Особенности фармакогенетики карбамазепина и наиболее частые нежелательные лекарственные реакции на фоне его применения (обзор литературы)
- Авторы: Скрябин В.Ю.1,2, Застрожин М.С.1,2,3, Брюн Е.А.1,2, Сычев Д.А.2
-
Учреждения:
- Московский научно-практический центр наркологии Департамента здравоохранения
- Российская медицинская академия непрерывного профессионального образования
- Университет Калифорнии
- Выпуск: Том 20, № 3 (2022)
- Страницы: 255-267
- Раздел: Научные обзоры
- URL: https://journal-vniispk.ru/RCF/article/view/108123
- DOI: https://doi.org/10.17816/RCF203255-267
- ID: 108123
Цитировать
Аннотация
Карбамазепин широко применяют для лечения пациентов с эпилепсией, невралгией тройничного нерва и психическими расстройствами, однако терапия нередко оказывается неэффективной, а у части пациентов развиваются нежелательные лекарственные реакции, что отрицательно сказывется как на эффективности, так и на безопасности терапии.
В обзоре систематизирована и представлена актуальная информация, касающаяся фармакокинетики и фармакогенетики карбамазепина, а также наиболее распространенных нежелательных лекарственных реакций, возникающих на фоне его применения. Знание особенностей фармакокинетики, фармакодинамики и фармакогенетики карбамазепина необходимо для оценки влияния генетически детерминированной активности изоферментов цитохромов системы P450 на эффективность и безопасность данного лекарственного средства. Это позволит разработать подходы к персонализации подбора эффективной и безопасной дозы терапии у пациентов на основе индивидуальных клинических и биологических параметров.
Ключевые слова
Полный текст
Открыть статью на сайте журналаОб авторах
Валентин Юрьевич Скрябин
Московский научно-практический центр наркологии Департамента здравоохранения; Российская медицинская академия непрерывного профессионального образования
Email: sardonios@yandex.ru
ORCID iD: 0000-0002-4942-8556
SPIN-код: 4895-5285
Scopus Author ID: 57204416163
канд. мед. наук, заведующий филиалом, доцент кафедры наркологии
Россия, 109390, Москва, Люблинская ул., д. 37/1; МоскваМихаил Сергеевич Застрожин
Московский научно-практический центр наркологии Департамента здравоохранения;Российская медицинская академия непрерывного профессионального образования; Университет Калифорнии
Email: m.s.zastrozhin@gmail.com
ORCID iD: 0000-0002-3964-9726
д-р мед. наук, доцент, руководитель лаборатории генетики и фундаментальных исследований, доцент кафедры наркологии
Россия, 109390, Москва, Люблинская ул., д. 37/1; Москва; Сан-Франциско, Калифорния, (США)Евгений Алексеевич Брюн
Московский научно-практический центр наркологии Департамента здравоохранения;Российская медицинская академия непрерывного профессионального образования
Email: e.a.bryun.mnpcn@rambler.ru
ORCID iD: 0000-0002-8366-9732
д-р. мед. наук, профессор, президент Академии, заведующий кафедрой наркологии
Россия, 109390, Москва, Люблинская ул., д. 37/1; МоскваДмитрий Алексеевич Сычев
Российская медицинская академия непрерывного профессионального образования
Автор, ответственный за переписку.
Email: d.a.sychev.rmapo@rambler.ru
ORCID iD: 0000-0002-4496-3680
академик РАН, д-р мед. наук, профессор, ректор, заведующий кафедрой клинической фармакологии
Россия, 109390, Москва, Люблинская ул., д. 37/1Список литературы
- Pearce RE, Lu W, Wang Y, et al. Pathways of carbamazepine bioactivation in vitro. III. The role of human cytochrome P450 enzymes in the formation of 2,3-dihydroxycarbamazepine. Drug Metab Dispos. 2008;36(8):1637–1649. doi: 10.1124/dmd.107.019562
- Schindler W., Häfliger F. Über Derivate des Iminodibenzyls. Helvetica Chimica Acta. 1954;37(2):472–483. (In Germ.)
- Kremets KG. Carbamazepine for treatment of alcohol withdrawal. Mezhdunarodnyi nevrologicheskii zhurnal. 2012;(2(48)):163–166. (In Russ.)
- Shnaider NA, Bochanova EN, Dmitrenko DV, et al. Pharmacogenetics of carbamazepine. Epilepsy and Paroxysmal Conditions. 2019;11(4): 364–378. (In Russ.) doi: 10.17749/2077-8333.2019.11.4.364-378
- Nechaev MO, Sychev DA, Zastrozhin MS, et al. Pharmacogenetic aspects of efficacy and safety profile of carbamazepine (review). Narcology. 2019;18(4):68–82. (In Russ.)
