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Abstract

We investigate metal-dielectric metasurfaces composed from periodic metal nanostrips deposited on
a dielectric substrate. The metasurface can be termed as plasmon zebra (PZ). The metasurface operates
as a set of open plasmon resonators. The theory of plasmon, excited in the open, interconnect resonators,
is developed. The large local electromagnetic field is predicted for optical frequencies when plasmon is
exited. The reflectance of PZ is much enhanced at the frequency of plasmon resonance and PZ ascribe
the color corresponding to the resonance frequency. We propose PZ as simplest but easy tuning plasmon
painting.
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1. Introduction
Optical surface waves, known as surface plasmons (SP), can get excited in metal films. The metal

permittivity 𝜀𝑚 = 𝜀′𝑚 + 𝜀′′𝑚 is mainly negative for good optical metals like silver or gold where 𝜀′𝑚 < 0 and
𝜀′′𝑚 ≪ |𝜀𝑚|. SP, which is electromagnetic field bounded with electric charges, can propagate in the metal
nanofilms that thickness 2ℎ is much less than the wavelength 𝜆. For example, the symmetric SP, where
surface charges have the same signs on both film sides, propagates in a metal nanofilm. The wavevector 𝑞
of the symmetric SP is proportional to 𝑞 ∼ −𝜀𝑑/(𝜀𝑚ℎ), recall that 𝜀′𝑚 < 0. The esteem is obtained for the
thin film (𝑑 ≪ 𝜆) by considering the film as an inductive plane. Mean free-path estimates as 𝑙𝑝 = 1/ℑ𝑞 ∼
ℎ |𝜀𝑚|2 /(𝜀𝑑𝜀′′𝑚) ≫ ℎ, so that it is much larger than the film thickness. The incident light cannot excite SP
in the unbound, infinite metal plane since SP velocity is always less than the speed of light. Yet, SP can be
easily excited in any finite peace of the of the metal film since SP transfers momentum to the environment
by reflecting from the edges. The propagating SP reflects from the edges of the metal film and forms a
standing wave. That is a finite patch of the metal film operates as an open plasmon resonator in optical and
infrared frequency bands. For example, the simple system of the parallel metal strips operates as a set of the
interconnecting plasmon resonators. This plasmon zebra (PZ) system is shown in Fig. 1. SP being excited
in 𝑥 direction, which is perpendicular to the PZ strips, reflects from edges of a strip. It can also jump from
one strip to the neighboring strips. That is SP propagates in the transversal direction (x direction in Fig. 1).
The phase speed of the transversal SP depends on the PZ parameters. Therefore its wavevector 𝑞 can be
fitted to an arbitrary value by varying the width, thickness of the metal strips as well as by change the gap
between strips. The reflectance has maximum(s) at the resonance(s). Being illuminate by natural light PZ
ascribe the color in reflection corresponding to the frequency of the plasmon resonance.

To simplify the consideration the quasistatic approximation is used that conveys the main features of
the plasmon resonance. We assume that the PZ period is less than 𝜆/2. Then the incident light does not
diffract at the PZ but just produces reflected and transmitted EM waves. The evanescent waves, localized
around the subwavelength PZ, are mainly due to excitation SP in the PZ. EM properties can be discussed
in terms of the effective permittivity 𝜀𝑒, i.e., the film conductance Σ𝑒, and effective permeability 𝜇𝑒. Note
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Рис. 1: Metal plasmon zebra (PZ) composed from parallel metal strips (gray color) with thickness 2ℎ and
width 2𝑑 that are separated by interstrip gates with width 2𝑔; period of PZ equals to 2(𝑑+𝑔). Light is incident
from above at angle 𝜃 to the normal. The metal strips are staffed between substrate with permittivity 𝜀𝑑
and upper dielectric protective layer with permittivity 𝜀𝑒.

the permeability 𝜇𝑒 almost equal to one for the thin PZ. Optical reflectance from PZ achieves maximum
when SP is excited in PZ strips. The natural light is composed from EM waves of various wavelengths. The
light reflected from PZ is composed mainly from the wavelengths corresponding to the SP resonances. That
is metal subwavelength PZ has a color that depends, in general, on the angle of the incidence and light
polarization. By fitting the parameters of PZ can be used as a plasmon painting with any wanted color and
almost zero thickness. The glass coloring by plasmon nanoparticles was known from the time of the ancient
Egypt (see, e.g., Lycurgus Cup in the British museum [1]). One can see the plasmon paintings does not fade for
many centuries. Plasmon structures are considered as main ingredient responsible for the beautiful European
cathedral-stained glass windows [2]. Recent nanotechnology pave the way for mass production of the light,
flexible, nanothin and almost eternal plasmon paintings. Moreover, plasmon paintings are environmentally
friendly since they do not contains dies, which are very often rather toxic [3]. Various technologies were studied
[4–6] including electron beam lithography [7–15] ion milling, [8, 16–18] and nanoimprint lithography [7]. In
recent work of Shalaev’s group [19] a sustainable, lithography-free process is demonstrated for generating
non fading plasmon colors with a prototype device that produces a wide range of vivid colors. The extended
color palette is obtained through photo-modification by the heating of the localized SP under femtosecond
laser illumination [20]. The proposed printing approach can be extended to other applications including laser
marking, anti-counterfeiting, and chrome-encryption.

