2bGaaGikaiaadIhacaaISaGaam iDaiaaiMcaaaa@36C9@  может быть функцией класса Q MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGabaiab=br8rbaa@3D1D@ , что верно при самых общих предположениях относительно φ(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAcaaIOaGaamiEaiaaiMcaaa a@35DC@ , ψ(x) L 1 [0,1] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHipqEcaaIOaGaamiEaiaaiMcacq GHiiIZcaWGmbWaaSbaaSqaaiaaigdaaeqaaOGaaG4waiaaicdacaaI SaGaaGymaiaai2faaaa@3D2A@ , и функция q(x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGXbGaaGikaiaadIhacaaISaGaam iDaiaaiMcaaaa@36C4@  также может быть функцией класса Q MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGabaiab=br8rbaa@3D1D@ , но при условии, что произведение q(x,t)u(x,t)Q MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGXbGaaGikaiaadIhacaaISaGaam iDaiaaiMcacaWG1bGaaGikaiaadIhacaaISaGaamiDaiaaiMcacqGH iiIZtuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGabaiab=b r8rbaa@48B3@ . Естественно дать следующее определение по аналогии с определением 3.1.

Определение 3.3. Будем называть решение u(x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGikaiaadIhacaaISaGaam iDaiaaiMcaaaa@36C8@  интегрального уравнения (3.32), в котором φ(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAcaaIOaGaamiEaiaaiMcaaa a@35DC@ , ψ(x) L 1 [0,1] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHipqEcaaIOaGaamiEaiaaiMcacq GHiiIZcaWGmbWaaSbaaSqaaiaaigdaaeqaaOGaaG4waiaaicdacaaI SaGaaGymaiaai2faaaa@3D2A@ , q(x,t)Q MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGXbGaaGikaiaadIhacaaISaGaam iDaiaaiMcacqGHiiIZtuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgi p5wzaGabaiab=br8rbaa@43A8@ , но при этом q(x,t)u(x,t)Q MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGXbGaaGikaiaadIhacaaISaGaam iDaiaaiMcacaWG1bGaaGikaiaadIhacaaISaGaamiDaiaaiMcacqGH iiIZtuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGabaiab=b r8rbaa@48B3@ , обобщённым решением начально-граничной задачи (3.4) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (3.6), а саму задачу (3.4) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ (3.6) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  обобщённой начально-граничной задачей.

Решим уравнение (3.32). Для этого введем оператор

(Df)(x,t)= 1 ω 2 ω 1 0 t dτ η(α(x,tτ)) η(β(x,tτ)) q(ξ,τ)f(ξ,τ)dξ, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaWefv3ySLgznfgDOfdaryqr1n gBPrginfgDObYtUvgaiqaacqWFdeprcaWGMbGaaGykaiaaiIcacaWG 4bGaaGilaiaadshacaaIPaGaaGypamaalaaabaGaaGymaaqaaiabeM 8a3naaBaaaleaacaaIYaaabeaakiabgkHiTiabeM8a3naaBaaaleaa caaIXaaabeaaaaGcdaWdXbqabSqaaiaaicdaaeaacaWG0baaniabgU IiYdGccaWGKbGaeqiXdq3aa8qCaeqaleaacqaH3oaAcaaIOaGaeqyS deMaaGikaiaadIhacaaISaGaamiDaiabgkHiTiabes8a0jaaiMcaca aIPaaabaGaeq4TdGMaaGikaiabek7aIjaaiIcacaWG4bGaaGilaiaa dshacqGHsislcqaHepaDcaaIPaGaaGykaaqdcqGHRiI8aOGaamyCai aaiIcacqaH+oaEcaaISaGaeqiXdqNaaGykaiaadAgacaaIOaGaeqOV dGNaaGilaiabes8a0jaaiMcacaaMi8Uaamizaiabe67a4jaaiYcaaa a@7DAB@  (3.33)

отображающий свою область определения D(D) L 1 ( Q T ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGebGaaGikamrr1ngBPrwtHrhAXa qeguuDJXwAKbstHrhAG8KBLbaceaGae83aXtKaaGykaiabgkOimlaa dYeadaWgaaWcbaGaaGymaaqabaGccaaIOaGaamyuamaaBaaaleaaca WGubaabeaakiaaiMcaaaa@4639@  в C( Q T ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbGaaGikaiaadgfadaWgaaWcba GaamivaaqabaGccaaIPaaaaa@35CF@ . Очевидно, оператор D MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGabaiab=nq8ebaa@3D03@  есть линейный оператор. Сужение этого оператора на пространство C( Q T ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbGaaGikaiaadgfadaWgaaWcba GaamivaaqabaGccaaIPaaaaa@35CF@  будем обозначать D MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGebaaaa@3286@ . С использованием этого оператора уравнение (3.32) кратко можно записать в виде

u(x,t)=v(x,t)+(Du)(x,t). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGikaiaadIhacaaISaGaam iDaiaaiMcacaaI9aGaamODaiaaiIcacaWG4bGaaGilaiaadshacaaI PaGaey4kaSIaaGikamrr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8 KBLbaceaGae83aXtKaamyDaiaaiMcacaaIOaGaamiEaiaaiYcacaWG 0bGaaGykaiaai6caaaa@4FEB@  (3.34)

Далее будут фигурировать два предположения относительно потенциала q(x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGXbGaaGikaiaadIhacaaISaGaam iDaiaaiMcaaaa@36C4@  для п.в. (x,t) Q T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaamiEaiaaiYcacaWG0bGaaG ykaiabgIGiolaadgfadaWgaaWcbaGaamivaaqabaaaaa@392D@  при любом фиксированном T>0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGubGaaGOpaiaaicdaaaa@3418@ :

(i)|q(x,t)| q T (x) L 1 [0,1];(ii)|q(x,t)| q (t) L p [0,T],p>1. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaqGOaGaaeyAaiaabMcacaaMe8UaaG iFaiaadghacaaIOaGaamiEaiaaiYcacaWG0bGaaGykaiaaiYhacqGH KjYOcaWGXbWaaSbaaSqaaiaadsfaaeqaaOGaaGikaiaadIhacaaIPa GaeyicI4SaamitamaaBaaaleaacaaIXaaabeaakiaaiUfacaaIWaGa aGilaiaaigdacaaIDbGaaG4oaiaaywW7caaMf8UaaeikaiaabMgaca qGPbGaaeykaiaaysW7caaI8bGaamyCaiaaiIcacaWG4bGaaGilaiaa dshacaaIPaGaaGiFaiabgsMiJkqadghagaafaiaaiIcacaWG0bGaaG ykaiabgIGiolaadYeadaWgaaWcbaGaamiCaaqabaGccaaIBbGaaGim aiaaiYcacaWGubGaaGyxaiaaiYcacaaMe8UaamiCaiaai6dacaaIXa GaaGOlaaaa@6BD5@  (3.35)

Лемма 3.6 В случае выполнения условия (i) оператор D MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGebaaaa@3286@  является линейным ограниченным оператором из C( Q T ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbGaaGikaiaadgfadaWgaaWcba GaamivaaqabaGccaaIPaaaaa@35CF@  в C( Q T ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbGaaGikaiaadgfadaWgaaWcba GaamivaaqabaGccaaIPaaaaa@35CF@  и при n1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGUbGaeyyzImRaaGymaaaa@3531@  имеют место оценки

|( D n f)(x,t)|f(x,t) C( Q T ) ( t q T (x) L 1 [0,1] 2 ω * ) n 1 n! (x,t) Q T , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI8bGaaGikaiaadseadaahaaWcbe qaaiaad6gaaaGccaWGMbGaaGykaiaaiIcacaWG4bGaaGilaiaadsha caaIPaGaaGiFaiabgsMiJgbbfv3ySLgzGueE0jxyaGabaiab=vIiqj aadAgacaaIOaGaamiEaiaaiYcacaWG0bGaaGykaiab=vIiqnaaBaaa leaacaWGdbGaaGikaiaadgfadaWgaaqaaiaadsfaaeqaaiaaiMcaae qaaOGaaGikamaalaaabaGaamiDaiab=vIiqjaadghadaWgaaWcbaGa amivaaqabaGccaaIOaGaamiEaiaaiMcacqWFLicudaWgaaWcbaGaam itamaaBaaabaGaaGymaaqabaGaaG4waiaaicdacaaISaGaaGymaiaa i2faaeqaaaGcbaGaaGOmaiabeM8a3naaBaaaleaacaaIQaaabeaaaa GccaaIPaWaaWbaaSqabeaacaWGUbaaaOWaaSaaaeaacaaIXaaabaGa amOBaiaaigcaaaGaaGzbVlabgcGiIiaaiIcacaWG4bGaaGilaiaads hacaaIPaGaeyicI4SaamyuamaaBaaaleaacaWGubaabeaakiaaiYca aaa@6E4F@  (3.36)

( D n f)(x,t) C( Q T ) f(x,t) C( Q T ) ( T q T (x) L 1 [0,1] 2 ω * ) n 1 n! . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaarqqr1ngBPrgifHhDYfgaiqaacqWFLi cucaaIOaGaamiramaaCaaaleqabaGaamOBaaaakiaadAgacaaIPaGa aGikaiaadIhacaaISaGaamiDaiaaiMcacqWFLicudaWgaaWcbaGaam 4qaiaaiIcacaWGrbWaaSbaaeaacaWGubaabeaacaaIPaaabeaakiab gsMiJkab=vIiqjaadAgacaaIOaGaamiEaiaaiYcacaWG0bGaaGykai ab=vIiqnaaBaaaleaacaWGdbGaaGikaiaadgfadaWgaaqaaiaadsfa aeqaaiaaiMcaaeqaaOGaaGikamaalaaabaGaamivaiab=vIiqjaadg hadaWgaaWcbaGaamivaaqabaGccaaIOaGaamiEaiaaiMcacqWFLicu daWgaaWcbaGaamitamaaBaaabaGaaGymaaqabaGaaG4waiaaicdaca aISaGaaGymaiaai2faaeqaaaGcbaGaaGOmaiabeM8a3naaBaaaleaa caaIQaaabeaaaaGccaaIPaWaaWbaaSqabeaacaWGUbaaaOWaaSaaae aacaaIXaaabaGaamOBaiaaigcaaaGaaGOlaaaa@68B8@  (3.37)

Доказательство. Линейность оператора D MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGebaaaa@3286@  очевидна. Далее, если f(x,t)C( Q T ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbGaaGikaiaadIhacaaISaGaam iDaiaaiMcacqGHiiIZcaWGdbGaaGikaiaadgfadaWgaaWcbaGaamiv aaqabaGccaaIPaaaaa@3C4F@ , то из формулы для оператора D MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGabaiab=nq8ebaa@3D03@  и его сужения D MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGebaaaa@3286@  на C( Q T ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbGaaGikaiaadgfadaWgaaWcba GaamivaaqabaGccaaIPaaaaa@35CF@  непосредственно следует, что функция (Df)(x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaamiraiaadAgacaaIPaGaaG ikaiaadIhacaaISaGaamiDaiaaiMcaaaa@38E7@  также непрерывна. Неравенства (3.37) являются прямым следствием неравенств (3.36). Поэтому достаточно установить лишь неравенства (3.36). Воспользуемся принципом математической индукции.

При n=1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGUbGaaGypaiaaigdaaaa@3432@  из определения оператора D MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGebaaaa@3286@  будем иметь

|(Df)(x,t)| 1 ω 2 +| ω 1 0 t dτ| η(α(x,tτ)) η(β(x,tτ)) |q(ξ,τ)||f(ξ,τ)||dξ. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI8bGaaGikaiaadseacaWGMbGaaG ykaiaaiIcacaWG4bGaaGilaiaadshacaaIPaGaaGiFaiabgsMiJoaa laaabaGaaGymaaqaaiabeM8a3naaBaaaleaacaaIYaaabeaakiabgU caRiaaiYhacqaHjpWDdaWgaaWcbaGaaGymaaqabaaaaOWaa8qCaeqa leaacaaIWaaabaGaamiDaaqdcqGHRiI8aOGaamizaiabes8a0jaaiY hadaWdXbqabSqaaiabeE7aOjaaiIcacqaHXoqycaaIOaGaamiEaiaa iYcacaWG0bGaeyOeI0IaeqiXdqNaaGykaiaaiMcaaeaacqaH3oaAca aIOaGaeqOSdiMaaGikaiaadIhacaaISaGaamiDaiabgkHiTiabes8a 0jaaiMcacaaIPaaaniabgUIiYdGccaaI8bGaamyCaiaaiIcacqaH+o aEcaaISaGaeqiXdqNaaGykaiaaiYhacaaI8bGaamOzaiaaiIcacqaH +oaEcaaISaGaeqiXdqNaaGykaiaaiYhacaaI8bGaaGjcVlaadsgacq aH+oaEcaaIUaaaaa@7D49@

Учитывая неравенства (9) для функции η(s) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH3oaAcaaIOaGaam4CaiaaiMcaaa a@35C6@ , предположение (i) в (3.35) для q(x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGXbGaaGikaiaadIhacaaISaGaam iDaiaaiMcaaaa@36C4@  и определение ω * MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHjpWDdaWgaaWcbaGaaGOkaaqaba aaaa@346A@ , получим при (x,t) Q T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaamiEaiaaiYcacaWG0bGaaG ykaiabgIGiolaadgfadaWgaaWcbaGaamivaaqabaaaaa@392D@  

|(Df)(x,t)| 1 2 ω * 0 t dτ 0 1 |q(ξ,τ)||f(ξ,τ)|dξ 1 2 ω * f(x,t) C( Q T ) 0 t dτ 0 1 |q(ξ,τ)|dξ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI8bGaaGikaiaadseacaWGMbGaaG ykaiaaiIcacaWG4bGaaGilaiaadshacaaIPaGaaGiFaiabgsMiJoaa laaabaGaaGymaaqaaiaaikdacqaHjpWDdaWgaaWcbaGaaGOkaaqaba aaaOWaa8qCaeqaleaacaaIWaaabaGaamiDaaqdcqGHRiI8aOGaamiz aiabes8a0naapehabeWcbaGaaGimaaqaaiaaigdaa0Gaey4kIipaki aaiYhacaWGXbGaaGikaiabe67a4jaaiYcacqaHepaDcaaIPaGaaGiF aiaaiYhacaWGMbGaaGikaiabe67a4jaaiYcacqaHepaDcaaIPaGaaG iFaiaayIW7caWGKbGaeqOVdGNaeyizIm6aaSaaaeaacaaIXaaabaGa aGOmaiabeM8a3naaBaaaleaacaaIQaaabeaaaaqeeuuDJXwAKbsr4r NCHbaceaGccqWFLicucaWGMbGaaGikaiaadIhacaaISaGaamiDaiaa iMcacqWFLicudaWgaaWcbaGaam4qaiaaiIcacaWGrbWaaSbaaeaaca WGubaabeaacaaIPaaabeaakmaapehabeWcbaGaaGimaaqaaiaadsha a0Gaey4kIipakiaayIW7caWGKbGaeqiXdq3aa8qCaeqaleaacaaIWa aabaGaaGymaaqdcqGHRiI8aOGaaGiFaiaadghacaaIOaGaeqOVdGNa aGilaiabes8a0jaaiMcacaaI8bGaaGjcVlaadsgacqaH+oaEcqGHKj YOaaa@91FB@

1 2 ω * f(x,t) C( Q T ) 0 t dτ 0 1 q T (ξ)dξf(x,t) C( Q T ) ( t q T (x) L 1 [0,1] 2 ω * ) 1 1! . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHKjYOdaWcaaqaaiaaigdaaeaaca aIYaGaeqyYdC3aaSbaaSqaaiaaiQcaaeqaaaaarqqr1ngBPrgifHhD Yfgaiqaakiab=vIiqjaadAgacaaIOaGaamiEaiaaiYcacaWG0bGaaG ykaiab=vIiqnaaBaaaleaacaWGdbGaaGikaiaadgfadaWgaaqaaiaa dsfaaeqaaiaaiMcaaeqaaOWaa8qCaeqaleaacaaIWaaabaGaamiDaa qdcqGHRiI8aOGaamizaiabes8a0naapehabeWcbaGaaGimaaqaaiaa igdaa0Gaey4kIipakiaadghadaWgaaWcbaGaamivaaqabaGccaaIOa GaeqOVdGNaaGykaiaayIW7caWGKbGaeqOVdGNaeyizImQae8xjIaLa amOzaiaaiIcacaWG4bGaaGilaiaadshacaaIPaGae8xjIa1aaSbaaS qaaiaadoeacaaIOaGaamyuamaaBaaabaGaamivaaqabaGaaGykaaqa baGccaaIOaWaaSaaaeaacaWG0bGae8xjIaLaamyCamaaBaaaleaaca WGubaabeaakiaaiIcacaWG4bGaaGykaiab=vIiqnaaBaaaleaacaWG mbWaaSbaaeaacaaIXaaabeaacaaIBbGaaGimaiaaiYcacaaIXaGaaG yxaaqabaaakeaacaaIYaGaeqyYdC3aaSbaaSqaaiaaiQcaaeqaaaaa kiaaiMcadaWcaaqaaiaaigdaaeaacaaIXaGaaGyiaaaacaaIUaaaaa@7E39@

Это и есть оценка (3.36) при n=1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGUbGaaGypaiaaigdaaaa@3432@ . Из этой оценки непосредственно вытекает оценка (3.37) при n=1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGUbGaaGypaiaaigdaaaa@3432@ , а это означает, что оператор D MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGebaaaa@3286@  является ограниченным в C( Q T ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbGaaGikaiaadgfadaWgaaWcba GaamivaaqabaGccaaIPaaaaa@35CF@ .

