SUBPOPULATION LYMPHOCYTE STRUCTURE IN EXPERIMENTAL MOUSE INFECTION CAUSED BY VARIANTS OF ONE TICK-BORNE ENCEPHALITIS VIRUS STRAIN


Cite item

Full Text

Abstract

Aim. To study the immunophenotypical peculiarities of mice lymphocytes in experimental infection caused by clones 57 and 58, as the variants of one Tick-borne encephalitis virus (TBEV) strain. Materials and methods. The influence of variants 57 and 58, extracted from the population of one TBEV strain, on immunophenotypical peculiarities of infected mice lymphocytes was studied. Results. In our study, variants 57 and 58 were close by their effect on the structure of lymphocyte subpopulations. The viruses did not influence T lymphocyte number, but in this or that extent, they caused decrease in the number of NKT ( p < 0,05) and T-regulatory cells ( p < 0,05). Both variants also elevated ( p < 0,05) the level of cells with early activation marker (CD45/CD25). The specific feature of variant 57 was induction of B lymphocyte number (CD45/CD/19, p < 0,05). Mixed infection of animals with variants 57 and 58 induced disbalance of immune response, characterized by fall in the number of T lymphocyte, T helper, NK cell pools and rise in B lymphocyte level. Conclusions. Thus, the ability of TBEV variants, as the components of one viral population, to modulate effector functions of hereditary and adaptive immunity at early stages of infectious process was demonstrated.

About the authors

O V Motuzova

Институт полиомиелита и вирусных энцефалитов им. М. П. Чумакова

младший научный сотрудник лаборатории биологии арбовирусов

E A Akhmatova

Первый Московский государственный медицинский университет им. И. М. Сеченова

студентка 3 курса лечебного факультета

V G Khomenkov

НИИ вакцин и сывороток им. И. И. Мечникова

кандидат медицинских наук, ведущий научный сотрудник отдела иммунологии, лаборатория механизмов регуляции иммунитета

N K Akhmatova

НИИ вакцин и сывороток им. И. И. Мечникова

доктор медицинских наук, заведующая лабораторией механизмов регуляции иммунитета

O V Lebedinskaya

Пермский государственный медицинский университет им. академика Е. А. Вагнера

Email: lebedinska@mail.ru
доктор медицинских наук, профессор кафедры гистологии, эмбриологии и цитологии

G G Karganova

Институт полиомиелита и вирусных энцефалитов им. М. П. Чумакова

доктор медицинских наук, профессор, заведующая лабораторией биологии арбовирусов

References

  1. Ахматова Н. К., Киселевский М. В. Врожденный иммунитет: противоопухолевый и противоинфекционный. М.: Практическая медицина 2008; 256.
  2. Исаков В. А. Клинико-патогенетические аспекты тяжелого гриппа. Аллергология и иммунология 2004; 3 (1): 136-144.
  3. Крылова Н. В. Клеточные и молекулярные механизмы противовирусной защиты при клещевом энцефалите: дис. … д-ра мед. наук. М. 2014; 229.
  4. Юсупова Р. Ш., Сибиряк С. В., Каюмова Э. Ю., Сибиряк Д. С. Экспрессия Fas-антигена на лимфоцитах периферической крови и антигенспецифический апоптоз лимфоцитов при туберкулезе легких. Мед. иммунология 2000; 2 (2): 205-206.
  5. Bhardwaj N. Harnessing the immune system to treat cancer. J. Clin. Invest 2007; 117 (5): 1130-1136.
  6. Chiba N. Pathogenicity of tick-borne encephalitis virus isolated in Hokkaido, Japan in mouse model. Vaccine 1999; 17: 779-787.
  7. Diefenbach A., Raulet D. H. The innate immune response to tumors and its role in the induction of T-cell immunity. Immunol. Rev. 2002; 188: 9-21.
  8. Dörrbecker B., Dobler G., Spiegel M., Hufert F. T. Tick-borne encephalitis virus and the immune response of the mammalian host. Travel. Med. Infect. Dis. 2010; 8 (4): 213-222.
  9. Duwaerts C. C., Sun E. P., Cheng C. W., van Rooijen N., Gregory S. H. Cross-activating invariant NKT cells and kupffer cells suppress cholestatic liver injury in a mouse model of biliary obstruction. PLoS One 2013; 8 (11): e79702.
  10. Hall B. M., Tran G. T., Robinson C. M., Hodgkinson S. J. Induction of antigen specific CD4+CD25+Foxp3+T regulatory cells from naïve natural thymic derived T regulatorycells. Int. Immunopharmacol. 2015; pii: S1567-5769(15)00151-4.
  11. Hayasaka D. Mortality following peripheral infection with tick-borne encephalitis virus results from a combination of central nervous system pathology, systemic inflammatory and stress responses. Virology 2009; 390: 139-150.
  12. Hudspeth K., Pontarini E., Tentorio P., Cimino M., Donadon M., Torzilli G. The role of natural killer cells in autoimmune liver disease: A comprehensive review. J. Autoimmun 2013; 46: 55-65.
  13. Matsuoka H., Fujimura T., Mori et al. Mechanism of HDAC inhibitor FR235222-mediated IL-2 transcriptional repression in Jurkat cells. Int. Immunopharmacol 2007; 7 (11): 1422-32.
  14. Overby A. K., Popov V. L., Niedrig M., Weber F. Tick-borne encephalitis virus delays interferon induction and hides its double-stranded RNA in intracellular membrane vesicles. Journal of virology 2010; 84 (17): 8470-8483.
  15. Palus M., Bílý T., Elsterová J., Langhansová H., Salát J., Vancová M., Růžek D. Infection and injury of human astrocytes by tick-borne encephalitis virus. J. Gen. Virol. 2014; 95 (11): 2411-2426.
  16. Preza G. C., Yang O. O., Elliott J., Anton P. A., Ochoa M. T. T lymphocyte density and distribution in human colorectal mucosa, and inefficiency of current cell isolation protocols. PLoS One 2015; 10 (4): e0122723.
  17. Robertson S. J., Mitzel D. N., Taylor R. T., Best S. M., Bloom M. E. Tick-borne flaviviruses: dissecting host immune responses and virus countermeasures. Immunol. Res. 2009; 43 (1-3): 172-186.
  18. Savage P. B. Vaccine development: NKT-cell adjuvants in conjugate. Nat. Chem. Biol. 2014; 10 (11): 882-883.
  19. Takeda K., Okumura K. CAM and NK Cells. eCAM 2004; 1 (1): 17-27.
  20. Xu J., Wu R., Xiang F., Kong Q., Hong J., Kang X. Diversified phenotype of antigen specific CD8+ T cells responding to the immunodominant epitopes of IE and pp65 antigens of human cytomegalovirus. Cell. Immunol. 2015; 295 (2): 105-111.
  21. Yu C., Achazi K., Niedrig M. Tick-borne encephalitis virus triggers inositol-requiring enzyme 1 (IRE1) and transcription factor 6 (ATF6) pathways of unfolded protein response. Virus Res. 2013; 178 (2): 471-477.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2015 Motuzova O.V., Akhmatova E.A., Khomenkov V.G., Akhmatova N.K., Lebedinskaya O.V., Karganova G.G.

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».