In this paper we present analytical theory for propagating or localized SP in PZ, which is the simplest
possible periodic plasmon metasurface consisting of the parallel metal nanostrips. The explicit equations are
derived for the reflectance as well as for the local EM field. We use the GOL approximation [21,22] considering
EM field around PZ in self consistent way. SP propagating in the lateral directions along the metasurface are
incorporated in GOL approach. The developed theory gives the value of the resonance local electric field that
can be enhanced by orders on magnitude compared to the impinged light. The reflectance, local field and
SERS were found in the system of silicone bars covered by the silver film shown in Fig. 2 [23–26]. Since the
resonance fields are much enhanced in the silver bars of this PZ, it is used as SERS substrate. The smooth
spatial structure of the film is convenient for the analyte deposition and can be tuned for effective adsorbing
and sensing microscopic objects like protein molecules or viruses [27–29].
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Рис. 2: Scanning electron microscopy image of the silver zebra on silicone substrate (reprint from [24]).

2. Quasistatic Theory of Plasmon Resonance
We consider the interaction of a nanothin-thin metal film with thickness 2ℎ with an incident light.

As it was mentioned above the metal permittivity 𝜀𝑚 = 𝜀′𝑚 + 𝜀′′𝑚 is mainly negative, namely, 𝜀′𝑚 < 0 and
𝜀′′𝑚 ≪ |𝜀𝑚|. The film is deposited on the dielectric substrate with the permittivity 𝜀𝑑 and it is covered with
a protective dielectric layer 𝜀𝑒. The thickness 2ℎ of the metal film is chosen in such a way that the incident
light infiltrate in the substrate. The propagation of SP in the metal film that thickness 2ℎ is less than the
skin layer can be considered in the quasistatic approximation. In this case the electric field 𝐸 of SP can be
find in terns of the electric potential 𝜙 so that 𝐸 = −∇𝜙. The electric potential is a solution of the Laplace
equation △𝜙 = 0.

We consider the metal film placed at the plane 𝑧 = 0. SP propagates over the film in 𝑥 direction with
wavevector 𝑞. The electric field is invariant under translation in 𝑦 direction (see Fig. 1). SP field exponentially
decays away from PZ. Electric potential 𝜙𝑒 above the film (𝑧 < −ℎ) equals to 𝜙𝑒 = 𝐴 exp(𝑖𝑞𝑥) exp(𝑞𝑧), the
potential below film (𝑧 > ℎ) equals to 𝜙𝑑 = 𝐵 exp(𝑖𝑞𝑥) exp(−𝑞𝑧). Inside the metal film (−ℎ < 𝑧 < ℎ ) the
solution of the Laplace equation has the form 𝜙𝑚 = exp(𝑖𝑞𝑥)[𝐶1 exp(𝑞𝑧)+𝐶2 exp(−𝑞𝑧)]. To find the electric
field 𝐸 in SP that is the coefficients 𝐴,𝐵,𝐶1, and 𝐶2 we use the boundary conditions

𝐸𝑒,𝑥 = 𝐸𝑚,𝑥, 𝜀𝑒𝐸𝑒,𝑧 = 𝜀𝑚𝐸𝑚,𝑧; 𝑧 = −ℎ, (1)

𝐸𝑑,𝑥 = 𝐸𝑚,𝑥, 𝜀𝑑𝐸𝑑,𝑧 = 𝜀𝑚𝐸𝑚,𝑧; 𝑧 = ℎ, (2)

where 𝐸𝑒, 𝐸𝑚, and 𝐸𝑑 are the electric fields in the protective layer, metal film, and dielectric substrate
correspondingly. Equations (1) and (2) have nontrivial solution if and only if the corresponding determinant
𝐷𝑒𝑡 equals to zero. Thus the SP wavevector 𝑞 is obtained from the equation 𝐷𝑒𝑡 = 0

𝑞 =
1

4ℎ
log

[︂
(𝜀𝑒 − 𝜀𝑚) (𝜀𝑑 − 𝜀𝑚)

(𝜀𝑒 + 𝜀𝑚) (𝜀𝑑 + 𝜀𝑚)

]︂
. (3)

Recall the optical metal permittivity is mainly negative ℜ𝜀𝑚 < 0. In the limit |𝜀𝑚| ≫ 𝜀𝑒, 𝜀𝑑, which is typical
for the visible and infrared range, the SP wavevector approximates as

𝑞 ≃ −𝜀𝑒 + 𝜀𝑑
2ℎ𝜀𝑚

(4)

, In any case we suppose that the film thickness 2ℎ is much smaller than the SP wavelength that is ℎ𝑞 ≪ 1.
Then the electric field inside the metal film 𝐸𝑚 does not depend on the normal coordinate ”𝑧” and the
electric current 𝐽(𝑥) is function of ”𝑥”, which is a solution of the wave equation for SP, namely,

𝑑2𝐽(𝑥)

𝑑 𝑥2
+ 𝑞2𝐽(𝑥) = 𝑞2Σ𝐸𝑒(𝑥), (5)

where the external field 𝐸𝑒 is added to the r.h.s. The term Σ in r.h.s. of Eq. (5) is in general a linear operator
which gives spatial harmonics of the electric nearfield when the external field 𝐸𝑒 is an arbitrary function
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of the coordinate ”𝑥”. To simplify the consideration we take into account the field modulation due to the
SP excitation only and approximate as Σ ≃ 2ℎ𝜎𝑚, where 𝜎𝑚 − 𝑖

𝜔𝜀𝑚
4𝜋

is the metal conductivity. When the
spatial scale of the external field 𝐸𝑒(𝑥) is much larger than the plasmon wavelength 𝜆𝑝 = 2𝜋/𝑞 the current
𝐽(𝑥) = 2ℎ𝜎𝑚𝐸𝑒(𝑥). That is we assume that the film current follows the external field and this approach can
be called one mode approximation.