Предположим, что оценка (3.36) выполняется при некотором n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGUbGaeyicI48efv3ySLgznfgDOj daryqr1ngBPrginfgDObcv39gaiqaacqWFveItaaa@3EDF@ . Покажем, что она выполянется и при n+1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGUbGaey4kaSIaaGymaaaa@344D@ . В самом деле, справедливы соотношения

|( D n+1 f)(x,t)|=|D( D n f)(x,t)|= 1 ω 2 +| ω 1 | 0 t dτ η(α(x,tτ)) η(β(x,tτ)) q(ξ,τ)( D n f)(ξ,τ)dξ| MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI8bGaaGikaiaadseadaahaaWcbe qaaiaad6gacqGHRaWkcaaIXaaaaOGaamOzaiaaiMcacaaIOaGaamiE aiaaiYcacaWG0bGaaGykaiaaiYhacaaI9aGaaGiFaiaadseacaaIOa GaamiramaaCaaaleqabaGaamOBaaaakiaadAgacaaIPaGaaGikaiaa dIhacaaISaGaamiDaiaaiMcacaaI8bGaaGypamaalaaabaGaaGymaa qaaiabeM8a3naaBaaaleaacaaIYaaabeaakiabgUcaRiaaiYhacqaH jpWDdaWgaaWcbaGaaGymaaqabaaaaOGaaGiFamaapehabeWcbaGaaG imaaqaaiaadshaa0Gaey4kIipakiaadsgacqaHepaDdaWdXbqabSqa aiabeE7aOjaaiIcacqaHXoqycaaIOaGaamiEaiaaiYcacaWG0bGaey OeI0IaeqiXdqNaaGykaiaaiMcaaeaacqaH3oaAcaaIOaGaeqOSdiMa aGikaiaadIhacaaISaGaamiDaiabgkHiTiabes8a0jaaiMcacaaIPa aaniabgUIiYdGccaWGXbGaaGikaiabe67a4jaaiYcacqaHepaDcaaI PaGaaGikaiaadseadaahaaWcbeqaaiaad6gaaaGccaWGMbGaaGykai aaiIcacqaH+oaEcaaISaGaeqiXdqNaaGykaiaayIW7caWGKbGaeqOV dGNaaGiFaiabgsMiJcaa@8B4F@

1 2 ω * 0 t dτ 0 1 |q(ξ,τ)||( D n f)(ξ,τ)|dξ 1 2 ω * 0 t dτ 0 1 q T (ξ)|( D n f)(ξ,τ)|dξ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHKjYOdaWcaaqaaiaaigdaaeaaca aIYaGaeqyYdC3aaSbaaSqaaiaaiQcaaeqaaaaakmaapehabeWcbaGa aGimaaqaaiaadshaa0Gaey4kIipakiaadsgacqaHepaDdaWdXbqabS qaaiaaicdaaeaacaaIXaaaniabgUIiYdGccaaI8bGaamyCaiaaiIca cqaH+oaEcaaISaGaeqiXdqNaaGykaiaaiYhacaaI8bGaaGikaiaads eadaahaaWcbeqaaiaad6gaaaGccaWGMbGaaGykaiaaiIcacqaH+oaE caaISaGaeqiXdqNaaGykaiaaiYhacaaMi8Uaamizaiabe67a4jabgs MiJoaalaaabaGaaGymaaqaaiaaikdacqaHjpWDdaWgaaWcbaGaaGOk aaqabaaaaOWaa8qCaeqaleaacaaIWaaabaGaamiDaaqdcqGHRiI8aO Gaamizaiabes8a0naapehabeWcbaGaaGimaaqaaiaaigdaa0Gaey4k IipakiaadghadaWgaaWcbaGaamivaaqabaGccaaIOaGaeqOVdGNaaG ykaiaaiYhacaaIOaGaamiramaaCaaaleqabaGaamOBaaaakiaadAga caaIPaGaaGikaiabe67a4jaaiYcacqaHepaDcaaIPaGaaGiFaiaayI W7caWGKbGaeqOVdGNaeyizImkaaa@8304@

1 2 ω * f(x,t) C( Q T ) ( q T (x) L 1 [0,1] 2 ω * ) n 0 t τ n n! dτ 0 1 q T (ξ)dξ= MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHKjYOdaWcaaqaaiaaigdaaeaaca aIYaGaeqyYdC3aaSbaaSqaaiaaiQcaaeqaaaaarqqr1ngBPrgifHhD Yfgaiqaakiab=vIiqjaadAgacaaIOaGaamiEaiaaiYcacaWG0bGaaG ykaiab=vIiqnaaBaaaleaacaWGdbGaaGikaiaadgfadaWgaaqaaiaa dsfaaeqaaiaaiMcaaeqaaOGaaGikamaalaaabaGae8xjIaLaamyCam aaBaaaleaacaWGubaabeaakiaaiIcacaWG4bGaaGykaiab=vIiqnaa BaaaleaacaWGmbWaaSbaaeaacaaIXaaabeaacaaIBbGaaGimaiaaiY cacaaIXaGaaGyxaaqabaaakeaacaaIYaGaeqyYdC3aaSbaaSqaaiaa iQcaaeqaaaaakiaaiMcadaahaaWcbeqaaiaad6gaaaGcdaWdXbqabS qaaiaaicdaaeaacaWG0baaniabgUIiYdGcdaWcaaqaaiabes8a0naa CaaaleqabaGaamOBaaaaaOqaaiaad6gacaaIHaaaaiaayIW7caWGKb GaeqiXdq3aa8qCaeqaleaacaaIWaaabaGaaGymaaqdcqGHRiI8aOGa amyCamaaBaaaleaacaWGubaabeaakiaaiIcacqaH+oaEcaaIPaGaaG jcVlaadsgacqaH+oaEcaaI9aaaaa@755A@

=f(x,t) C( Q T ) ( t q T (x) L 1 [0,1] 2 ω * ) n+1 1 (n+1)! ; MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI9aqeeuuDJXwAKbsr4rNCHbacea Gae8xjIaLaamOzaiaaiIcacaWG4bGaaGilaiaadshacaaIPaGae8xj Ia1aaSbaaSqaaiaadoeacaaIOaGaamyuamaaBaaabaGaamivaaqaba GaaGykaaqabaGccaaIOaWaaSaaaeaacaWG0bGae8xjIaLaamyCamaa BaaaleaacaWGubaabeaakiaaiIcacaWG4bGaaGykaiab=vIiqnaaBa aaleaacaWGmbWaaSbaaeaacaaIXaaabeaacaaIBbGaaGimaiaaiYca caaIXaGaaGyxaaqabaaakeaacaaIYaGaeqyYdC3aaSbaaSqaaiaaiQ caaeqaaaaakiaaiMcadaahaaWcbeqaaiaad6gacqGHRaWkcaaIXaaa aOWaaSaaaeaacaaIXaaabaGaaGikaiaad6gacqGHRaWkcaaIXaGaaG ykaiaaigcaaaGaaG4oaaaa@5DD7@

это и есть оценка (3.36) в случае n+1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGUbGaey4kaSIaaGymaaaa@344D@ . Тем самым оценка (3.36) установлена для всех n1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGUbGaeyyzImRaaGymaaaa@3531@ . Лемма доказана.

Лемма 3.7. В случае выполнения условия (ii) оператор D MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGebaaaa@3286@  является линейным ограниченным оператором из C( Q T ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbGaaGikaiaadgfadaWgaaWcba GaamivaaqabaGccaaIPaaaaa@35CF@  в C( Q T ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbGaaGikaiaadgfadaWgaaWcba GaamivaaqabaGccaaIPaaaaa@35CF@  и при n1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGUbGaeyyzImRaaGymaaaa@3531@  имеют место оценки

|( D n f)(x,t)|f(x,t) C( Q T ) ( t 1/ p q (t) L p [0,T] 2 ω * ) n 1 (n!) 1 p (x,t) Q T ; MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI8bGaaGikaiaadseadaahaaWcbe qaaiaad6gaaaGccaWGMbGaaGykaiaaiIcacaWG4bGaaGilaiaadsha caaIPaGaaGiFaiabgsMiJgbbfv3ySLgzGueE0jxyaGabaiab=vIiqj aadAgacaaIOaGaamiEaiaaiYcacaWG0bGaaGykaiab=vIiqnaaBaaa leaacaWGdbGaaGikaiaadgfadaWgaaqaaiaadsfaaeqaaiaaiMcaae qaaOGaaGikamaalaaabaGaamiDamaaCaaaleqabaGaaGymaiaai+ca ceWGWbGbauaaaaGccqWFLicuceWGXbGbaqbacaaIOaGaamiDaiaaiM cacqWFLicudaWgaaWcbaGaamitamaaBaaabaGaamiCaaqabaGaaG4w aiaaicdacaaISaGaamivaiaai2faaeqaaaGcbaGaaGOmaiabeM8a3n aaBaaaleaacaaIQaaabeaaaaGccaaIPaWaaWbaaSqabeaacaWGUbaa aOWaaSaaaeaacaaIXaaabaGaaGikaiaad6gacaaIHaGaaGykamaaCa aaleqabaWaaSaaaeaacaaIXaaabaGabmiCayaafaaaaaaaaaGccaaM f8UaeyiaIiIaaGikaiaadIhacaaISaGaamiDaiaaiMcacqGHiiIZca WGrbWaaSbaaSqaaiaadsfaaeqaaOGaaG4oaaaa@73D2@  (3.38)

( D n f)(x,t) C( Q T ) f(x,t) C( Q T ) ( T 1/ p q (t) L p [0,T] 2 ω * ) n 1 (n!) 1/ p , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaarqqr1ngBPrgifHhDYfgaiqaacqWFLi cucaaIOaGaamiramaaCaaaleqabaGaamOBaaaakiaadAgacaaIPaGa aGikaiaadIhacaaISaGaamiDaiaaiMcacqWFLicudaWgaaWcbaGaam 4qaiaaiIcacaWGrbWaaSbaaeaacaWGubaabeaacaaIPaaabeaakiab gsMiJkab=vIiqjaadAgacaaIOaGaamiEaiaaiYcacaWG0bGaaGykai ab=vIiqnaaBaaaleaacaWGdbGaaGikaiaadgfadaWgaaqaaiaadsfa aeqaaiaaiMcaaeqaaOGaaGikamaalaaabaGaamivamaaCaaaleqaba GaaGymaiaai+caceWGWbGbauaaaaGccqWFLicuceWGXbGbaqbacaaI OaGaamiDaiaaiMcacqWFLicudaWgaaWcbaGaamitamaaBaaabaGaam iCaaqabaGaaG4waiaaicdacaaISaGaamivaiaai2faaeqaaaGcbaGa aGOmaiabeM8a3naaBaaaleaacaaIQaaabeaaaaGccaaIPaWaaWbaaS qabeaacaWGUbaaaOWaaSaaaeaacaaIXaaabaGaaGikaiaad6gacaaI HaGaaGykamaaCaaaleqabaGaaGymaiaai+caceWGWbGbauaaaaaaaO GaaGilaaaa@6ED3@  (3.39)

где 1/p+1/ p =1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIXaGaaG4laiaadchacqGHRaWkca aIXaGaaG4laiqadchagaqbaiaai2dacaaIXaaaaa@38FF@ .

Доказательство. Линейность оператора D MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGebaaaa@3286@  очевидна. Если f(x,t)C( Q T ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGMbGaaGikaiaadIhacaaISaGaam iDaiaaiMcacqGHiiIZcaWGdbGaaGikaiaadgfadaWgaaWcbaGaamiv aaqabaGccaaIPaaaaa@3C4F@ , то из формулы для оператора D MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGabaiab=nq8ebaa@3D03@  и его сужения D MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGebaaaa@3286@  на C( Q T ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbGaaGikaiaadgfadaWgaaWcba GaamivaaqabaGccaaIPaaaaa@35CF@  непосредственно следует, что функция (Df)(x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaamiraiaadAgacaaIPaGaaG ikaiaadIhacaaISaGaamiDaiaaiMcaaaa@38E7@  также непрерывна. Неравенства (3.39) являются прямым следствием неравенств (3.38). Поэтому достаточно установить лишь неравенства (3.38). Воспользуемся принципом математической индукции.

При n=1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGUbGaaGypaiaaigdaaaa@3432@  из определения оператора D MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGebaaaa@3286@  будем иметь

|(Df)(x,t)| 1 ω 2 +| ω 1 0 t dτ| η(α(x,tτ)) η(β(x,tτ)) |q(ξ,τ)||f(ξ,τ)||dξ. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI8bGaaGikaiaadseacaWGMbGaaG ykaiaaiIcacaWG4bGaaGilaiaadshacaaIPaGaaGiFaiabgsMiJoaa laaabaGaaGymaaqaaiabeM8a3naaBaaaleaacaaIYaaabeaakiabgU caRiaaiYhacqaHjpWDdaWgaaWcbaGaaGymaaqabaaaaOWaa8qCaeqa leaacaaIWaaabaGaamiDaaqdcqGHRiI8aOGaamizaiabes8a0jaaiY hadaWdXbqabSqaaiabeE7aOjaaiIcacqaHXoqycaaIOaGaamiEaiaa iYcacaWG0bGaeyOeI0IaeqiXdqNaaGykaiaaiMcaaeaacqaH3oaAca aIOaGaeqOSdiMaaGikaiaadIhacaaISaGaamiDaiabgkHiTiabes8a 0jaaiMcacaaIPaaaniabgUIiYdGccaaI8bGaamyCaiaaiIcacqaH+o aEcaaISaGaeqiXdqNaaGykaiaaiYhacaaI8bGaamOzaiaaiIcacqaH +oaEcaaISaGaeqiXdqNaaGykaiaaiYhacaaI8bGaaGjcVlaadsgacq aH+oaEcaaIUaaaaa@7D49@

Учитывая неравенства (9) для функции η(s) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH3oaAcaaIOaGaam4CaiaaiMcaaa a@35C6@ , предположения (ii) в (3.35) для q(x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGXbGaaGikaiaadIhacaaISaGaam iDaiaaiMcaaaa@36C4@  и определение ω * MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHjpWDdaWgaaWcbaGaaGOkaaqaba aaaa@346A@ , далее получим при (x,t) Q T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaamiEaiaaiYcacaWG0bGaaG ykaiabgIGiolaadgfadaWgaaWcbaGaamivaaqabaaaaa@392D@ , применив в конце неравенство Коши MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ Буняковского,

|(Bf)(x,t)| 1 2 ω * 0 t dτ 0 1 |q(ξ,τ)||f(ξ,τ)|dξ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI8bGaaGikaiaadkeacaWGMbGaaG ykaiaaiIcacaWG4bGaaGilaiaadshacaaIPaGaaGiFaiabgsMiJoaa laaabaGaaGymaaqaaiaaikdacqaHjpWDdaWgaaWcbaGaaGOkaaqaba aaaOWaa8qCaeqaleaacaaIWaaabaGaamiDaaqdcqGHRiI8aOGaamiz aiabes8a0naapehabeWcbaGaaGimaaqaaiaaigdaa0Gaey4kIipaki aaiYhacaWGXbGaaGikaiabe67a4jaaiYcacqaHepaDcaaIPaGaaGiF aiaaiYhacaWGMbGaaGikaiabe67a4jaaiYcacqaHepaDcaaIPaGaaG iFaiaayIW7caWGKbGaeqOVdGNaeyizImkaaa@62D3@

1 2 ω * f(x,t) C( Q T ) 0 t dτ 0 1 |q(ξ,τ)|dξ 1 2 ω * f(x,t) C( Q T ) 0 t dτ 0 1 | q (τ)|dξ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHKjYOdaWcaaqaaiaaigdaaeaaca aIYaGaeqyYdC3aaSbaaSqaaiaaiQcaaeqaaaaarqqr1ngBPrgifHhD Yfgaiqaakiab=vIiqjaadAgacaaIOaGaamiEaiaaiYcacaWG0bGaaG ykaiab=vIiqnaaBaaaleaacaWGdbGaaGikaiaadgfadaWgaaqaaiaa dsfaaeqaaiaaiMcaaeqaaOWaa8qCaeqaleaacaaIWaaabaGaamiDaa qdcqGHRiI8aOGaamizaiabes8a0naapehabeWcbaGaaGimaaqaaiaa igdaa0Gaey4kIipakiaaiYhacaWGXbGaaGikaiabe67a4jaaiYcacq aHepaDcaaIPaGaaGiFaiaayIW7caWGKbGaeqOVdGNaeyizIm6aaSaa aeaacaaIXaaabaGaaGOmaiabeM8a3naaBaaaleaacaaIQaaabeaaaa GccqWFLicucaWGMbGaaGikaiaadIhacaaISaGaamiDaiaaiMcacqWF LicudaWgaaWcbaGaam4qaiaaiIcacaWGrbWaaSbaaeaacaWGubaabe aacaaIPaaabeaakmaapehabeWcbaGaaGimaaqaaiaadshaa0Gaey4k IipakiaadsgacqaHepaDdaWdXbqabSqaaiaaicdaaeaacaaIXaaani abgUIiYdGccaaI8bGabmyCayaauaGaaGikaiabes8a0jaaiMcacaaI 8bGaaGjcVlaadsgacqaH+oaEcqGHKjYOaaa@87A3@

1 2 ω * f(x,t) C( Q T ) 0 t 1 q (τ)|dτf(x,t) C( Q T ) ( t 1/ p q(t) L p [0,T] 2 ω * ) 1 (1!) 1/ p ; MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHKjYOdaWcaaqaaiaaigdaaeaaca aIYaGaeqyYdC3aaSbaaSqaaiaaiQcaaeqaaaaarqqr1ngBPrgifHhD Yfgaiqaakiab=vIiqjaadAgacaaIOaGaamiEaiaaiYcacaWG0bGaaG ykaiab=vIiqnaaBaaaleaacaWGdbGaaGikaiaadgfadaWgaaqaaiaa dsfaaeqaaiaaiMcaaeqaaOWaa8qCaeqaleaacaaIWaaabaGaamiDaa qdcqGHRiI8aOGaaGymaiabgwSixlqadghagaafaiaaiIcacqaHepaD caaIPaGaaGiFaiaayIW7caWGKbGaeqiXdqNaeyizImQae8xjIaLaam OzaiaaiIcacaWG4bGaaGilaiaadshacaaIPaGae8xjIa1aaSbaaSqa aiaadoeacaaIOaGaamyuamaaBaaabaGaamivaaqabaGaaGykaaqaba GccaaIOaWaaSaaaeaacaWG0bWaaWbaaSqabeaacaaIXaGaaG4laiqa dchagaqbaaaakiab=vIiqjaadghacaaIOaGaamiDaiaaiMcacqWFLi cudaWgaaWcbaGaamitamaaBaaabaGaamiCaaqabaGaaG4waiaaicda caaISaGaamivaiaai2faaeqaaaGcbaGaaGOmaiabeM8a3naaBaaale aacaaIQaaabeaaaaGccaaIPaWaaSaaaeaacaaIXaaabaGaaGikaiaa igdacaaIHaGaaGykamaaCaaaleqabaGaaGymaiaai+caceWGWbGbau aaaaaaaOGaaG4oaaaa@80CC@

это и есть оценка (3.38) при n=1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGUbGaaGypaiaaigdaaaa@3432@ . Из этой оценки непосредственно вытекает оценка (3.39) при n=1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGUbGaaGypaiaaigdaaaa@3432@ , а это означает, что оператор D MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGebaaaa@3286@  является ограниченным в C( Q T ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbGaaGikaiaadgfadaWgaaWcba GaamivaaqabaGccaaIPaaaaa@35CF@ .

Предположим, что оценка (3.38) выполняется при некотором n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGUbGaeyicI48efv3ySLgznfgDOj daryqr1ngBPrginfgDObcv39gaiqaacqWFveItaaa@3EDF@ . Покажем, что она выполянется и при n+1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGUbGaey4kaSIaaGymaaaa@344D@ . В самом деле, справедливы соотношения

|( D n+1 f)(x,t)|=|D( D n f)(x,t)|= 1 ω 2 +| ω 1 | 0 t dτ η(α(x,tτ)) η(β(x,tτ)) q(ξ,τ)( D n f)(ξ,τ)dξ| MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI8bGaaGikaiaadseadaahaaWcbe qaaiaad6gacqGHRaWkcaaIXaaaaOGaamOzaiaaiMcacaaIOaGaamiE aiaaiYcacaWG0bGaaGykaiaaiYhacaaI9aGaaGiFaiaadseacaaIOa GaamiramaaCaaaleqabaGaamOBaaaakiaadAgacaaIPaGaaGikaiaa dIhacaaISaGaamiDaiaaiMcacaaI8bGaaGypamaalaaabaGaaGymaa qaaiabeM8a3naaBaaaleaacaaIYaaabeaakiabgUcaRiaaiYhacqaH jpWDdaWgaaWcbaGaaGymaaqabaaaaOGaaGiFamaapehabeWcbaGaaG imaaqaaiaadshaa0Gaey4kIipakiaadsgacqaHepaDdaWdXbqabSqa aiabeE7aOjaaiIcacqaHXoqycaaIOaGaamiEaiaaiYcacaWG0bGaey OeI0IaeqiXdqNaaGykaiaaiMcaaeaacqaH3oaAcaaIOaGaeqOSdiMa aGikaiaadIhacaaISaGaamiDaiabgkHiTiabes8a0jaaiMcacaaIPa aaniabgUIiYdGccaWGXbGaaGikaiabe67a4jaaiYcacqaHepaDcaaI PaGaaGikaiaadseadaahaaWcbeqaaiaad6gaaaGccaWGMbGaaGykai aaiIcacqaH+oaEcaaISaGaeqiXdqNaaGykaiaayIW7caWGKbGaeqOV dGNaaGiFaiabgsMiJcaa@8B4F@

1 2 ω * 0 t dτ 0 1 |q(ξ,τ)||( D n f)(ξ,τ)|dξ 1 2 ω * 0 t q (τ)dτ 0 1 |( D n f)(ξ,τ)|dξ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHKjYOdaWcaaqaaiaaigdaaeaaca aIYaGaeqyYdC3aaSbaaSqaaiaaiQcaaeqaaaaakmaapehabeWcbaGa aGimaaqaaiaadshaa0Gaey4kIipakiaadsgacqaHepaDdaWdXbqabS qaaiaaicdaaeaacaaIXaaaniabgUIiYdGccaaI8bGaamyCaiaaiIca cqaH+oaEcaaISaGaeqiXdqNaaGykaiaaiYhacaaI8bGaaGikaiaads eadaahaaWcbeqaaiaad6gaaaGccaWGMbGaaGykaiaaiIcacqaH+oaE caaISaGaeqiXdqNaaGykaiaaiYhacaaMi8Uaamizaiabe67a4jabgs MiJoaalaaabaGaaGymaaqaaiaaikdacqaHjpWDdaWgaaWcbaGaaGOk aaqabaaaaOWaa8qCaeqaleaacaaIWaaabaGaamiDaaqdcqGHRiI8aO GabmyCayaauaGaaGikaiabes8a0jaaiMcacaaMi8Uaamizaiabes8a 0naapehabeWcbaGaaGimaaqaaiaaigdaa0Gaey4kIipakiaaiYhaca aIOaGaamiramaaCaaaleqabaGaamOBaaaakiaadAgacaaIPaGaaGik aiabe67a4jaaiYcacqaHepaDcaaIPaGaaGiFaiaayIW7caWGKbGaeq OVdGNaeyizImkaaa@83A3@

1 2 ω * f(x,t) C( Q T ) |( q (t) L p [0,T] 2 ω * ) n 1 (n!) 1/ p 0 t τ n/ p q (τ)dτ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHKjYOdaWcaaqaaiaaigdaaeaaca aIYaGaeqyYdC3aaSbaaSqaaiaaiQcaaeqaaaaarqqr1ngBPrgifHhD Yfgaiqaakiab=vIiqjaadAgacaaIOaGaamiEaiaaiYcacaWG0bGaaG ykaiab=vIiqnaaBaaaleaacaWGdbGaaGikaiaadgfadaWgaaqaaiaa dsfaaeqaaiaaiMcaaeqaaOGaaGiFaiaaiIcadaWcaaqaaiab=vIiqj qadghagaafaiaaiIcacaWG0bGaaGykaiab=vIiqnaaBaaaleaacaWG mbWaaSbaaeaacaWGWbaabeaacaaIBbGaaGimaiaaiYcacaWGubGaaG yxaaqabaaakeaacaaIYaGaeqyYdC3aaSbaaSqaaiaaiQcaaeqaaaaa kiaaiMcadaahaaWcbeqaaiaad6gaaaGcdaWcaaqaaiaaigdaaeaaca aIOaGaamOBaiaaigcacaaIPaWaaWbaaSqabeaacaaIXaGaaG4laiqa dchagaqbaaaaaaGcdaWdXbqabSqaaiaaicdaaeaacaWG0baaniabgU IiYdGccqaHepaDdaahaaWcbeqaaiaad6gacaaIVaGabmiCayaafaaa aOGabmyCayaauaGaaGikaiabes8a0jaaiMcacaaMi8Uaamizaiabes 8a0jabgsMiJcaa@741C@

1 2 ω * f(x,t) C( Q T ) |( q (t) L p [0,T] 2 ω * ) n 1 (n!) 1/ p q (t) L p [0,T] t (n+1)/ p 1 (n+1) 1/ p = MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHKjYOdaWcaaqaaiaaigdaaeaaca aIYaGaeqyYdC3aaSbaaSqaaiaaiQcaaeqaaaaarqqr1ngBPrgifHhD Yfgaiqaakiab=vIiqjaadAgacaaIOaGaamiEaiaaiYcacaWG0bGaaG ykaiab=vIiqnaaBaaaleaacaWGdbGaaGikaiaadgfadaWgaaqaaiaa dsfaaeqaaiaaiMcaaeqaaOGaaGiFaiaaiIcadaWcaaqaaiab=vIiqj qadghagaafaiaaiIcacaWG0bGaaGykaiab=vIiqnaaBaaaleaacaWG mbWaaSbaaeaacaWGWbaabeaacaaIBbGaaGimaiaaiYcacaWGubGaaG yxaaqabaaakeaacaaIYaGaeqyYdC3aaSbaaSqaaiaaiQcaaeqaaaaa kiaaiMcadaahaaWcbeqaaiaad6gaaaGcdaWcaaqaaiaaigdaaeaaca aIOaGaamOBaiaaigcacaaIPaWaaWbaaSqabeaacaaIXaGaaG4laiqa dchagaqbaaaaaaGccqWFLicuceWGXbGbaqbacaaIOaGaamiDaiaaiM cacqWFLicudaWgaaWcbaGaamitamaaBaaabaGaamiCaaqabaGaaG4w aiaaicdacaaISaGaamivaiaai2faaeqaaOGaamiDamaaCaaaleqaba GaaGikaiaad6gacqGHRaWkcaaIXaGaaGykaiaai+caceWGWbGbauaa aaGcdaWcaaqaaiaaigdaaeaacaaIOaGaamOBaiabgUcaRiaaigdaca aIPaWaaWbaaSqabeaacaaIXaGaaG4laiqadchagaqbaaaaaaGccaaI 9aaaaa@7C08@

=f(x,t) C( Q T ) ( t 1/ p q (t) L p [0,T] 2 ω * ) n+1 1 ((n+1)!) 1/ p ; MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI9aqeeuuDJXwAKbsr4rNCHbacea Gae8xjIaLaamOzaiaaiIcacaWG4bGaaGilaiaadshacaaIPaGae8xj Ia1aaSbaaSqaaiaadoeacaaIOaGaamyuamaaBaaabaGaamivaaqaba GaaGykaaqabaGccaaIOaWaaSaaaeaacaWG0bWaaWbaaSqabeaacaaI XaGaaG4laiqadchagaqbaaaakiab=vIiqjqadghagaafaiaaiIcaca WG0bGaaGykaiab=vIiqnaaBaaaleaacaWGmbWaaSbaaeaacaWGWbaa beaacaaIBbGaaGimaiaaiYcacaWGubGaaGyxaaqabaaakeaacaaIYa GaeqyYdC3aaSbaaSqaaiaaiQcaaeqaaaaakiaaiMcadaahaaWcbeqa aiaad6gacqGHRaWkcaaIXaaaaOWaaSaaaeaacaaIXaaabaGaaGikai aaiIcacaWGUbGaey4kaSIaaGymaiaaiMcacaaIHaGaaGykamaaCaaa leqabaGaaGymaiaai+caceWGWbGbauaaaaaaaOGaaG4oaaaa@63F4@

это и есть оценка (3.36) в случае n+1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGUbGaey4kaSIaaGymaaaa@344D@ . Тем самым оценка (3.36) установлена для всех n1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGUbGaeyyzImRaaGymaaaa@3531@ . Лемма 3.7 доказана.