The plane EM wave excites SP in the metal nanostrip that have finite width 2𝑑 and thickness 2ℎ ≪ 2𝑑.
Suppose that the strip is illuminated by the light which is incident under the angel 𝜃 in respect to the normal
to the 𝑥, 𝑦 plane of the film (see Fig. 1). First we consider the plane of incidence, which is perpendicular to the
metal strips, that is the wave vector 𝑘 = 𝑛𝑒𝜔/𝑐, (𝑛𝑒 =

√
𝜀𝑒) has 𝑥 and 𝑧 components k = 𝑘 {sin 𝜃, 0,− cos 𝜃}.

In 𝑃 polarized light the incident electric field has component 𝐸0,𝑥 = 𝐸0 cos 𝜃 and the external electric field
in Eq. (5) takes the following form 𝐸𝑒 = 𝐸0,𝑥 exp(𝑖𝑘𝑥𝑥), where 𝐸0,𝑥, and 𝑘𝑥 are the projections of the field
𝐸0 and the wave vector 𝑘 = 𝑛𝑒𝜔/𝑐 of the impingement light. Assuming that |𝜀𝑚| ≫ 𝜀𝑒, 𝜀𝑑 we apply zero
boundary condition 𝐽(±𝑑) = 0 at edges of a strip (see discussion in the next section) and Eq. (5) gives

𝐽(𝑥) = 𝐽1(𝑥) + 𝐽2(𝑥), (6)

where the current

𝐽1(𝑥) = Σ𝑒𝐸𝑒, Σ𝑒 =
2ℎ𝑞2𝜎𝑚

𝑞2 − 𝑘2𝑥
, (7)

does not depend on the edge boundary conditions, and the current

𝐽2(𝑥) = −𝐸𝑒Σ𝑒

𝑒−𝑖𝑥𝑘𝑥
[︀
𝑒𝑖𝑞𝑥 sin 𝑑 (𝑘𝑥 + 𝑞)− 𝑒−𝑖𝑞𝑥 sin 𝑑 (𝑘𝑥 − 𝑞)

]︀
sin 2𝑑𝑞

(8)

is the current due to the reflection of the plasmon from edges of the strip.

The PS wavevector 𝑞 = 𝑞1 + 𝑖𝑞2 is in general a complex value, where the imaginary part 𝑞2 estimates
from Eq. (3) as

𝑞2 =
𝜀′′𝑚 (𝜀𝑑 + 𝜀𝑒)

(︀
𝜀′ 2𝑚 − 𝜀𝑑𝜀𝑒

)︀
2ℎ (𝜀′ 2𝑚 − 𝜀2𝑑) (𝜀

′ 2
𝑚 − 𝜀2𝑒)

. (9)

It is easy to check that 𝑞2/𝑞1 ∼ 𝜀′′𝑚/ |𝜀𝑚| ≪ 1. We obtain from Eq. (8) “odd” plasmon resonances where
𝑞
(𝑜𝑑)
1 𝑑 = (𝜋/2)𝑚, 𝑚 = 1, 3, 5 . . . and “even” resonances where 𝑞

(𝑒𝑣)
1 𝑑 = (𝜋/2)𝑚, 𝑚 = 2, 4, 6 . . .. The electric

field 𝐸max in even and odd SP resonance estimates as

𝐸𝑜𝑑
max = −𝐸0,𝑥

2𝑖𝑚𝑞31
𝜋𝑚𝑞2 (𝑘2𝑥 − 𝑞21)

cos (𝑞1𝑥) cos

(︂
𝜋𝑚𝑘𝑥
2𝑞1

)︂
(10)

and

𝐸𝑒𝑣
max = 𝐸0,𝑥

2𝑖𝑚𝑞31
𝜋𝑚𝑞2 (𝑘2𝑥 − 𝑞21)

sin (𝑞1𝑥) sin

(︂
𝜋𝑚𝑘𝑥
2𝑞1

)︂
(11)

correspondingly. Since we consider narrow strips where 𝑑 ≪ 𝜆, i.e., 𝑞1 ≫ 𝑘𝑥 the odd resonances estimate as
|𝐸𝑒𝑣

max/𝐸0,𝑥| ∼ |𝑘𝑥/𝑞2| and it is much less than the even resonances |𝐸𝑒𝑣
max/𝐸0,𝑥| ∼ 𝑞1/𝑞2 ∼ |𝜀′𝑚/𝜀′′𝑚| ≫ 1 .

When the light is impinged normal to the thin metal strip, i.e., 𝑘𝑥 = 0 the even resonances get excited only.
In 𝑆 polarization when the electric field is perpendicular to the plane of incidence the external electric field
{0, 𝐸0, 0} is aligned with the strip direction. Then the current 𝐽𝑦 = Σ𝑒𝐸0 flows along continuous nanothin
metal strip.

For example, we consider the strip embedded in the dielectric host with permittivity 𝜀𝑒 = 𝜀𝑑. The
condition for the first resonance 𝑞𝑑 = 𝜋/2 can be rewritten by substituting the wavevector 𝑞 from Eq. (4),

obtaining
𝜀𝑚ℎ

𝜀𝑑𝑑
=

2

𝜋
. This result close to the well known quasistatic result for the plasmon resonance in the

prolate metal 2𝐷 ellipsoid (semi-axes ℎ ≪ 𝑑 ) which resonates when
𝜀𝑚ℎ

𝜀𝑑𝑑
= 1 (see, e.g., [30]).

The similar consideration holds when {𝑦, 𝑧} is the plane of incidence. That is EM wave is impinged
along the strip. In this case 𝑆 polarized EM wave excites SP since the 𝑆 electric field is directed across
the strip whereas the resonance conditions remains the same. Thus we obtain that the natural light, which
contains EM waves with various polarization, excites SP in a metal strip for any direction of the incidence.
Above equations are derived for a single metal strip.

Consider now PZ composed from the periodic system of the parallel metal nanostrips. It is still
assumed that the strip thickness 2ℎ is much less than the skin depth so the electric field does not depend
on the coordinate 𝑧 in the metal strip. Recall the width of a strip equals 2𝑑, the gap between neighboring

28



Современная электродинамика, № 5 (13), 2024

strips equals to 2𝑔 (see schematic Fig. 3), so the PZ period equals to 2𝑑 + 2𝑔 < 𝜆/2. Conductance of PZ is
anisotropic: The conductance in 𝑦 direction equals to Σ𝑦𝑦 = Σ𝑒𝑝, where 𝑝 = 𝑑/(𝑑 + 𝑔) is the part of the
𝑧 = 0 interface, which is covered by the metal strips, the surface conductance Σ𝑒 is given by Eq. (6).

To find the conductance Σ𝑥𝑥 across the strips it is necessary to find the electric current when the
transverse external field 𝐸𝑒 is applied. The current inside the strip is still given by Eq. (6). However, the
current 𝐽(𝑥) does not now vanish at the edges of the strip since two neighboring strips have the capacity
connection. The interstrip capacitance connects neighboring metal strips that results in collective response of

Рис. 3: Lumped circuit of plasmon zebra with period 2𝑑+2𝑔; electric current 𝐽(𝑥) flows in metal nanostrips
that are connected via interstrip capacitance 𝐶.

PZ to the external field. The interstrip capacitance 𝐶 shown in Fig. 3 we approximate as capacitance between
two thin strips made of perfectly conducting metal. Two perfectly conducting strips are placed at interface
𝑧 = 0 between upper half space 𝑧 > 0 with permittivity 𝜀𝑒 and lower half -space 𝑧 < 0 with permittivity 𝜀𝑑.
First perfect strip has width 2𝑑 and it is centered at the origin of the coordinate. Second perfectly conducting
also has width 2𝑑 and its center is at the coordinate 𝑥 = 2(𝑑+ 𝑔). The gap between right and left edges of
the strips equal 2𝑔. To find the capacitance 𝐶 we suppose left strip has the electric charge 𝑄 and right strip
has charge −𝑄. Then the electric field is elementary found from complex variable theory. We introduce the
complex variable 𝑢 = 𝑥− 𝑑− 𝑔 + 𝑖𝑧, then the complex electric field 𝐸𝑔(𝑢) = 𝐸𝑔𝑥(𝑢) + 𝑖𝐸𝑔𝑦(𝑢) equals to

𝐸𝑔(𝑢) = 𝐸𝑔𝑥(𝑢)− 𝑖𝐸𝑔𝑧(𝑢) =
𝐸0𝑔 𝑑(2𝑑+ 𝑔)√︀

(𝑑2 − 𝑢2)((2𝑑+ 𝑔)2 − 𝑢2)
, (12)

where 𝐸𝑔𝑥 and 𝐸𝑔𝑧 take real values that are proportional to the charge 𝑄. The complex electric field 𝐸𝑔 is
an analytical function. Therefore their components 𝐸𝑔𝑥(𝑢) and 𝐸𝑔𝑧(𝑢) are solutions of the Laplace equation.
The branch of the analytical function 𝐸𝑔(𝑢) is chosen so that 𝐸𝑔(0) = 𝐸0𝑔. The electric field 𝐸𝑔 has only
”𝑧” component on the surface of the metal plates. Therefore, the electric charge equals to

𝑄1 = 𝑖𝛼

∫︁ −𝑔

−2𝑑−𝑔

𝐸𝑔(𝑢) 𝑑𝑢 = 𝐸0𝑔𝛼𝑔𝐾

(︂
4𝑑(𝑑+ 𝑔)

(2𝑑+ 𝑔)2

)︂
≃ 𝐸0,𝑔𝛼𝑔 log

(︂
8𝑑

𝑔

)︂
(13)

for the electric field 𝐸𝑔 given by Eq. (12), where 𝛼 =
𝜀𝑒 + 𝜀𝑑
4𝜋

. The last esteem holds for the narrow slit
between the strips when 𝑔 ≪ 𝑑. The electric charge 𝑄2 on the right strip has the opposite sign 𝑄2 = −𝑄1.