Введем пока чисто формально функцию

w(x,t):= 1 ω 2 ω 1 0 t dτ η(α(x,tτ)) η(β(x,tτ)) q(ξ,τ)v(ξ,τ)dξ=(Dv)(x,t). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAKzKCHTgD1jharyqr1ngBPr gigjxyRrxDYbaceaGae8hmWFNaaGikaiaadIhacaaISaGaamiDaiaa iMcacaaI6aGaaGypamaalaaabaGaaGymaaqaaiabeM8a3naaBaaale aacaaIYaaabeaakiabgkHiTiabeM8a3naaBaaaleaacaaIXaaabeaa aaGcdaWdXbqabSqaaiaaicdaaeaacaWG0baaniabgUIiYdGccaWGKb GaeqiXdq3aa8qCaeqaleaacqaH3oaAcaaIOaGaeqySdeMaaGikaiaa dIhacaaISaGaamiDaiabgkHiTiabes8a0jaaiMcacaaIPaaabaGaeq 4TdGMaaGikaiabek7aIjaaiIcacaWG4bGaaGilaiaadshacqGHsisl cqaHepaDcaaIPaGaaGykaaqdcqGHRiI8aOGaamyCaiaaiIcacqaH+o aEcaaISaGaeqiXdqNaaGykaiaadAhacaaIOaGaeqOVdGNaaGilaiab es8a0jaaiMcacaaMi8Uaamizaiabe67a4jaai2dacaaIOaWefv3ySL gznfgDOfdarCqr1ngBPrginfgDObYtUvgaiuaacqGFdeprcaWG2bGa aGykaiaaiIcacaWG4bGaaGilaiaadshacaaIPaGaaGOlaaaa@9046@  (3.40)

Ввиду специальной структуры функции w(x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAKzKCHTgD1jharyqr1ngBPr gigjxyRrxDYbaceaGae8hmWFNaaGikaiaadIhacaaISaGaamiDaiaa iMcaaaa@42AA@ , справедлива следующая лемма.

Лемма 3.8. Если φ(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAcaaIOaGaamiEaiaaiMcaaa a@35DC@ , ψ(x) L 1 [0,1] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHipqEcaaIOaGaamiEaiaaiMcacq GHiiIZcaWGmbWaaSbaaSqaaiaaigdaaeqaaOGaaG4waiaaicdacaaI SaGaaGymaiaai2faaaa@3D2A@ , q(x,t)Q MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGXbGaaGikaiaadIhacaaISaGaam iDaiaaiMcacqGHiiIZtuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgi p5wzaGabaiab=br8rbaa@43A8@  и выполняется условие (i) или (ii) в (3.35), то w(x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAKzKCHTgD1jharyqr1ngBPr gigjxyRrxDYbaceaGae8hmWFNaaGikaiaadIhacaaISaGaamiDaiaa iMcaaaa@42AA@  является функцией из пространства C( Q T ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbGaaGikaiaadgfadaWgaaWcba GaamivaaqabaGccaaIPaaaaa@35CF@  при любом T>0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGubGaaGOpaiaaicdaaaa@3418@ . При этом в случае (i) выполняется оценка

w(x,t) C( Q T ) C T q T (x) L 1 [0,1] (φ(x) L 1 [0,1] +ψ(x) L 1 [0,1] ), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaarqqr1ngBPrgifHhDYfgaiqaacqWFLi cutuuDJXwAKzKCHTgD1jharyqr1ngBPrgigjxyRrxDYbacfaGae4hm WFNaaGikaiaadIhacaaISaGaamiDaiaaiMcacqWFLicudaWgaaWcba Gaam4qaiaaiIcacaWGrbWaaSbaaeaacaWGubaabeaacaaIPaaabeaa kiabgsMiJkaadoeadaWgaaWcbaGaamivaaqabaGccqWFLicucaWGXb WaaSbaaSqaaiaadsfaaeqaaOGaaGikaiaadIhacaaIPaGae8xjIa1a aSbaaSqaaiaadYeadaWgaaqaaiaaigdaaeqaaiaaiUfacaaIWaGaaG ilaiaaigdacaaIDbaabeaakiaaiIcacqWFLicucqaHgpGAcaaIOaGa amiEaiaaiMcacqWFLicudaWgaaWcbaGaamitamaaBaaabaGaaGymaa qabaGaaG4waiaaicdacaaISaGaaGymaiaai2faaeqaaOGaey4kaSIa e8xjIaLaeqiYdKNaaGikaiaadIhacaaIPaGae8xjIa1aaSbaaSqaai aadYeadaWgaaqaaiaaigdaaeqaaiaaiUfacaaIWaGaaGilaiaaigda caaIDbaabeaakiaaiMcacaaISaaaaa@7925@  (3.41)

где постоянная C T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbWaaSbaaSqaaiaadsfaaeqaaa aa@338A@  не зависит от q T (x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGXbWaaSbaaSqaaiaadsfaaeqaaO GaaGikaiaadIhacaaIPaaaaa@3624@ , φ(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAcaaIOaGaamiEaiaaiMcaaa a@35DC@  и ψ(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHipqEcaaIOaGaamiEaiaaiMcaaa a@35ED@ , а в случае (ii) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuGajugGbabaaaaaaaaapeGaa8hfGaaa@3A93@  оценка

w(x,t) C( Q T ) C T q (t) L p [0,T] (φ(x) L 1 [0,1] +ψ(x) L 1 [0,1] ), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaarqqr1ngBPrgifHhDYfgaiqaacqWFLi cutuuDJXwAKzKCHTgD1jharyqr1ngBPrgigjxyRrxDYbacfaGae4hm WFNaaGikaiaadIhacaaISaGaamiDaiaaiMcacqWFLicudaWgaaWcba Gaam4qaiaaiIcacaWGrbWaaSbaaeaacaWGubaabeaacaaIPaaabeaa kiabgsMiJkaadoeadaWgaaWcbaGaamivaaqabaGccqWFLicuceWGXb GbaqbacaaIOaGaamiDaiaaiMcacqWFLicudaWgaaWcbaGaamitamaa BaaabaGaamiCaaqabaGaaG4waiaaicdacaaISaGaamivaiaai2faae qaaOGaaGikaiab=vIiqjabeA8aQjaaiIcacaWG4bGaaGykaiab=vIi qnaaBaaaleaacaWGmbWaaSbaaeaacaaIXaaabeaacaaIBbGaaGimai aaiYcacaaIXaGaaGyxaaqabaGccqGHRaWkcqWFLicucqaHipqEcaaI OaGaamiEaiaaiMcacqWFLicudaWgaaWcbaGaamitamaaBaaabaGaaG ymaaqabaGaaG4waiaaicdacaaISaGaaGymaiaai2faaeqaaOGaaGyk aiaaiYcaaaa@7885@  (3.42)

где постоянная C T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbWaaSbaaSqaaiaadsfaaeqaaa aa@338A@  не зависит от q (t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGXbGbaqbacaaIOaGaamiDaiaaiM caaaa@352C@ , φ(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAcaaIOaGaamiEaiaaiMcaaa a@35DC@  и ψ(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHipqEcaaIOaGaamiEaiaaiMcaaa a@35ED@ .

Доказательство. Доказательство леммы повторяет во многом доказательство аналогичной леммы 3.4. Из леммы 3.2 в случае, если φ(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAcaaIOaGaamiEaiaaiMcaaa a@35DC@ , ψ(x) L 1 [0,1] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHipqEcaaIOaGaamiEaiaaiMcacq GHiiIZcaWGmbWaaSbaaSqaaiaaigdaaeqaaOGaaG4waiaaicdacaaI SaGaaGymaiaai2faaaa@3D2A@ , следует, что ζ(x) L 1 [0,1] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH2oGEcaaIOaGaamiEaiaaiMcacq GHiiIZcaWGmbWaaSbaaSqaaiaaigdaaeqaaOGaaG4waiaaicdacaaI SaGaaGymaiaai2faaaa@3D19@ . Далее, с учетом формулы (2.6) можно получить следующее представление функции w(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAKzKCHTgD1jharyqr1ngBPr gigjxyRrxDYbaceaGae8hmWFNaaGikaiaadIhacaaIPaaaaa@40FB@ :

w(x,t):= 1 ω 2 ω 1 0 t dτ η(α(x,tτ)) η(β(x,tτ)) q(ξ,τ)(ζ({α(ξ,τ)})ζ({β(ξ,τ)}))dξ= MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAKzKCHTgD1jharyqr1ngBPr gigjxyRrxDYbaceaGae8hmWFNaaGikaiaadIhacaaISaGaamiDaiaa iMcacaaI6aGaaGypamaalaaabaGaaGymaaqaaiabeM8a3naaBaaale aacaaIYaaabeaakiabgkHiTiabeM8a3naaBaaaleaacaaIXaaabeaa aaGcdaWdXbqabSqaaiaaicdaaeaacaWG0baaniabgUIiYdGccaWGKb GaeqiXdq3aa8qCaeqaleaacqaH3oaAcaaIOaGaeqySdeMaaGikaiaa dIhacaaISaGaamiDaiabgkHiTiabes8a0jaaiMcacaaIPaaabaGaeq 4TdGMaaGikaiabek7aIjaaiIcacaWG4bGaaGilaiaadshacqGHsisl cqaHepaDcaaIPaGaaGykaaqdcqGHRiI8aOGaamyCaiaaiIcacqaH+o aEcaaISaGaeqiXdqNaaGykaiaaiIcacqaH2oGEcaaIOaGaaG4Eaiab eg7aHjaaiIcacqaH+oaEcaaISaGaeqiXdqNaaGykaiaai2hacaaIPa GaeyOeI0IaeqOTdONaaGikaiaaiUhacqaHYoGycaaIOaGaeqOVdGNa aGilaiabes8a0jaaiMcacaaI9bGaaGykaiaaiMcacaaMi8Uaamizai abe67a4jaai2daaaa@926C@

= 1 ω 2 ω 1 ( L 1 (x,t) L 2 (x,t)). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI9aWaaSaaaeaacaaIXaaabaGaeq yYdC3aaSbaaSqaaiaaikdaaeqaaOGaeyOeI0IaeqyYdC3aaSbaaSqa aiaaigdaaeqaaaaakiaaiIcacaWGmbWaaSbaaSqaaiaaigdaaeqaaO GaaGikaiaadIhacaaISaGaamiDaiaaiMcacqGHsislcaWGmbWaaSba aSqaaiaaikdaaeqaaOGaaGikaiaadIhacaaISaGaamiDaiaaiMcaca aIPaGaaGOlaaaa@486A@  (3.43)

Проведем дальнейшие рассуждения только для L 1 (x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGmbWaaSbaaSqaaiaaigdaaeqaaO GaaGikaiaadIhacaaISaGaamiDaiaaiMcaaaa@3790@ , так как для L 2 (x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGmbWaaSbaaSqaaiaaikdaaeqaaO GaaGikaiaadIhacaaISaGaamiDaiaaiMcaaaa@3791@  рассуждения аналогичны. Итак, докажем непрерывность функции

L 1 (x,t)= 0 t dτ η(α(x,tτ)) η(β(x,tτ)) q(ξ,τ)ζ({α(ξ,τ)})dξ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGmbWaaSbaaSqaaiaaigdaaeqaaO GaaGikaiaadIhacaaISaGaamiDaiaaiMcacaaI9aWaa8qCaeqaleaa caaIWaaabaGaamiDaaqdcqGHRiI8aOGaamizaiabes8a0naapehabe WcbaGaeq4TdGMaaGikaiabeg7aHjaaiIcacaWG4bGaaGilaiaadsha cqGHsislcqaHepaDcaaIPaGaaGykaaqaaiabeE7aOjaaiIcacqaHYo GycaaIOaGaamiEaiaaiYcacaWG0bGaeyOeI0IaeqiXdqNaaGykaiaa iMcaa0Gaey4kIipakiaadghacaaIOaGaeqOVdGNaaGilaiabes8a0j aaiMcacqaH2oGEcaaIOaGaaG4Eaiabeg7aHjaaiIcacqaH+oaEcaaI SaGaeqiXdqNaaGykaiaai2hacaaIPaGaaGjcVlaadsgacqaH+oaEaa a@6FCE@  (3.44)

в области Q T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGrbWaaSbaaSqaaiaadsfaaeqaaa aa@3398@ . Так как η(s) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH3oaAcaaIOaGaam4CaiaaiMcaaa a@35C6@  есть непрерывная функция (теорема 2.4), а α(x,tτ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHXoqycaaIOaGaamiEaiaaiYcaca WG0bGaeyOeI0IaeqiXdqNaaGykaaaa@3A1F@  и β(x,tτ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHYoGycaaIOaGaamiEaiaaiYcaca WG0bGaeyOeI0IaeqiXdqNaaGykaaaa@3A21@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  линейные функции своих аргументов, то область интегрирования Q(x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGrbGaaGikaiaadIhacaaISaGaam iDaiaaiMcaaaa@36A4@  в интеграле (3.44) является измеримым множеством при всех (x,t) Q T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaamiEaiaaiYcacaWG0bGaaG ykaiabgIGiolaadgfadaWgaaWcbaGaamivaaqabaaaaa@392D@  и ее мера Лебега есть непрерывная функция по x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG4baaaa@32BA@  и t MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG0baaaa@32B6@ . Таким образом, в силу абсолютной непрерывности интеграла Лебега (см. [3, теорема 5, с. 301], чтобы доказать непрерывность функции L 1 (x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGmbWaaSbaaSqaaiaaigdaaeqaaO GaaGikaiaadIhacaaISaGaamiDaiaaiMcaaaa@3790@ , достаточно установить суммируемость функции q(ξ,τ)ζ({α(ξ,τ)}) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGXbGaaGikaiabe67a4jaaiYcacq aHepaDcaaIPaGaeqOTdONaaGikaiaaiUhacqaHXoqycaaIOaGaeqOV dGNaaGilaiabes8a0jaaiMcacaaI9bGaaGykaaaa@44C6@  в Q T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGrbWaaSbaaSqaaiaadsfaaeqaaa aa@3398@ .

В лемме 3.4 установлено, что функция ζ({α(ξ,τ)}) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH2oGEcaaIOaGaaG4Eaiabeg7aHj aaiIcacqaH+oaEcaaISaGaeqiXdqNaaGykaiaai2hacaaIPaaaaa@3E2D@  измерима в Q T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGrbWaaSbaaSqaaiaadsfaaeqaaa aa@3398@ . Следовательно, q(ξ,τ)ζ({α(ξ,τ)}) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGXbGaaGikaiabe67a4jaaiYcacq aHepaDcaaIPaGaeqOTdONaaGikaiaaiUhacqaHXoqycaaIOaGaeqOV dGNaaGilaiabes8a0jaaiMcacaaI9bGaaGykaaaa@44C6@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  также измеримая функция в Q T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGrbWaaSbaaSqaaiaadsfaaeqaaa aa@3398@  как произведение измеримых функций (см. [3, с. 283]). Справедлива оценка

| L 1 (x,t)| 0 t dτ| η(α(x,tτ)) η(β(x,tτ)) |q(ξ,τ)||ζ({α(ξ,τ)})|dξ| 0 T dτ 0 1 |q(ξ,τ)||ζ({α(ξ,τ)})|dξ. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI8bGaamitamaaBaaaleaacaaIXa aabeaakiaaiIcacaWG4bGaaGilaiaadshacaaIPaGaaGiFaiabgsMi JoaapehabeWcbaGaaGimaaqaaiaadshaa0Gaey4kIipakiaadsgacq aHepaDcaaI8bWaa8qCaeqaleaacqaH3oaAcaaIOaGaeqySdeMaaGik aiaadIhacaaISaGaamiDaiabgkHiTiabes8a0jaaiMcacaaIPaaaba Gaeq4TdGMaaGikaiabek7aIjaaiIcacaWG4bGaaGilaiaadshacqGH sislcqaHepaDcaaIPaGaaGykaaqdcqGHRiI8aOGaaGiFaiaadghaca aIOaGaeqOVdGNaaGilaiabes8a0jaaiMcacaaI8bGaaGiFaiabeA7a 6jaaiIcacaaI7bGaeqySdeMaaGikaiabe67a4jaaiYcacqaHepaDca aIPaGaaGyFaiaaiMcacaaI8bGaaGjcVlaadsgacqaH+oaEcaaI8bGa eyizIm6aa8qCaeqaleaacaaIWaaabaGaamivaaqdcqGHRiI8aOGaam izaiabes8a0naapehabeWcbaGaaGimaaqaaiaaigdaa0Gaey4kIipa kiaaiYhacaWGXbGaaGikaiabe67a4jaaiYcacqaHepaDcaaIPaGaaG iFaiaaiYhacqaH2oGEcaaIOaGaaG4Eaiabeg7aHjaaiIcacqaH+oaE caaISaGaeqiXdqNaaGykaiaai2hacaaIPaGaaGiFaiaayIW7caWGKb GaeqOVdGNaaGOlaaaa@A155@  (3.45)

Далее рассмотрим по отдельности два случая (i) и (ii) (см. (3.35)).

Пусть имеет место случай (i). Тогда из (3.45) получим

| L 1 (x,t)| 0 T dτ 0 1 | q T (ξ)||ζ({α(ξ,τ)})|dξ=: L 1T '. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI8bGaamitamaaBaaaleaacaaIXa aabeaakiaaiIcacaWG4bGaaGilaiaadshacaaIPaGaaGiFaiabgsMi JoaapehabeWcbaGaaGimaaqaaiaadsfaa0Gaey4kIipakiaadsgacq aHepaDdaWdXbqabSqaaiaaicdaaeaacaaIXaaaniabgUIiYdGccaaI 8bGaamyCamaaBaaaleaacaWGubaabeaakiaaiIcacqaH+oaEcaaIPa GaaGiFaiaaiYhacqaH2oGEcaaIOaGaaG4Eaiabeg7aHjaaiIcacqaH +oaEcaaISaGaeqiXdqNaaGykaiaai2hacaaIPaGaaGiFaiaayIW7ca WGKbGaeqOVdGNaaGypaiaaiQdacaWGmbWaaSbaaSqaaiaaigdacaWG ubaabeaakiaaiEcacaaIUaaaaa@6570@  (3.46)

Кроме того, имеют место равенства

L 1T ' := 0 1 dξ 0 T | q T (ξ)||ζ({α(ξ,τ)})|dτ= MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGmbWaaSbaaSqaaiaaigdacaWGub aabeaakiqaiEcagaqbaiaaiQdacaaI9aWaa8qCaeqaleaacaaIWaaa baGaaGymaaqdcqGHRiI8aOGaamizaiabe67a4naapehabeWcbaGaaG imaaqaaiaadsfaa0Gaey4kIipakiaaiYhacaWGXbWaaSbaaSqaaiaa dsfaaeqaaOGaaGikaiabe67a4jaaiMcacaaI8bGaaGiFaiabeA7a6j aaiIcacaaI7bGaeqySdeMaaGikaiabe67a4jaaiYcacqaHepaDcaaI PaGaaGyFaiaaiMcacaaI8bGaaGjcVlaadsgacqaHepaDcaaI9aaaaa@5BF7@

= 0 1 | q T (ξ)|dξ 0 T |ζ({α(ξ,τ)})|dτ= 0 1 | q T (ξ)|dξ 0 T | ζ ( τ+ ω 2 ξ ω 2 ω 1 )|dτ, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI9aWaa8qCaeqaleaacaaIWaaaba GaaGymaaqdcqGHRiI8aOGaaGiFaiaadghadaWgaaWcbaGaamivaaqa baGccaaIOaGaeqOVdGNaaGykaiaaiYhacaWGKbGaeqOVdG3aa8qCae qaleaacaaIWaaabaGaamivaaqdcqGHRiI8aOGaaGiFaiabeA7a6jaa iIcacaaI7bGaeqySdeMaaGikaiabe67a4jaaiYcacqaHepaDcaaIPa GaaGyFaiaaiMcacaaI8bGaaGjcVlaadsgacqaHepaDcaaI9aWaa8qC aeqaleaacaaIWaaabaGaaGymaaqdcqGHRiI8aOGaaGiFaiaadghada WgaaWcbaGaamivaaqabaGccaaIOaGaeqOVdGNaaGykaiaaiYhacaaM i8Uaamizaiabe67a4naapehabeWcbaGaaGimaaqaaiaadsfaa0Gaey 4kIipakiaaiYhacuaH2oGEgaafaiaaiIcadaWcaaqaaiabes8a0jab gUcaRiabeM8a3naaBaaaleaacaaIYaaabeaakiabe67a4bqaaiabeM 8a3naaBaaaleaacaaIYaaabeaakiabgkHiTiabeM8a3naaBaaaleaa caaIXaaabeaaaaGccaaIPaGaaGiFaiaayIW7caWGKbGaeqiXdqNaaG ilaaaa@8322@

где, как и раньше, ζ (s):=ζ({s}) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacuaH2oGEgaafaiaaiIcacaWGZbGaaG ykaiaaiQdacaaI9aGaeqOTdONaaGikaiaaiUhacaWGZbGaaGyFaiaa iMcaaaa@3DA3@ , s MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGZbGaeyicI48efv3ySLgznfgDOj daryqr1ngBPrginfgDObcv39gaiqaacqWFDeIuaaa@3EF0@ . Делая в интеграле по τ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHepaDaaa@3382@  замену переменной интегрирования

s= τ+ ω 2 ξ ω 2 ω 1 dτ=( ω 2 ω 1 )ds, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGZbGaaGypamaalaaabaGaeqiXdq Naey4kaSIaeqyYdC3aaSbaaSqaaiaaikdaaeqaaOGaeqOVdGhabaGa eqyYdC3aaSbaaSqaaiaaikdaaeqaaOGaeyOeI0IaeqyYdC3aaSbaaS qaaiaaigdaaeqaaaaakiabgkziUkaadsgacqaHepaDcaaI9aGaaGik aiabeM8a3naaBaaaleaacaaIYaaabeaakiabgkHiTiabeM8a3naaBa aaleaacaaIXaaabeaakiaaiMcacaWGKbGaam4CaiaaiYcaaaa@50E7@

получим, учитывая 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIXaaaaa@3278@  -периодичность функции ζ (s) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacuaH2oGEgaafaiaaiIcacaWGZbGaaG ykaaaa@35F2@ ,

L 1T ' =( ω 2 ω 1 ) 0 1 | q T (ξ)|dξ ω 2 ξ ω 2 ω 1 T+ ω 2 ξ ω 2 ω 1 | ζ (s)|ds MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGmbWaaSbaaSqaaiaaigdacaWGub aabeaakiqaiEcagaqbaiaai2dacaaIOaGaeqyYdC3aaSbaaSqaaiaa ikdaaeqaaOGaeyOeI0IaeqyYdC3aaSbaaSqaaiaaigdaaeqaaOGaaG ykamaapehabeWcbaGaaGimaaqaaiaaigdaa0Gaey4kIipakiaaiYha caWGXbWaaSbaaSqaaiaadsfaaeqaaOGaaGikaiabe67a4jaaiMcaca aI8bGaamizaiabe67a4naapehabeWcbaWaaSaaaeaacqaHjpWDdaWg aaqaaiaaikdaaeqaaiabe67a4bqaaiabeM8a3naaBaaabaGaaGOmaa qabaGaeyOeI0IaeqyYdC3aaSbaaeaacaaIXaaabeaaaaaabaWaaSaa aeaacaWGubGaey4kaSIaeqyYdC3aaSbaaeaacaaIYaaabeaacqaH+o aEaeaacqaHjpWDdaWgaaqaaiaaikdaaeqaaiabgkHiTiabeM8a3naa BaaabaGaaGymaaqabaaaaaqdcqGHRiI8aOGaaGiFaiqbeA7a6zaaua GaaGikaiaadohacaaIPaGaaGiFaiaayIW7caWGKbGaam4CaiabgsMi Jcaa@708A@

2 ω * 0 1 | q T (ξ)|dξ 0 T+ ω 2 ω 2 ω 1 | ζ (s)|ds2 ω * q T (x) L 1 [0,1] 0 [ T+ ω 2 ξ ω 2 ω 1 ]+1 | ζ (s)|ds= MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHKjYOcaaIYaGaeqyYdC3aaWbaaS qabeaacaaIQaaaaOWaa8qCaeqaleaacaaIWaaabaGaaGymaaqdcqGH RiI8aOGaaGiFaiaadghadaWgaaWcbaGaamivaaqabaGccaaIOaGaeq OVdGNaaGykaiaaiYhacaWGKbGaeqOVdG3aa8qCaeqaleaacaaIWaaa baWaaSaaaeaacaWGubGaey4kaSIaeqyYdC3aaSbaaeaacaaIYaaabe aaaeaacqaHjpWDdaWgaaqaaiaaikdaaeqaaiabgkHiTiabeM8a3naa BaaabaGaaGymaaqabaaaaaqdcqGHRiI8aOGaaGiFaiqbeA7a6zaaua GaaGikaiaadohacaaIPaGaaGiFaiaayIW7caWGKbGaam4CaiabgsMi JkaaikdacqaHjpWDdaahaaWcbeqaaiaaiQcaaaqeeuuDJXwAKbsr4r NCHbaceaGccqWFLicucaWGXbWaaSbaaSqaaiaadsfaaeqaaOGaaGik aiaadIhacaaIPaGae8xjIa1aaSbaaSqaaiaadYeadaWgaaqaaiaaig daaeqaaiaaiUfacaaIWaGaaGilaiaaigdacaaIDbaabeaakmaapeha beWcbaGaaGimaaqaaiaaiUfadaWcaaqaaiaadsfacqGHRaWkcqaHjp WDdaWgaaqaaiaaikdaaeqaaiabe67a4bqaaiabeM8a3naaBaaabaGa aGOmaaqabaGaeyOeI0IaeqyYdC3aaSbaaeaacaaIXaaabeaaaaGaaG yxaiabgUcaRiaaigdaa0Gaey4kIipakiaaiYhacuaH2oGEgaafaiaa iIcacaWGZbGaaGykaiaaiYhacaaMi8UaamizaiaadohacaaI9aaaaa@9010@

=2 ω * q T (x) L 1 [0,1] ([ T+ ω 2 ω 2 ω 1 ]+1) 0 1 |ζ(s)|ds C T q T (x) L 1 [0,1] ζ(x) L 1 [0,1] . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI9aGaaGOmaiabeM8a3naaCaaale qabaGaaGOkaaaarqqr1ngBPrgifHhDYfgaiqaakiab=vIiqjaadgha daWgaaWcbaGaamivaaqabaGccaaIOaGaamiEaiaaiMcacqWFLicuda WgaaWcbaGaamitamaaBaaabaGaaGymaaqabaGaaG4waiaaicdacaaI SaGaaGymaiaai2faaeqaaOGaaGikaiaaiUfadaWcaaqaaiaadsfacq GHRaWkcqaHjpWDdaWgaaWcbaGaaGOmaaqabaaakeaacqaHjpWDdaWg aaWcbaGaaGOmaaqabaGccqGHsislcqaHjpWDdaWgaaWcbaGaaGymaa qabaaaaOGaaGyxaiabgUcaRiaaigdacaaIPaWaa8qCaeqaleaacaaI WaaabaGaaGymaaqdcqGHRiI8aOGaaGiFaiabeA7a6jaaiIcacaWGZb GaaGykaiaaiYhacaaMi8UaamizaiaadohacqGHKjYOcaWGdbWaaSba aSqaaiaadsfaaeqaaOGae8xjIaLaamyCamaaBaaaleaacaWGubaabe aakiaaiIcacaWG4bGaaGykaiab=vIiqnaaBaaaleaacaWGmbWaaSba aeaacaaIXaaabeaacaaIBbGaaGimaiaaiYcacaaIXaGaaGyxaaqaba GccqWFLicucqaH2oGEcaaIOaGaamiEaiaaiMcacqWFLicudaWgaaWc baGaamitamaaBaaabaGaaGymaaqabaGaaG4waiaaicdacaaISaGaaG ymaiaai2faaeqaaOGaaGOlaaaa@813D@  (3.47)

С учетом оценки (3.12) из (3.47) следует

L 1T ' C T q T (x) L 1 [0,1] (φ(x) L 1 [0,1] +ψ(x) L 1 [0,1] ). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGmbWaaSbaaSqaaiaaigdacaWGub aabeaakiqaiEcagaqbaiabgsMiJkaadoeadaWgaaWcbaGaamivaaqa baqeeuuDJXwAKbsr4rNCHbaceaGccqWFLicucaWGXbWaaSbaaSqaai aadsfaaeqaaOGaaGikaiaadIhacaaIPaGae8xjIa1aaSbaaSqaaiaa dYeadaWgaaqaaiaaigdaaeqaaiaaiUfacaaIWaGaaGilaiaaigdaca aIDbaabeaakiaaiIcacqWFLicucqaHgpGAcaaIOaGaamiEaiaaiMca cqWFLicudaWgaaWcbaGaamitamaaBaaabaGaaGymaaqabaGaaG4wai aaicdacaaISaGaaGymaiaai2faaeqaaOGaey4kaSIae8xjIaLaeqiY dKNaaGikaiaadIhacaaIPaGae8xjIa1aaSbaaSqaaiaadYeadaWgaa qaaiaaigdaaeqaaiaaiUfacaaIWaGaaGilaiaaigdacaaIDbaabeaa kiaaiMcacaaIUaaaaa@6527@  (3.48)

Применяя теперь теорему Фубини (см. [24, теорема 2, с. 235]), отсюда получим, что функция q(ξ,τ)ζ({α(ξ,τ)}) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGXbGaaGikaiabe67a4jaaiYcacq aHepaDcaaIPaGaeqOTdONaaGikaiaaiUhacqaHXoqycaaIOaGaeqOV dGNaaGilaiabes8a0jaaiMcacaaI9bGaaGykaaaa@44C6@  при выполнении условия (i) суммируема в Q T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGrbWaaSbaaSqaaiaadsfaaeqaaa aa@3398@  и справедливо равенство L 1T '= L 1T ' MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGmbWaaSbaaSqaaiaaigdacaWGub aabeaakiaaiEcacaaI9aGaamitamaaBaaaleaacaaIXaGaamivaaqa baGcceaINaGbauaaaaa@3928@ . На основании (3.46) и (3.47), будем иметь оценку

| L 1 (x,t)| C T q T (x) L 1 [0,1] (φ(x) L 1 [0,1] +ψ(x) L 1 [0,1] ). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI8bGaamitamaaBaaaleaacaaIXa aabeaakiaaiIcacaWG4bGaaGilaiaadshacaaIPaGaaGiFaiabgsMi JkaadoeadaWgaaWcbaGaamivaaqabaqeeuuDJXwAKbsr4rNCHbacea GccqWFLicucaWGXbWaaSbaaSqaaiaadsfaaeqaaOGaaGikaiaadIha caaIPaGae8xjIa1aaSbaaSqaaiaadYeadaWgaaqaaiaaigdaaeqaai aaiUfacaaIWaGaaGilaiaaigdacaaIDbaabeaakiaaiIcacqWFLicu cqaHgpGAcaaIOaGaamiEaiaaiMcacqWFLicudaWgaaWcbaGaamitam aaBaaabaGaaGymaaqabaGaaG4waiaaicdacaaISaGaaGymaiaai2fa aeqaaOGaey4kaSIae8xjIaLaeqiYdKNaaGikaiaadIhacaaIPaGae8 xjIa1aaSbaaSqaaiaadYeadaWgaaqaaiaaigdaaeqaaiaaiUfacaaI WaGaaGilaiaaigdacaaIDbaabeaakiaaiMcacaaIUaaaaa@69AE@  (3.49)

Из суммируемости функции q(ξ,τ)ζ({α(ξ,τ)}) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGXbGaaGikaiabe67a4jaaiYcacq aHepaDcaaIPaGaeqOTdONaaGikaiaaiUhacqaHXoqycaaIOaGaeqOV dGNaaGilaiabes8a0jaaiMcacaaI9bGaaGykaaaa@44C6@  в Q T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGrbWaaSbaaSqaaiaadsfaaeqaaa aa@3398@  следует непрерывность функции L 1 (x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGmbWaaSbaaSqaaiaaigdaaeqaaO GaaGikaiaadIhacaaISaGaamiDaiaaiMcaaaa@3790@ , как уже было отмечено, в силу абсолютной непрерывности интеграла Лебега (см. [3, теорема 5, с. 301]). Аналогичными рассуждениями устанавливантся оценка (3.49) для функции L 2 (x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGmbWaaSbaaSqaaiaaikdaaeqaaO GaaGikaiaadIhacaaISaGaamiDaiaaiMcaaaa@3791@  и непрерывность L 2 (x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGmbWaaSbaaSqaaiaaikdaaeqaaO GaaGikaiaadIhacaaISaGaamiDaiaaiMcaaaa@3791@  в Q T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGrbWaaSbaaSqaaiaadsfaaeqaaa aa@3398@ . Таким образом, на основании представления (3.43) отсюда следует непрерывность функции w(x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAKzKCHTgD1jharyqr1ngBPr gigjxyRrxDYbaceaGae8hmWFNaaGikaiaadIhacaaISaGaamiDaiaa iMcaaaa@42AA@  в любом Q T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGrbWaaSbaaSqaaiaadsfaaeqaaa aa@3398@ .