The electric field 𝐸𝑔 has 𝑥 component only in the gap −𝑔 < 𝑢 < 𝑔 between the metal plates. The
electric field 𝐸𝑠 at the edge of the strip is estimated assuming that the strip thickness 2ℎ is much smaller than
the gap width, i.e., 𝑔 ≫ ℎ. Strictly speaking the field given by Eq. (12) goes to infinity exactly at the edges
where 𝑢 = ±𝑔. Since a metal strip has the finite thickness 2ℎ we substitute the coordinate 𝑢1,2 = ±(𝑔 − 2ℎ)
in Eq. (12) obtaining

𝐸1,2 = 𝐸𝑔(𝑢1,2) = ∓𝐸0,𝑔
(2𝑑+ 𝑔)

4
√︀
𝑑(𝑑+ 𝑔)

√︂
𝑔

ℎ
, (14)

where the condition 𝑔 ≫ ℎ is taken into account. The current flows out of the edge 𝑢2 equals to 𝐽2 = (𝜎𝑒 +

𝜎𝑑)ℎ𝐸2, where 𝜎𝑒,𝑑 = −𝑖
𝜔𝜀𝑒,𝑑
4𝜋

. The ratio of the derivative of the charge with respect to time −𝑑𝑄/𝑑𝑡 = 𝑖𝜔𝑄1

to the current 𝐽 equals to

𝑁 = −4

√︀
𝑑(𝑑+ 𝑔)

(2𝑑+ 𝑔)

√︂
𝑔

ℎ
𝐾

(︂
4𝑑(𝑑+ 𝑔)

(2𝑑+ 𝑔)2

)︂
. (15)

It is a dimensionless quantity, which depends on the geometry of the system, namely, the strip width 2𝑑,
strip thickness 2ℎ and the gap 2𝑔 between the neighboring trips.

On the other hand the electric charge 𝑄 at the edge of the strip (see Fig. 3) estimates from the charge

conservation law as 𝑄 ∼ 𝑙

𝑖𝜔

𝑑𝐽(𝑥)

𝑑𝑥
|𝑥=𝑑, where the current 𝐽(𝑥) is given by Eq. (5), 𝑙 is the characteristic

length for the charge distribution. The capacity connection between the metal strips in PZ is important
at the plasmon resonances when the number of maxima of the current |𝐽(𝑥)| equals to the order 𝑚 of the
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resonance. Then the length 𝑙 could be estimated as 𝑙 ∼ 𝑑/𝑚, where 𝑚 = 1, 2, 3, . . . is the order of the
resonance. We obtain the following boundary condition for the electric current at the strip edges.

𝑑

𝐽(𝑥)

𝑑 𝐽(𝑥)

𝑑𝑥

⃒⃒⃒⃒
𝑥=𝑑

= − 𝑑

𝐽(𝑥)

𝑑𝐽(𝑥)

𝑑𝑥

⃒⃒⃒⃒
𝑥=−𝑑

= 𝛾𝑚𝑁 = −𝛽, (16)

where 𝛾 is a numerical coefficient. The value of 𝛾 cam be obtained by comparison with computer simulation.
Bellow, to simplify consideration, we put 𝛾 ≈ 1. The important parameter 𝛽 approximates as 𝛽 ≃ 2𝜋

√︀
𝑑/ℎ

for the isolated strips when the gap 𝑔 ≫ 𝑑. It is independent on the gap value 𝑔 and much larger than
one 𝛽 ≫ 1, which corresponds to the boundary conditions 𝐽(±𝑑) = 0 used in the previous section. In the

opposite case of a narrow slit between the strips 𝑔 ≪ 𝑑 the boundary parameter 𝛽 ≃ 2

√︂
𝑔

ℎ
log

(︂
8𝑑

𝑔

)︂
so it is

again much larger than one since we consider narrow strips which thikness ℎ ≪ 𝑔, 𝑑.

The plasmon current is obtained from the solution of Eq. (5) with Eq. (16) boundary conditions

𝐽(𝑥) = 𝐽1(𝑥) + 𝐽2(𝑥), 𝐽2(𝑥) = −𝐸𝑒Σ𝑒
𝐴(𝑞)𝑒𝑖𝑞𝑥 −𝐴(−𝑞)𝑒−𝑖𝑞𝑥

2𝐷1(𝑞)𝐷2(𝑞)
, (17)

𝐴(𝑞) =
(︀
𝛽2 − 𝑑2𝑞𝑘𝑥

)︀
sin (𝑑 (𝑘𝑥 + 𝑞)) + 𝛽𝑑 (𝑘𝑥 + 𝑞) cos (𝑑 (𝑘𝑥 + 𝑞)) , (18)

𝐷1(𝑞) = 𝛽 cos(𝑑𝑞)− 𝑑𝑞 sin(𝑑𝑞), 𝐷2(𝑞) = 𝛽 sin(𝑑𝑞) + 𝑑𝑞 cos(𝑑𝑞), (19)

where the current 𝐽1(𝑥) and the conductance Σ𝑒 are given by Eq. (7). The plasmon current 𝐽(𝑥) has evident
resonance when the projection of the wavevector 𝑘𝑥 of the incident light equals to the plasmon wavevector
ℜ𝑞 = 𝑘𝑥. It could happen in so-called Kretschmann geometry where the upper half space (𝑧 < 0) permittivity
𝜀𝑒 is larger than the lower half-space permittivity 𝜀𝑒 > 𝜀𝑑 and also the angle of incidence 𝜃 (see Fig. 1) is
large enough so that 𝑘𝑥 = sin 𝜃

𝜔

𝑐

√
𝜀𝑒 = 𝑞. Then EM wave, which is incident from above, excites plasmon in

a metal film.

Yet, we consider in this paper the EM that propagating in all the space. The resonance can happen
for any 𝑘𝑥, i.e., for any incident wave when the discriminant 𝐷1(𝑞)𝐷2(𝑞) in Eq. (17) vanishes. Consider the
plasmon electric field of the first order resonance where 𝑚 = 1. To simplify the consideration we assume that
𝑘𝑥 = 0 that is the light is incident normal to the PZ plane, i.e. 𝑧 = 0 plane. Then the dimensionless plasmon
electric field |𝐸(𝑥)|2 = |𝐽(𝑥)/(𝐸𝑒2ℎ𝜎𝑚)|2 reaches its maximum at the centers of PZ strips. Substituting the
plasmon current from Eq. (17) we obtain

|𝐸(0)|2 =

⃒⃒⃒⃒
1− 𝛽

𝐷1(𝑞)

⃒⃒⃒⃒2
(20)

The real part of the discriminant 𝐷1 vanishes exactly at the resonance when 𝐷1(𝑞 = 𝑞𝑟) = 0, 𝑞𝑟 = 𝑞𝑟1 + 𝑖𝑞𝑟2
. Expanding 𝐷1(𝑞𝑟) in series of 𝑞𝑟2 we obtain the maximum resonance field

|𝐸𝑚𝑎𝑥|2 ≃ 𝛽4

𝑑2𝑞2𝑟2 (𝛽
2 + 𝛽 + 𝑑2𝑞2𝑟1)

2
sin (𝑑𝑞𝑟1)

2
(21)

The wavelength 𝜆𝑝 of the plasmon is on the order of the width 2𝑑of a strip, that is 𝑑𝑞𝑟1 ∼ 𝑑/𝜆 ∼ 1 in the
resonance. On the other hand the parameter 𝛽 given by Eq. (16) is proportional to 𝛽 ∼ 1/

√︀
𝑔/ℎ and it could

be rather large for a thin metal film, where the thickness ℎ is much smaller than the inter strip gap 𝑔 ≫ ℎ.
The dispersion equation 𝐷1(𝑞𝑟1) = 0 is expanded in reciprocal powers of 𝛽, which gives

𝑞𝑟1 =
𝜋

2𝑑

(︀
1− 𝛽−1 + 𝛽−2

)︀
, (22)

and the maximum field estimates as 𝐸max ∼ 1/(𝑑𝑞𝑟2)
2. Substituting here imaginary part 𝑞𝑟2 from Eq. (9)

we obtain the following

|𝐸𝑚𝑎𝑥|2 ≃
4ℎ2

(︀
𝜀′2𝑚 − 𝜀2𝑑

)︀
2
(︀
𝜀′2𝑚 − 𝜀2𝑒

)︀
2

𝜀′′2𝑚 𝑑2 (𝜀𝑑 + 𝜀𝑒) 2 (𝜀′2𝑚 − 𝜀𝑑𝜀𝑒) 2
∼ 𝜀′4𝑚

𝜀′′2𝑚

(︂
2ℎ

𝑑 (𝜀𝑑 + 𝜀𝑒)

)︂2

, (23)

where the last esteem holds for red and infrared spectral range where the metal permittivity is typically
large |𝜀𝑚| ≫ 1. For example, the silver permittivity estimates as 𝜀𝐴𝑔 ≃ −30 + 𝑖0.38 [31], therefore, the
factor 𝜀′4𝑚/𝜀′′2𝑚 > 106 is huge in Eq. (23). Note the electric field enhancement in metal nanoparticles is
typically restricted by the radiation loss that rapidly increases with the particle size. Yet, a radiation loss
is almost zero for the fully periodic PZ, the radiation loss happens due to the manufacturing imperfections
only. We speculate that the result for the huge resonance field enhancement obtained above in quasistatic
approximation holds up to diffraction limit. The electric field 𝐸𝑚𝑎𝑥 in PZ is shown in Fig. 4. It can be
observed that local electric field can be enhanced in PZ for any part of visible spectrum.
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Рис. 4: Electric field enhancement in PZ illuminate by light impinged normal to PZ plane; metal strip
thickness 2ℎ = 10𝑛𝑚, interstrip gap 2𝑔 = 40𝑛𝑚, strip width 2𝑑 = 180, 100, 60𝑛𝑚 (red, green, blue);
amplitude of incident light 𝐸0 = 1.