Пусть теперь имеет место случай (ii). Тогда из (3.45) получим

| L 1 (x,t)| 0 T q (τ)dτ 0 1 |ζ({α(ξ,τ)})|dξ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI8bGaamitamaaBaaaleaacaaIXa aabeaakiaaiIcacaWG4bGaaGilaiaadshacaaIPaGaaGiFaiabgsMi JoaapehabeWcbaGaaGimaaqaaiaadsfaa0Gaey4kIipakiqadghaga afaiaaiIcacqaHepaDcaaIPaGaaGjcVlaadsgacqaHepaDdaWdXbqa bSqaaiaaicdaaeaacaaIXaaaniabgUIiYdGccaaI8bGaeqOTdONaaG ikaiaaiUhacqaHXoqycaaIOaGaeqOVdGNaaGilaiabes8a0jaaiMca caaI9bGaaGykaiaaiYhacaaMi8Uaamizaiabe67a4jabgsMiJcaa@6029@

0 T q (τ)dτ 0 1 | ζ (α(ξ,τ))|dξ= 0 T q (τ)dτ 0 1 | ζ ( τ+ ω 2 ξ ω 2 ω 1 )|dξ. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHKjYOdaWdXbqabSqaaiaaicdaae aacaWGubaaniabgUIiYdGcceWGXbGbaqbacaaIOaGaeqiXdqNaaGyk aiaayIW7caWGKbGaeqiXdq3aa8qCaeqaleaacaaIWaaabaGaaGymaa qdcqGHRiI8aOGaaGiFaiqbeA7a6zaauaGaaGikaiabeg7aHjaaiIca cqaH+oaEcaaISaGaeqiXdqNaaGykaiaaiMcacaaI8bGaaGjcVlaads gacqaH+oaEcaaI9aWaa8qCaeqaleaacaaIWaaabaGaamivaaqdcqGH RiI8aOGabmyCayaauaGaaGikaiabes8a0jaaiMcacaaMi8Uaamizai abes8a0naapehabeWcbaGaaGimaaqaaiaaigdaa0Gaey4kIipakiaa iYhacuaH2oGEgaafaiaaiIcadaWcaaqaaiabes8a0jabgUcaRiabeM 8a3naaBaaaleaacaaIYaaabeaakiabe67a4bqaaiabeM8a3naaBaaa leaacaaIYaaabeaakiabgkHiTiabeM8a3naaBaaaleaacaaIXaaabe aaaaGccaaIPaGaaGiFaiaayIW7caWGKbGaeqOVdGNaaGOlaaaa@7DB6@  (3.50)

Делая в интеграле по ξ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaH+oaEaaa@3380@  замену переменной интегрирования

s= τ+ ω 2 ξ ω 2 ω 1 dξ= 1 a ds, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGZbGaaGypamaalaaabaGaeqiXdq Naey4kaSIaeqyYdC3aaSbaaSqaaiaaikdaaeqaaOGaeqOVdGhabaGa eqyYdC3aaSbaaSqaaiaaikdaaeqaaOGaeyOeI0IaeqyYdC3aaSbaaS qaaiaaigdaaeqaaaaakiabgkziUkaadsgacqaH+oaEcaaI9aWaaSaa aeaacaaIXaaabaGaamyyaaaacaWGKbGaam4CaiaaiYcaaaa@4AC7@

получим, учитывая 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIXaaaaa@3278@  -периодичность функции ζ (s) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacuaH2oGEgaafaiaaiIcacaWGZbGaaG ykaaaa@35F2@ , предположение q (x) L p [0,T] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGXbGbaqbacaaIOaGaamiEaiaaiM cacqGHiiIZcaWGmbWaaSbaaSqaaiaadchaaeqaaOGaaG4waiaaicda caaISaGaamivaiaai2faaaa@3CC5@  и неравенство Коши MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa83eGaaa@3A90@ Буняковского:

| L 1 (x,t)| 1 a 0 T q (τ)dτ τ ω 2 ω 1 τ+ ω 2 ω 2 ω 1 | ζ (s)|ds 1 a 0 T q (τ)dτ 0 T+ ω 2 ω 2 ω 1 | ζ (s)|ds MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI8bGaamitamaaBaaaleaacaaIXa aabeaakiaaiIcacaWG4bGaaGilaiaadshacaaIPaGaaGiFaiabgsMi JoaalaaabaGaaGymaaqaaiaadggaaaWaa8qCaeqaleaacaaIWaaaba GaamivaaqdcqGHRiI8aOGabmyCayaauaGaaGikaiabes8a0jaaiMca caaMi8Uaamizaiabes8a0naapehabeWcbaWaaSaaaeaacqaHepaDae aacqaHjpWDdaWgaaqaaiaaikdaaeqaaiabgkHiTiabeM8a3naaBaaa baGaaGymaaqabaaaaaqaamaalaaabaGaeqiXdqNaey4kaSIaeqyYdC 3aaSbaaeaacaaIYaaabeaaaeaacqaHjpWDdaWgaaqaaiaaikdaaeqa aiabgkHiTiabeM8a3naaBaaabaGaaGymaaqabaaaaaqdcqGHRiI8aO GaaGiFaiqbeA7a6zaauaGaaGikaiaadohacaaIPaGaaGiFaiaayIW7 caWGKbGaam4CaiabgsMiJoaalaaabaGaaGymaaqaaiaadggaaaWaa8 qCaeqaleaacaaIWaaabaGaamivaaqdcqGHRiI8aOGabmyCayaauaGa aGikaiabes8a0jaaiMcacaaMi8Uaamizaiabes8a0naapehabeWcba GaaGimaaqaamaalaaabaGaamivaiabgUcaRiabeM8a3naaBaaabaGa aGOmaaqabaaabaGaeqyYdC3aaSbaaeaacaaIYaaabeaacqGHsislcq aHjpWDdaWgaaqaaiaaigdaaeqaaaaaa0Gaey4kIipakiaaiYhacuaH 2oGEgaafaiaaiIcacaWGZbGaaGykaiaaiYhacaaMi8Uaamizaiaado hacqGHKjYOaaa@9292@

1 a 0 T q (τ)dτ 0 [ T+ ω 2 ω 2 ω 1 ]+1 | ζ (s)|ds= 1 a 0 T q (τ)dτ([ T+ ω 2 ω 2 ω 1 ]+1) 0 1 |ζ(s)|ds MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHKjYOdaWcaaqaaiaaigdaaeaaca WGHbaaamaapehabeWcbaGaaGimaaqaaiaadsfaa0Gaey4kIipakiqa dghagaafaiaaiIcacqaHepaDcaaIPaGaaGjcVlaadsgacqaHepaDda WdXbqabSqaaiaaicdaaeaacaaIBbWaaSaaaeaacaWGubGaey4kaSIa eqyYdC3aaSbaaeaacaaIYaaabeaaaeaacqaHjpWDdaWgaaqaaiaaik daaeqaaiabgkHiTiabeM8a3naaBaaabaGaaGymaaqabaaaaiaai2fa cqGHRaWkcaaIXaaaniabgUIiYdGccaaI8bGafqOTdONbaqbacaaIOa Gaam4CaiaaiMcacaaI8bGaaGjcVlaadsgacaWGZbGaaGypamaalaaa baGaaGymaaqaaiaadggaaaWaa8qCaeqaleaacaaIWaaabaGaamivaa qdcqGHRiI8aOGabmyCayaauaGaaGikaiabes8a0jaaiMcacaaMi8Ua amizaiabes8a0jaaiIcacaaIBbWaaSaaaeaacaWGubGaey4kaSIaeq yYdC3aaSbaaSqaaiaaikdaaeqaaaGcbaGaeqyYdC3aaSbaaSqaaiaa ikdaaeqaaOGaeyOeI0IaeqyYdC3aaSbaaSqaaiaaigdaaeqaaaaaki aai2facqGHRaWkcaaIXaGaaGykamaapehabeWcbaGaaGimaaqaaiaa igdaa0Gaey4kIipakiaaiYhacqaH2oGEcaaIOaGaam4CaiaaiMcaca aI8bGaaGjcVlaadsgacaWGZbGaeyizImkaaa@8A94@

T 1/ p a q (t) L p [0,T] ([ T+ ω 2 ω 2 ω 1 ]+1)ζ(s) L 1 [0,1] C T q (t) L p [0,T] ζ(s) L 1 [0,1] , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqGHKjYOdaWcaaqaaiaadsfadaahaa WcbeqaaiaaigdacaaIVaGabmiCayaafaaaaaGcbaGaamyyaaaarqqr 1ngBPrgifHhDYfgaiqaacqWFLicuceWGXbGbaqbacaaIOaGaamiDai aaiMcacqWFLicudaWgaaWcbaGaamitamaaBaaabaGaamiCaaqabaGa aG4waiaaicdacaaISaGaamivaiaai2faaeqaaOGaaGikaiaaiUfada WcaaqaaiaadsfacqGHRaWkcqaHjpWDdaWgaaWcbaGaaGOmaaqabaaa keaacqaHjpWDdaWgaaWcbaGaaGOmaaqabaGccqGHsislcqaHjpWDda WgaaWcbaGaaGymaaqabaaaaOGaaGyxaiabgUcaRiaaigdacaaIPaGa e8xjIaLaeqOTdONaaGikaiaadohacaaIPaGae8xjIa1aaSbaaSqaai aadYeadaWgaaqaaiaaigdaaeqaaiaaiUfacaaIWaGaaGilaiaaigda caaIDbaabeaakiabgsMiJkaadoeadaWgaaWcbaGaamivaaqabaGccq WFLicuceWGXbGbaqbacaaIOaGaamiDaiaaiMcacqWFLicudaWgaaWc baGaamitamaaBaaabaGaamiCaaqabaGaaG4waiaaicdacaaISaGaam ivaiaai2faaeqaaOGae8xjIaLaeqOTdONaaGikaiaadohacaaIPaGa e8xjIa1aaSbaaSqaaiaadYeadaWgaaqaaiaaigdaaeqaaiaaiUfaca aIWaGaaGilaiaaigdacaaIDbaabeaakiaaiYcaaaa@8096@  (3.51)

где постоянная C T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbWaaSbaaSqaaiaadsfaaeqaaa aa@338A@  не зависит от q (t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaaceWGXbGbaqbacaaIOaGaamiDaiaaiM caaaa@352C@ , φ(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAcaaIOaGaamiEaiaaiMcaaa a@35DC@  и ψ(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHipqEcaaIOaGaamiEaiaaiMcaaa a@35ED@ . Учитывая оценку (3.12) в (3.51), получим для всех (x,t) Q T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaamiEaiaaiYcacaWG0bGaaG ykaiabgIGiolaadgfadaWgaaWcbaGaamivaaqabaaaaa@392D@  

| L 1 (x,t)| C T q T (x) L 1 [0,1] (φ(x) L 1 [0,1] +ψ(x) L 1 [0,1] ). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI8bGaamitamaaBaaaleaacaaIXa aabeaakiaaiIcacaWG4bGaaGilaiaadshacaaIPaGaaGiFaiabgsMi JkaadoeadaWgaaWcbaGaamivaaqabaqeeuuDJXwAKbsr4rNCHbacea GccqWFLicucaWGXbWaaSbaaSqaaiaadsfaaeqaaOGaaGikaiaadIha caaIPaGae8xjIa1aaSbaaSqaaiaadYeadaWgaaqaaiaaigdaaeqaai aaiUfacaaIWaGaaGilaiaaigdacaaIDbaabeaakiaaiIcacqWFLicu cqaHgpGAcaaIOaGaamiEaiaaiMcacqWFLicudaWgaaWcbaGaamitam aaBaaabaGaaGymaaqabaGaaG4waiaaicdacaaISaGaaGymaiaai2fa aeqaaOGaey4kaSIae8xjIaLaeqiYdKNaaGikaiaadIhacaaIPaGae8 xjIa1aaSbaaSqaaiaadYeadaWgaaqaaiaaigdaaeqaaiaaiUfacaaI WaGaaGilaiaaigdacaaIDbaabeaakiaaiMcacaaIUaaaaa@69AE@  (3.52)

На основании теоремы Фубини отсюда следует, что функция q(ξ,τ)ζ({α(ξ,τ)}) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGXbGaaGikaiabe67a4jaaiYcacq aHepaDcaaIPaGaeqOTdONaaGikaiaaiUhacqaHXoqycaaIOaGaeqOV dGNaaGilaiabes8a0jaaiMcacaaI9bGaaGykaaaa@44C6@  при выполнении условия (ii) суммируема в Q T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGrbWaaSbaaSqaaiaadsfaaeqaaa aa@3398@ . Из суммируемости этой функции следует непрерывность функции L 1 (x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGmbWaaSbaaSqaaiaaigdaaeqaaO GaaGikaiaadIhacaaISaGaamiDaiaaiMcaaaa@3790@ , как уже было отмечено, в силу абсолютной непрерывности интеграла Лебега. Аналогичными рассуждениями устанавливантся оценка (3.52) для функции L 2 (x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGmbWaaSbaaSqaaiaaikdaaeqaaO GaaGikaiaadIhacaaISaGaamiDaiaaiMcaaaa@3791@  и непрерывность L 2 (x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGmbWaaSbaaSqaaiaaikdaaeqaaO GaaGikaiaadIhacaaISaGaamiDaiaaiMcaaaa@3791@  в Q T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGrbWaaSbaaSqaaiaadsfaaeqaaa aa@3398@ . Следовательно, на основании представления (3.43) отсюда получаем непрерывность функции w(x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAKzKCHTgD1jharyqr1ngBPr gigjxyRrxDYbaceaGae8hmWFNaaGikaiaadIhacaaISaGaamiDaiaa iMcaaaa@42AA@  в любом Q T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGrbWaaSbaaSqaaiaadsfaaeqaaa aa@3398@  и при выполнении условия (ii). Лемма 3.8 полностью доказана.