3. Reflectance and Color of Plasmon Zebra
It is save to suppose that even thin PZ effectively reflects the light, which wavelength correspond to

the plasmon resonance. That is the color of PZ corresponds to the resonance wavelength. The reflectance of
PZ is defined by its effective surface conductance Σ(𝑒𝑓), which is anisotropic in this case Σ(𝑒𝑓) = {Σ𝑥,Σ𝑦}.
The effective surface conductance is obtained by average of the electric current over the PZ plane Σ𝑥 =

𝑝
∫︀ 𝑑

−𝑑
𝐽(𝑥)/𝐸(𝑥) 𝑑𝑥/2𝑑, Σ𝑦 = 𝑝Σ𝑒, where 𝑝 = 𝑑/(𝑑 + 𝑔) is the fraction of 𝑧 = 0 plane, which is covered by

the metal strips. Integration of the electric current given by Eq. (17) gives the effective 𝑥 conductance

Σ𝑥 = 𝑝Σ𝑒

[︂
sin 𝑑𝑘𝑥
𝑑𝑘𝑥

+
sin 𝑑𝑞 (𝑑𝑘𝑥 sin 𝑑𝑘𝑥 − 𝛽 cos 𝑑𝑘𝑥)

𝑑𝑞𝐷1(𝑞)

]︂
, (24)

which resonates as it is shown in Fig. 5. The PZ permittivity resonate when the discriminant 𝐷1(𝑞) ≃ 0,
i.e., for the odd plasmon resonances. In this sense the even resonances (𝐷2(𝑞) = 0) are so-called dark
resonances [32].

Рис. 5: Ratio of real and imaginary parts of the effective zebra permittivity 𝜀
(𝑒)
𝑥 = 𝜀

′(𝑒)
𝑥 + 𝑖𝜀

′′(𝑒)
𝑥 to silver

permittivity 𝜀𝐴𝑔; red and dark red strip width 2𝑑 = 180𝑛𝑚, green and dark green 2𝑑 = 100𝑛𝑚, blue and
dark blue 2𝑑 = 60𝑛𝑚; metal strip thickness 2ℎ = 10𝑛𝑚, interstrip gap 2𝑔 = 40𝑛𝑚.
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We consider here, for simplicity, the case when the natural light is incident normal to the plane of
PZ. The reflectance 𝑟 of a thin metal film, which thickness is less than the skin depth, is defined by the
surface conductance (see, e.g., [33, 34]) or effective surface permittivity 𝜀(𝑒𝑓) = −𝑖2𝜋Σ𝑒/ℎ𝜔. The effective
surface permittivity is anisotropic 𝜀𝑒 =

{︀
𝜀𝑒𝑥, 𝜀

𝑒
𝑦

}︀
for a PZ. Recall we consider PZ composed of parallel metal

strips, which are aligned with 𝑦 axis as it is shown in Fig. 1. The reflectance 𝑟 is obtained by matching
the incident EM wave in the upper half space, where the electric field 𝐸𝑒 ∼ 𝐸0 [exp(𝑖𝑘𝑒𝑧) + 𝑟 exp(−𝑖𝑘𝑒𝑧)]
and the transmitted wave in the lower half space 𝐸𝑑 ∼ 𝐸0𝑡 exp(𝑖𝑘𝑑𝑧), where 𝑡 is the transmittance of PZ;
wavevectors of the incident and transmittance waves equal to 𝑘𝑒 = 𝑛𝑒𝑘 and 𝑘𝑑 = 𝑛𝑑𝑘, where 𝑛𝑒 =

√
𝜀𝑒 and

𝑛𝑑 =
√
𝜀𝑑. That is we extrapolate EM field to PZ surface, i.e., to the plane 𝑧 = −ℎ (see Fig. 1). By the same

token we extrapolate farfield in the lower half space 𝐸𝑑 ∼ 𝐸0𝑡 exp(𝑖𝑘𝑑𝑧) to the lower PZ boundary 𝑧 = ℎ.
Among all EM spatial harmonics excited in PZ we take into account those that are due to the plasmon
resonance. The field of SP is added to the fields 𝐸𝑒 and 𝐸𝑑. This approach is similar to GOL method [21,22]
and can be called one mode GOL approximation.

The vector of the electric field 𝐸0 = {𝐸0𝑥, 𝐸0𝑦, 𝐸0𝑧, } is determined by the polarization of the incident
light. To find the reflectance 𝑟 and transmittance 𝑡 of a thin film we equate the electric field of the incident
light, electric field in the film, and the field in the transmitted light in the middle of the film at the plane
𝑧 = 0. The reflectance 𝑟 is defined by the polarization of the incident light when the direction of EM wave is
normal to the film. Then solution of the Maxwell equations and matching the magnetic fields at the interfaces
of the film gives

𝑟𝑥,𝑦 =
𝑛𝑒 − 𝑛𝑑 +𝑊𝑥,𝑦

(︀
𝜀𝑒𝑥,𝑦 − 𝑛𝑑𝑛𝑒

)︀
𝑛𝑑 + 𝑛𝑒 −𝑊𝑥,𝑦

(︀
𝜀𝑒𝑥,𝑦 + 𝑛𝑑𝑛𝑒

)︀ , (25)

where
𝑊𝑥,𝑦 = 𝑖 tan

(︀
2ℎ𝑘

√︀
𝜀𝑒𝑥,𝑦

)︀
/
√︀

𝜀𝑒𝑥,𝑦, (26)

where the effective surface permittivity 𝜀𝑒𝑥,𝑦 = 𝑖
2𝜋

𝜔ℎ
{Σ𝑥,Σ𝑦} is obtained from Eq. (24), wavevector 𝑘 = 𝜔/𝑐.

The reflectance of PZ is shown in Fig. 6. The maxima of the reflectance correspond to the maxima of the
effective PZ permittivity (Fig. 5). Note the reflectance of PZ with the strip width of 200𝑛𝑚 has two maxima

Рис. 6: Reflectance of silver zebra with thickness 2ℎ = 10𝑛𝑚, interstrip gap 2𝑔 = 40𝑛𝑚, that is deposited
on glass substrate 𝜀𝑒 = 1, 𝜀𝑑 = 2; red and dark-red are 𝑥 and 𝑦 reflectances of PZ with strip width
2𝑑 = 180𝑛𝑚, green and dark-green are 𝑥 and 𝑦 reflectances with width 2𝑑 = 100𝑛𝑚, blue and dark-blue
are 𝑥 and 𝑦 reflectances with width 2𝑑 = 60𝑛𝑚; gray line is reflectance of bulk silver plate.

that correspond to the first 𝑚 = 1, 𝜆 ≃ 650𝑛𝑚 and third 𝑚 = 3, 𝜆 ≃ 370𝑛𝑚 plasmon resonances.

The reflectance of PZ is anisotropic as well as surface conductivity as it is shown in Figs. 5 and
6. We consider the color of PZ when it is illuminated by the natural light, which is composed from EM
of various polarization. We assume that photons of different polarization are incoherent. Therefore, the
total reflection coefficient being averaged over the polarization equals to 𝑅(𝜆) =

(︁
|𝑟𝑥(𝜆)|2 + |𝑟𝑦(𝜆)|2

)︁
/2.

We are interested in the PZ color, which is determined by behavior the reflection 𝑅(𝜆) as function of the
wavelength. The coloring is well established problem discussed, for example, in the recent papers [19,35–38].
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Yet, everybody sees her/his own a color shadow. For qualitative consideration we adopt the simplest possible
approach. All visible spectrum is divided on three parts: red 𝜆𝐺1 < 𝜆 < 𝜆𝑅, green 𝜆𝐺2 < 𝜆 < 𝜆𝐺1, and
blue 𝜆𝐵 < 𝜆 < 𝜆𝐺2, where 𝜆𝑅 = 680 𝑛𝑚, 𝜆𝐺1 = 590 𝑛𝑚, 𝜆𝐺2 = 480 𝑛𝑚, and 𝜆𝐵 = 390 𝑛𝑚. We calculate
the {R,G,B} color as R = 𝑊1

∫︀ 𝜆𝑅

𝜆𝐺1
𝑅(𝜆) 𝑑𝜆, G = 𝑊2

∫︀ 𝜆𝐺1

𝜆𝐺2
𝑅(𝜆) 𝑑𝜆, and B = 𝑊3

∫︀ 𝜆𝑅

𝜆𝐺1
𝑅(𝜆) 𝑑𝜆, where the

color weights 𝑊1,𝑊2, and 𝑊3, are chosen to mimic real color. We consider here the silver PZ, then the color
weights {𝑊1,𝑊2,𝑊3} = {0.80, 0.83, 0.85} are chosen in such a way that {R,G,B} color of the bulk silver,
calculated from the reflectance in Fig. 6 has the silver color indeed as it is shown in Fig. 7. The silver PZ

Рис. 7: Color of silver zebra with thickness 2ℎ = 10𝑛𝑚, interstrip gap 2𝑔 = 40𝑛𝑚, that is deposited on glass
substrate 𝜀𝑒 = 1, 𝜀𝑑 = 2; 1, 2, 3 – color of PZ with strip width 2𝑑 = 200𝑛𝑚, 2𝑑 = 120𝑛𝑚, and 2𝑑 = 80𝑛𝑚,
4–bulk silver plate.

has various colors in Fig. 7 that depends of the parameters that can be easily changed in the process of the
manufacturing. Yet, thus obtained plasmon colors are not pure enough since the PZ reflectance has rather
wide maxima at resonance wavelength.

4. Conclusions
The simple analytical theory is presented for the plasmon resonances in the system of thin periodical

metal strips and patches. In particular plasmon resonance are analytically calculated for the system of parallel
metal strips we called plasmon zebra (PZ). The frequencies of the plasmon resonances correspond to the
maxima of PZ reflectance. Simple PZ with all the strips of the same width gives RGB colors. Combination
the metal strips of different parameters could produce the plasmon painting of arbitrary color.
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Аннотация
Мы исследуем металл-диэлектрические метаповерхности, состоящие из перио-

дических металлических нанополосок, нанесенных на диэлектрическую подложку.
Метаповерхность можно назвать плазмонной зеброй (ПЗ). Метаповерхность работает
как набор открытых плазмонных резонаторов. Разработана теория плазмона, возбуж-
даемого в открытых резонаторах, соединенных между собой. Предсказано большое
локальное электромагнитное поле для оптических частот, соответствующих возбуж-
дению плазмона. Отражательная способность ПЗ значительно усиливается на частоте
плазмонного резонанса, и ПЗ приписывают цвет, соответствующий резонансной частоте.
Мы предлагаем ПЗ как простейшую, но легко настраиваемую плазмонную нанокраску.

Ключевые слова: зебра-плазмонный резонанс, усиление электромагнитного поля,
нанокраска
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