Так как w(x,t)C( Q T ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAKzKCHTgD1jharyqr1ngBPr gigjxyRrxDYbaceaGae8hmWFNaaGikaiaadIhacaaISaGaamiDaiaa iMcacqGHiiIZcaWGdbGaaGikaiaadgfadaWgaaWcbaGaamivaaqaba GccaaIPaaaaa@4840@  согласно лемме 3.8, то можно образовать ряд

W(x,t)= n=0 ( D n w)(x,t). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGabaiab=zr8xjaaiIcacaWG4bGaaGilaiaadshacaaI PaGaaGypamaaqahabeWcbaGaamOBaiaai2dacaaIWaaabaGaeyOhIu kaniabggHiLdGccaaIOaGaamiramaaCaaaleqabaGaamOBaaaatuuD JXwAKzKCHTgD1jharCqr1ngBPrgigjxyRrxDYbacfaGccqGFWa=Dca aIPaGaaGikaiaadIhacaaISaGaamiDaiaaiMcacaaIUaaaaa@5D31@  (3.53)

Теорема 3.2. Предположим, что φ(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHgpGAcaaIOaGaamiEaiaaiMcaaa a@35DC@ , ψ(x) L 1 [0,1] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacqaHipqEcaaIOaGaamiEaiaaiMcacq GHiiIZcaWGmbWaaSbaaSqaaiaaigdaaeqaaOGaaG4waiaaicdacaaI SaGaaGymaiaai2faaaa@3D2A@ , выполняется условие (1.10), q(x,t)Q MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGXbGaaGikaiaadIhacaaISaGaam iDaiaaiMcacqGHiiIZtuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgi p5wzaGabaiab=br8rbaa@43A8@  и удовлетворяет условиям (i) или (ii). Тогда ряд (3.53) сходится абсолютно и равномерно в пространстве C( Q T ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbGaaGikaiaadgfadaWgaaWcba GaamivaaqabaGccaaIPaaaaa@35CF@  к непрерывной функции W(x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGabaiab=zr8xjaaiIcacaWG4bGaaGilaiaadshacaaI Paaaaa@413A@ , при этом сходимость ряда в случае (i) не медленнее экспоненциального, а в случае (ii) не медленнее 1/ p MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIXaGaaG4laiqadchagaqbaaaa@3432@  -экспоненциального, и функция

u(x,t)=v(x,t)+W(x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGikaiaadIhacaaISaGaam iDaiaaiMcacaaI9aGaamODaiaaiIcacaWG4bGaaGilaiaadshacaaI PaGaey4kaSYefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiq aacqWFwe=vcaaIOaGaamiEaiaaiYcacaWG0bGaaGykaaaa@4CFA@  (3.54)

является единственным обобщённым решением задачи (3.4) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuGajugGbabaaaaaaaaapeGaa83eGaaa@3A92@ (3.6).

Доказательство. Повторяем рассуждения, которые использовались в доказательстве теоремы (3.1) в случае потенциала q(x) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGXbGaaGikaiaadIhacaaIPaaaaa@3515@  с небольшими изменениями. Из оценок (3.37) и (3.39) следует, что ряд (3.53) с непрерывными членами абсолютно и равномерно сходится в Q T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGrbWaaSbaaSqaaiaadsfaaeqaaa aa@3398@ , причем сходимость ряда в случае (i) не медленнее экспоненциального, а в случае (ii) не медленнее 1/ p MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIXaGaaG4laiqadchagaqbaaaa@3432@  -экспоненциального. Следовательно, W(x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGabaiab=zr8xjaaiIcacaWG4bGaaGilaiaadshacaaI Paaaaa@413A@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  непрерывная функция в Q T MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGrbWaaSbaaSqaaiaadsfaaeqaaa aa@3398@ .

Рассмотрим функцию (3.54). Учитывая определение (3.53) функции W(x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGabaiab=zr8xjaaiIcacaWG4bGaaGilaiaadshacaaI Paaaaa@413A@ , определение (3.40) функции w(x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAKzKCHTgD1jharyqr1ngBPr gigjxyRrxDYbaceaGae8hmWFNaaGikaiaadIhacaaISaGaamiDaiaa iMcaaaa@42AA@ , линейность операторов D MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGabaiab=nq8ebaa@3D03@  и D MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGebaaaa@3286@ , а также ограниченность D MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGebaaaa@3286@  в C( Q T ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbGaaGikaiaadgfadaWgaaWcba GaamivaaqabaGccaaIPaaaaa@35CF@  на основании лемм 3.6 и 3.7, получим и в случае (i), и в случае (ii)

u=v+ n=0 D n w=v+w+ n=1 D n w=v+Dv+D n=0 D n w= MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGypaiaadAhacqGHRaWkda aeWbqabSqaaiaad6gacaaI9aGaaGimaaqaaiabg6HiLcqdcqGHris5 aOGaamiramaaCaaaleqabaGaamOBaaaatuuDJXwAKzKCHTgD1jhary qr1ngBPrgigjxyRrxDYbaceaGccqWFWa=DcaaI9aGaamODaiabgUca Riab=bd83jabgUcaRmaaqahabeWcbaGaamOBaiaai2dacaaIXaaaba GaeyOhIukaniabggHiLdGccaWGebWaaWbaaSqabeaacaWGUbaaaOGa e8hmWFNaaGypaiaadAhacqGHRaWktuuDJXwAK1uy0HwmaeXbfv3ySL gzG0uy0Hgip5wzaGqbaiab+nq8ejaadAhacqGHRaWkcaWGebWaaabC aeqaleaacaWGUbGaaGypaiaaicdaaeaacqGHEisPa0GaeyyeIuoaki aadseadaahaaWcbeqaaiaad6gaaaGccqWFWa=DcaaI9aaaaa@75D9@

=v+Dv+D n=0 D n w=v+D(v+ n=0 D n w)=v+D(v+W)=v+Du, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaI9aGaamODaiabgUcaRmrr1ngBPr wtHrhAXaqeguuDJXwAKbstHrhAG8KBLbaceaGae83aXtKaamODaiab gUcaRiab=nq8enaaqahabeWcbaGaamOBaiaai2dacaaIWaaabaGaey OhIukaniabggHiLdGccaWGebWaaWbaaSqabeaacaWGUbaaamrr1ngB PrMrYf2A0vNCaeXbfv3ySLgzGyKCHTgD1jhaiuaakiab+bd83jaai2 dacaWG2bGaey4kaSIae83aXtKaaGikaiaadAhacqGHRaWkdaaeWbqa bSqaaiaad6gacaaI9aGaaGimaaqaaiabg6HiLcqdcqGHris5aOGaam iramaaCaaaleqabaGaamOBaaaakiab+bd83jaaiMcacaaI9aGaamOD aiabgUcaRiab=nq8ejaaiIcacaWG2bGaey4kaSIae8NfXFLaaGykai aai2dacaWG2bGaey4kaSIae83aXtKaamyDaiaaiYcaaaa@79BD@

т.е. функция u(x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGikaiaadIhacaaISaGaam iDaiaaiMcaaaa@36C8@  вида (3.54) является решением уравнения (3.34).

Уравнение (3.34) нельзя рассматривать в пространстве C( Q T ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbGaaGikaiaadgfadaWgaaWcba GaamivaaqabaGccaaIPaaaaa@35CF@ , так как v(x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG2bGaaGikaiaadIhacaaISaGaam iDaiaaiMcaaaa@36C9@  не является, вообще говоря, непрерывной функцией. Удобнее перейти к эквивалентному уравнению, действующему в C( Q T ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbGaaGikaiaadgfadaWgaaWcba GaamivaaqabaGccaaIPaaaaa@35CF@ .

Лемма 3.9. Функция u(x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWG1bGaaGikaiaadIhacaaISaGaam iDaiaaiMcaaaa@36C8@  является решением интегрального уравнения (3.34) в том и только том случае, когда функция r(x,t):=u(x,t)v(x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAKzKCHTgD1jharyqr1ngBPr gigjxyRrxDYbaceaGae83kWlNaaGikaiaadIhacaaISaGaamiDaiaa iMcacaaI6aGaaGypaiaadwhacaaIOaGaamiEaiaaiYcacaWG0bGaaG ykaiabgkHiTiaadAhacaaIOaGaamiEaiaaiYcacaWG0bGaaGykaaaa @4F2F@  является решением интегрального уравнения

r(x,t):=w(x,t)+(Dr)(x,t). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAKzKCHTgD1jharyqr1ngBPr gigjxyRrxDYbaceaGae83kWlNaaGikaiaadIhacaaISaGaamiDaiaa iMcacaaI6aGaaGypaiab=bd83jaaiIcacaWG4bGaaGilaiaadshaca aIPaGaey4kaSIaaGikamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHrhA G8KBLbacfaGae43aXtKae83kWlNaaGykaiaaiIcacaWG4bGaaGilai aadshacaaIPaGaaGOlaaaa@5EC1@  (3.55)

Доказательство. совершенно аналогично доказательству леммы 3.5.

Так как w(x,t)C( Q T ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAKzKCHTgD1jharyqr1ngBPr gigjxyRrxDYbaceaGae8hmWFNaaGikaiaadIhacaaISaGaamiDaiaa iMcacqGHiiIZcaWGdbGaaGikaiaadgfadaWgaaWcbaGaamivaaqaba GccaaIPaaaaa@4840@  согласно лемме (3.8), то рассматриваем уравнение (3.55) в пространстве C( Q T ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbGaaGikaiaadgfadaWgaaWcba GaamivaaqabaGccaaIPaaaaa@35CF@ . Иными словами, r(x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAKzKCHTgD1jharyqr1ngBPr gigjxyRrxDYbaceaGae83kWlNaaGikaiaadIhacaaISaGaamiDaiaa iMcaaaa@42A0@  является решением уравнения

r(x,t):=w(x,t)+(Dr)(x,t). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAKzKCHTgD1jharyqr1ngBPr gigjxyRrxDYbaceaGae83kWlNaaGikaiaadIhacaaISaGaamiDaiaa iMcacaaI6aGaaGypaiab=bd83jaaiIcacaWG4bGaaGilaiaadshaca aIPaGaey4kaSIaaGikaiaadseacqWFRaVCcaaIPaGaaGikaiaadIha caaISaGaamiDaiaaiMcacaaIUaaaaa@5443@  (3.56)

Это уравнение имеет решение W(x,t)= n=0 D n w MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGabaiab=zr8xjaaiIcacaWG4bGaaGilaiaadshacaaI PaGaaGypamaaqahabeWcbaGaamOBaiaai2dacaaIWaaabaGaeyOhIu kaniabggHiLdGccaWGebWaaWbaaSqabeaacaWGUbaaamrr1ngBPrMr Yf2A0vNCaeXbfv3ySLgzGyKCHTgD1jhaiuaakiab+bd83baa@5703@ . В самом деле, поскольку D MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGebaaaa@3286@  есть линейный и ограниченный оператор в C( Q T ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGdbGaaGikaiaadgfadaWgaaWcba GaamivaaqabaGccaaIPaaaaa@35CF@ , то

(DW)(x,t)= n=1 ( D n w)(x,t). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaaIOaGaamiramrr1ngBPrwtHrhAXa qeguuDJXwAKbstHrhAG8KBLbaceaGae8NfXFLaaGykaiaaiIcacaWG 4bGaaGilaiaadshacaaIPaGaaGypamaaqahabeWcbaGaamOBaiaai2 dacaaIXaaabaGaeyOhIukaniabggHiLdGccaaIOaGaamiramaaCaaa leqabaGaamOBaaaatuuDJXwAKzKCHTgD1jharCqr1ngBPrgigjxyRr xDYbacfaGccqGFWa=DcaaIPaGaaGikaiaadIhacaaISaGaamiDaiaa iMcacaaIUaaaaa@5F60@

Отсюда следует, что функция W(x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGabaiab=zr8xjaaiIcacaWG4bGaaGilaiaadshacaaI Paaaaa@413A@  является решением уравнения (3.56).

Покажем, что решение уравнения (3.56) единственно. Допустим, что кроме W(x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGabaiab=zr8xjaaiIcacaWG4bGaaGilaiaadshacaaI Paaaaa@413A@  есть еще другое решение W MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGabaiqb=zr8xzaauaaaaa@3D44@  этого уравнения. Тогда z(x,t):=W(x,t) W (x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAKzKCHTgD1jharyqr1ngBPr gigjxyRrxDYbaceaGae83mWRNaaGikaiaadIhacaaISaGaamiDaiaa iMcacaaI6aGaaGypamrr1ngBPrwtHrhAXaqehuuDJXwAKbstHrhAG8 KBLbacfaGae4NfXFLaaGikaiaadIhacaaISaGaamiDaiaaiMcacqGH sislcuGFwe=vgaafaiaaiIcacaWG4bGaaGilaiaadshacaaIPaaaaa@5AB4@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A91@  решение уравнения z(x,t)=(Dz)(x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAKzKCHTgD1jharyqr1ngBPr gigjxyRrxDYbaceaGae83mWRNaaGikaiaadIhacaaISaGaamiDaiaa iMcacaaI9aGaaGikaiaadseacqWFZaVEcaaIPaGaaGikaiaadIhaca aISaGaamiDaiaaiMcaaaa@4BD8@ , а, значит, z(x,t)=( D n z)(x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAKzKCHTgD1jharyqr1ngBPr gigjxyRrxDYbaceaGae83mWRNaaGikaiaadIhacaaISaGaamiDaiaa iMcacaaI9aGaaGikaiaadseadaahaaWcbeqaaiaad6gaaaGccqWFZa VEcaaIPaGaaGikaiaadIhacaaISaGaamiDaiaaiMcaaaa@4D02@  при любом натуральном n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGUbaaaa@32B0@ . Тогда в случае (i) из оценки (3.37) следует неравенство

z(x,t) C( Q T ) =( B n z)(x,t) C( Q T ) z(x,t) C( Q T ) ( T q T (x) L 1 [0,1] 2 ω * ) n 1 n! , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaarqqr1ngBPrgifHhDYfgaiqaacqWFLi cutuuDJXwAKzKCHTgD1jharyqr1ngBPrgigjxyRrxDYbacfaGae43m WRNaaGikaiaadIhacaaISaGaamiDaiaaiMcacqWFLicudaWgaaWcba Gaam4qaiaaiIcacaWGrbWaaSbaaeaacaWGubaabeaacaaIPaaabeaa kiaai2dacqWFLicucaaIOaGaamOqamaaCaaaleqabaGaamOBaaaaki aadQhacaaIPaGaaGikaiaadIhacaaISaGaamiDaiaaiMcacqWFLicu daWgaaWcbaGaam4qaiaaiIcacaWGrbWaaSbaaeaacaWGubaabeaaca aIPaaabeaakiabgsMiJkab=vIiqjab+nd86jaaiIcacaWG4bGaaGil aiaadshacaaIPaGae8xjIa1aaSbaaSqaaiaadoeacaaIOaGaamyuam aaBaaabaGaamivaaqabaGaaGykaaqabaGccaaIOaWaaSaaaeaacaWG ubGae8xjIaLaamyCamaaBaaaleaacaWGubaabeaakiaaiIcacaWG4b GaaGykaiab=vIiqnaaBaaaleaacaWGmbWaaSbaaeaacaaIXaaabeaa caaIBbGaaGimaiaaiYcacaaIXaGaaGyxaaqabaaakeaacaaIYaGaeq yYdC3aaSbaaSqaaiaaiQcaaeqaaaaakiaaiMcadaahaaWcbeqaaiaa d6gaaaGcdaWcaaqaaiaaigdaaeaacaWGUbGaaGyiaaaacaaISaaaaa@8223@

а в случае (ii) из оценки (3.39) следует неравенство

z(x,t) C( Q T ) =( B n z)(x,t) C( Q T ) z(x,t) C( Q T ) ( T 1/ p q (t) L p [0,T] 2 ω * ) n 1 (n!) 1/ p . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaarqqr1ngBPrgifHhDYfgaiqaacqWFLi cutuuDJXwAKzKCHTgD1jharyqr1ngBPrgigjxyRrxDYbacfaGae43m WRNaaGikaiaadIhacaaISaGaamiDaiaaiMcacqWFLicudaWgaaWcba Gaam4qaiaaiIcacaWGrbWaaSbaaeaacaWGubaabeaacaaIPaaabeaa kiaai2dacqWFLicucaaIOaGaamOqamaaCaaaleqabaGaamOBaaaaki aadQhacaaIPaGaaGikaiaadIhacaaISaGaamiDaiaaiMcacqWFLicu daWgaaWcbaGaam4qaiaaiIcacaWGrbWaaSbaaeaacaWGubaabeaaca aIPaaabeaakiabgsMiJkab=vIiqjab+nd86jaaiIcacaWG4bGaaGil aiaadshacaaIPaGae8xjIa1aaSbaaSqaaiaadoeacaaIOaGaamyuam aaBaaabaGaamivaaqabaGaaGykaaqabaGccaaIOaWaaSaaaeaacaWG ubWaaWbaaSqabeaacaaIXaGaaG4laiqadchagaqbaaaakiab=vIiqj qadghagaafaiaaiIcacaWG0bGaaGykaiab=vIiqnaaBaaaleaacaWG mbWaaSbaaeaacaWGWbaabeaacaaIBbGaaGimaiaaiYcacaWGubGaaG yxaaqabaaakeaacaaIYaGaeqyYdC3aaSbaaSqaaiaaiQcaaeqaaaaa kiaaiMcadaahaaWcbeqaaiaad6gaaaGcdaWcaaqaaiaaigdaaeaaca aIOaGaamOBaiaaigcacaaIPaWaaWbaaSqabeaacaaIXaGaaG4laiqa dchagaqbaaaaaaGccaaIUaaaaa@8842@

Отсюда в силу произвольности n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGUbaaaa@32B0@  и в случае (i), и в случае (ii) будем иметь z(x,t) C( Q T ) =0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaarqqr1ngBPrgifHhDYfgaiqaacqWFLi cutuuDJXwAKzKCHTgD1jharyqr1ngBPrgigjxyRrxDYbacfaGae43m WRNaaGikaiaadIhacaaISaGaamiDaiaaiMcacqWFLicudaWgaaWcba Gaam4qaiaaiIcacaWGrbWaaSbaaeaacaWGubaabeaacaaIPaaabeaa kiaai2dacaaIWaaaaa@4F37@  или W(x,t) W (x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGabaiab=zr8xjaaiIcacaWG4bGaaGilaiaadshacaaI PaGaeyyyIORaf8NfXFLbaqbacaaIOaGaamiEaiaaiYcacaWG0bGaaG ykaaaa@4912@ , т.е. единственным решением уравнения (3.56) является функция W(x,t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGabaiab=zr8xjaaiIcacaWG4bGaaGilaiaadshacaaI Paaaaa@413A@ . Учитывая лемму 3.9, получаем, что уравнение (3.56) имеет единственное решение (3.54). Теорема 3.2 полностью доказана.

×

About the authors

Viktor S. Rykhlov

Saratov State University named after N. G. Chernyshevsky

Author for correspondence.
Email: rykhlovvs@yandex.ru
Russian Federation, Saratov

References

  1. Бурлуцкая М. Ш., Хромов А. П. Резольвентный подход в методе Фурье// Докл. РАН. — 2014. — 458, № 2. — С. 138–140.
  2. Бурлуцкая М. Ш., Хромов А. П. Резольвентный подход для волнового уравнения// Ж. вычисл. мат. мат. физ. — 2015. — 55, № 2. — С. 229–241.
  3. Колмогоров А. Н., Фомин С. В. Элементы теории функций и функционального анализа. — М.: Наука, 1976.
  4. Корнев В. В. О применении расходящихся рядов в смешанных задачах, не имеющих классического решения// Мат. Междунар. конф. «Современные методы теории краевых задач». Воронежская весенняя математическая школа «Понтрягинские чтения–XXXIII» (Воронеж, 3-9 мая 2022 г.). — Воронеж: ВГУ, 2022. — С. 132–137.
  5. Корнев В. В., Хромов А. П. О классическом и обобщённом решении смешанной задачи для волнового уравнения// Мат. Междунар. конф. «Современные методы теории краевых задач», посв. 90-летию акад. В. А. Ильина. Воронежская весенняя математическая школа «Понтрягинские чтения–XXIX» (Москва, 3-5 мая 2018 г.). — М., 2018. — С. 132–133.
  6. Корнев В. В., Хромов А. П. Классическое решение смешанной задачи для однородного волнового уравнения с закрепленными концами// Итоги науки и техн. Сер. Совр. мат. прилож. Темат. обз. — 2019. — 172. — С. 119–133.
  7. Корнев В. В., Хромов А. П. Использование резольвентного подхода и расходящихся рядов при решении смешанных задач// в кн.: Математика. Механика. Т. 23. — Изд-во Саратов. ун-та, 2021. — С. 18–24.
  8. Крылов А. Н. О некоторых дифференциальных уравнениях математической физики, имеющих приложения в технических вопросах. — М.-Л.: ГИТТЛ, 1950.
  9. Курдюмов В. П., Хромов А. П., Халова В. А. Смешанная задача для однородного волнового уравнения с ненулевой начальной скоростью с суммируемым потенциалом// Изв. Саратов. ун-та. Нов. сер. Мат. Мех. Информ. — 2020. — 20, № 4. — С. 444–456.
  10. Ломов И. С. Эффективное применение метода Фурье для построения решения смешанной задачи для телеграфного уравнения// Вестн. Моск. ун-та. Сер. 15. Вычисл. мат. киберн. — 2021. — № 4. — С. 37–42.
  11. Ломов И. С. Обобщенная формула Даламбера для телеграфного уравнения// Итоги науки техн. Совр. мат. прилож. Темат. обз. — 2021. — 199. — С. 66–79.
  12. Ломов И. С. Эффективное применение метода Фурье к решению смешанной задачи для телеграфного уравнения// Мат. 21 Междунар. Саратов. зимней школы «Современные проблемы теории функций и их приложения» (Саратов, 31 января — 4 февраля 2022 г.). — Саратов: Изд-во Саратов. ун-та, 2022.— С. 178–180.
  13. Ломов И. С. Построение обобщённого решения смешанной задачи для телеграфного уравнения: секвенциальный и аксиоматический подходы// Диффер. уравн. — 2022. — 58, № 11. — С. 1471–1483.
  14. Новый метод построения обобщенного решения смешанной задачи для телеграфного уравнения Вестн. Моск.ун-та. Сер. 15. Вычисл. мат. киберн. — 2022. — № 3. — С. 33–40.
  15. Ломовцев Ф. Е. Метод корректировки пробных решений волнового уравнения в криволинейной первой четверти плоскости для минимальной гладкости правой части// Ж. Белорус. гос. ун-та. Мат. Инф. — 2017. — № 3. — С. 38–52.
  16. Ломовцев Ф. Е. Глобальная теорема корректности по Адамару первой смешанной задачи для волнового уравнения в полуполосе плоскости// Весн. ГрДУ iмя Янкi Купалы. Сер. 2. Мат. Фiз. Iнфарм. Вылiч. тэхн. кiраванне. — 2021. — 11, № 1. — С. 68–82.
  17. Ломовцев Ф. Е. Первая смешанная задача для общего телеграфного уравнения с переменными коэффициентами на полупрямой// Ж. Белорус. гос. ун-та. Мат. Инф. — 2021. — 1. — С. 18–38.
  18. Ломовцев Ф. Е. Глобальная теорема корректности первой смешанной задачи для общего телеграфного уравнения с переменными коэффициентами на отрезке// Пробл. физ. мат. техн. — 2022. — 1, № 50. — С. 62–73.
  19. Ломовцев Ф. Е., Лысенко В. Н. Весн. МДУ iмя Куляшова А. А. Сер. B. Прырод. навукi: Мат. Фiз. Бiялогiя. — 2021. — 2, № 58. — С. 28–55.
  20. Моисеев Е. И., Ломовцев Ф. Е., Новиков Е. Н. Неоднородное факторизованное гиперболическое уравнение второго порядка в четверти плоскости при полунестационарной факторизованной второй косой производной в граничном условии// Докл. РАН. — 2014. — 459, № 5. — С. 544–549.
  21. МуравейЛ . А., Петров В. М., Романенков А. М. О задаче гашения поперечных колебаний продольно движущейся струны// Вестн. Мордов. ун-та. — 2018. — 28, № 4. — С. 472–485.
  22. МуравейЛ . А., Романенков А. М. Численные методы гашения колебаний движущегося бумажного полотна// Сб. мат.Междунар. конф. «Дифференциальные уравнения, математическое моделирование и вычислительные алгоритмы» (Белгород, 25–29 октября 2021 г.). — Белгород, 2021. — С. 194–196.
  23. Наймарк М. А. Линейные дифференциальные операторы. — М.: Наука, 1969.
  24. Натансон И. П. Теория функций вещественной переменной. — М.: Наука, 1974.
  25. Рыхлов В. С. Разрешимость смешанной задачи для гиперболического уравнения при отсутствии полноты собственных функций// Итоги науки техн. Совр. мат. прилож. Темат. обз. — 2021. — 200. —С. 95–104.
  26. Рыхлов В. С. Разрешимость смешанной задачи для гиперболического уравнения с распадающимися краевыми условиями при отсутствии полноты собственных функций// Итоги науки техн. Совр. мат. прилож. Темат. обз. — 2022. — 204. — С. 124–134.
  27. Рыхлов В. С. Единственность решения начально-граничной задачи для гиперболического уравнения со смешанной производной и формула для решения// Изв. Саратов. ун-та. Нов. сер. Мат. Мех. Ин-форм. — 2023. — 23, № 2. — С. 183–194.
  28. Рыхлов В. С. Решение начально-граничной задачи для уравнения гиперболического типа со смешанной производной// Мат. 21 Междунар. Саратовской зимней школы «Современные проблемы теории функций и их приложения» (Саратов, 31 января — 4 февраля 2022 г.). — Саратов: Изд-во Саратоа. ун-та, 2022. — С. 252–255.
  29. Рыхлов В. С. О решении начально-граничной задачи для гиперболического уравнения со смешанной производной// Мат. Междунар. конф. «Современные методы теории краевых задач». Воронежская весенняя математическая школа «Понтрягинские чтения–XXXIII» (Воронеж, 3-9 мая 2022 г.). — Воронеж: ВГУ, 237–240.
  30. Рыхлов В. С. Решение начально-граничной задачи в полуполосе для гиперболического уравнения со смешанной производной// в кн.: Математика. Механика. Т. 24. — Саратов: Изд-во Саратов. ун-та, 2022. — С. 53–58.
  31. Рыхлов В. С. Обобщённое решение начально-граничной задачи для волнового уравнения со смешанной производной и ненулевым потенциалом// Мат. Междунар. конф. «Современные методы теории краевых задач». Воронежская весенняя математическая школа «Понтрягинские чтения–XXXIV» (Воронеж, 3-9 мая 2023 г.). — Воронеж: ВГУ, 2023. — С. 343–345.
  32. Рыхлов В. С. О решении начально-граничной задачи в полуполосе для гиперболического уравнения со смешанной производной// Итоги науки техн. Совр. мат. прилож. Темат. обз. — 2023. — 226. — С. 89–107.
  33. Рыхлов В. С. Обобщённая начально-граничная задача для волнового уравнения со смешанной производной// Совр. мат. Фундам. напр. — 2023. — 69, № 2. — С. 342–363.
  34. Рыхлов В. С. Обобщенное решение начально-граничной задачи для уравнения гиперболического типа со смешанной производной// Тез. докл. XVII Междунар. науч. конф. «Порядковый анализ и смежные вопросы математического моделирования. Теория операторов и дифференциальные уравнения» (Владикавказ, 14–20 июля 2013 г.). — Владикавказ: ЮМИ ВНЦ РАН, 2023. — С. 207–208.
  35. Рыхлов В. С. Решение начально-граничной задачи для волнового уравнения со смешанной производной и потенцалом общего вида// Сб. трудов XVI Междунар. Казанской школы-конф. «Теория функций, её приложения и смежные вопросы» (Казань, 22–27 августа 2023 г.). — Казань, 2023. —С. 205–207.
  36. Толстов Г. П. О второй смешанной производной// Мат. сб. — 1949. — 24 (66), № 1. — С. 27–51.
  37. Харди Г. Расходящиеся ряды.. — М.: Изд-во иностранной литературы, 1951.
  38. Хромов А. П. Расходящиеся ряды и обобщённая смешанная задача для волнового уравнения// Мат. 21 Междунар. Саратовской зимней школы «Современные проблемы теории функций и их приложения» (Саратов, 31 января — 4 февраля 2022 г.). — Саратов: СГУ, 2022. — С. 319–324.
  39. Хромов А. П. Расходящиеся ряды и обобщённая смешанная задача для волнового уравнения простейшего вида// Изв. Саратов. ун-та. Нов. сер. Мат. Мех. Информ. — 2022. — 22, № 3. — С. 322–331.
  40. Хромов А. П. Поведение формального решения смешанной задачи для волнового уравнения//Ж. вычисл. мат. мат. физ. — 2016. — 56, № 2. — С. 239–251.
  41. Хромов А. П. Расходящиеся ряды и смешанная задача для волнового уравнения// В сб.: Математика. Механика. — 2019. — 21. — С. 62–67.
  42. Хромов А. П. О классическом решении смешанной задачи для однородного волнового уравнения с закрепленными концами и нулевой начальной скоростью// Изв. Саратов. ун-та. Нов. сер. Мат. Мех. Информ. — 2019. — 19, № 3. — С. 280–288.
  43. Хромов А. П. Расходящиеся ряды и функциональные уравнения, связанные с аналогами геометрической прогрессии// Мат. Междунар. конф. «Современные методы теории краевых задач». Воронежская весенняя математическая школа «Понтрягинские чтения–XXX» (Воронеж, 3-9 мая 2019 г.). — Воронеж: ВГУ, 2019. — С. 291–300.
  44. Хромов А. П. Расходящиеся ряды и метод Фурье для волнового уравнения// Мат. 20 Междунар. Саратовской зимней школы «Современные проблемы теории функций и их приложения» (Саратов, 28 января — 1 февраля 2020 г.). — Саратов: Научная книга, 2020. — С. 433–439.
  45. Хромов А. П. Расходящиеся ряды и обобщенная смешанная задача// в кн.: Математика. Механика. Т. 23. — Саратов: Изд-во Саратов. ун-та., 2021. — С. 63–67.
  46. Хромов А. П., Корнев В. В. Классическое и обобщенное решения смешанной задачи для неоднородного волнового уравнения// Ж. вычисл. мат. мат. физ. — 2019. — 59, № 2. — С. 286–300.
  47. Хромов А. П., Корнев В. В. Расходящиеся ряды в методе Фурье для волнового уравнения// Тр. Ин-та мат. мех. УрО РАН. — 2021. — 27, № 4. — С. 215–238.
  48. Хромов А. П., Корнев В. В. Расходящиеся ряды и обобщенная смешанная задача, не допускающая разделения переменных// Тр. Мат. центра им. Н. И. Лобачевского. — 2021. — 60. — С. 325–328.
  49. Эйлер Л. Дифференциальное исчисление. — М., Л.: ГИТТЛ, 1949.
  50. Archibald F. R., Emslie A. G. The vibration of a string having a uniform motion along its length// J. Appl. Mech. — 1958. — 25, № 1. — P. 347–348.
  51. Mahalingam S. Transverse vibrations of power transmission chains// British J. Appl. Phys. — 1957. — 8, № 4. — P. 145–148.
  52. Sack R. A. Transverse oscillations in traveling strings// British J. Appl. Phys. — 1954. — 5, № 6. — P. 224–226.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Function .

Download (38KB)
3. Fig. 2. Sets  and .

Download (56KB)

Copyright (c) 2024 Rykhlov V.S.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».