- Karlov VA, Vlasov PN, Kozhokaru AB, et al. Dynamics of epileptiform activity and the efficacy and tolerance of valproic acid formulations in adolescents and adults with newly diagnosed epilepsy. SS. Korsakov Journal of Neurology and Psychiatry. 2021;121(3):31–38. (In Russ.) doi: 10.17116/jnevro202112103131
- Tolou-Ghamari Z, Zare M, Habibabadi JM, et al. A quick review of carbamazepine pharmacokinetics in epilepsy from 1953 to 2012. J Res Med Sci. 2013;18(Supple 1):S81–S85.
- Kim KA, Oh SO, Park PW, et al. Effect of probenecid on the pharmacokinetics of carbamazepine in healthy subjects. Eur J Clin Pharmacol. 2005;61(4):275–280. doi: 10.1007/s00228-005-0940-7
- Ways of metabolism of valproic acid and carbamazepine preparations. Vestnik Klinicheskoi bol’nitsy № 51. 2010;3(10):52. (In Russ.)
- Yip VLM, Pertinez H, Meng X, et al. Evaluation of clinical and genetic factors in the population pharmacokinetics of carbamazepine. Br J Clin Pharmacol. 2021;87(6):2572–2588. doi: 10.1111/bcp.14667
- Acute intoxications with carbamazepine from the point of view of epoxide-diol pathway of biotransformation. Toxicological Review. 2013;(2(119)):30–33. (In Russ.)
- Iannaccone T, Sellitto C, Manzo V, et al. Pharmacogenetics of carbamazepine and valproate: focus on polymorphisms of drug metabolizing enzymes and transporters. Pharmaceuticals (Basel). 2021;14(3):204. doi: 10.3390/ph14030204
- Mosolov SN, Kostyukova EG. Klinicheskie rekomendatsii po farmakoprofilaktike retsidivov bipolyarnogo rasstroistva. Part 2. Sovremennaya Terapiya Psikhicheskikh Rasstroistv. 2008;(3):44–57. (In Russ.)
- Rembovskii VR, Mogilenkova LA. Protsessy detoksikatsii pri vozdeistvii khimicheskikh veshchestv na organizm. Saint Petersburg: izd-vo Politekhnicheskogo un-ta; 2017. 384 p.
- Baranov VS. Geneticheskii pasport — osnova individual’noi i prediktivnoi meditsiny. Baranov V.S., editor. Saint Petersburg: Izd-vo N-L, 2009. 528 p.
- Makmor-Bakry M, Sills GJ, Hitiris N, et al. Genetic variants in microsomal epoxide hydrolase influence carbamazepine dosing. Clin Neuropharmacol. 2009;32(4):205–212. doi: 10.1097/WNF.0b013e318187972a
- Daci A, Beretta G, Vllasaliu D, et al. Polymorphic variants of SCN1A and EPHX1 influence plasma carbamazepine concentration, metabolism and pharmacoresistance in a population of Kosovar Albanian epileptic patients. PLoS One. 2015;10(11):e0142408. doi: 10.1371/journal.pone.0142408
- Zhao GX, Shen ML, Zhang Z, et al. Association between EPHX1 polymorphisms and carbamazepine metabolism in epilepsy: A meta-analysis. Int J Clin Pharm. 2019;41(6):1414–1428. doi: 10.1007/s11096-019-00919-y
- He XJ, Jian LY, He XL, et al. Association of ABCB1, CYP3A4, EPHX1, FAS, SCN1A, MICA, and BAG6 polymorphisms with the risk of carbamazepine-induced Stevens–Johnson syndrome/toxic epidermal necrolysis in Chinese Han patients with epilepsy. Epilepsia. 2014;55(8):1301–1306. doi: 10.1111/epi.12655
- Chbili C, Fathallah N, Laouani A, et al. Effects of EPHX1 and CYP3A4*22 genetic polymorphisms on carbamazepine metabolism and drug response among Tunisian epileptic patients. J Neurogenet. 2016;30(1)16–21. doi: 10.3109/01677063.2016.1155571
- Caruso A, Bellia C, Pivetti A, et al. Effects of EPHX1 and CYP3A4 polymorphisms on carbamazepine metabolism in epileptic patients. Pharmgenomics Pers Med. 2014;7:117–120. doi: 10.2147/PGPM.S55548
- Saiz-Rodríguez M, Almenara S, Navares-Gómez M, et al. Effect of the most relevant CYP3A4 and CYP3A5 polymorphisms on the pharmacokinetic parameters of 10 CYP3A substrates. Biomedicines. 2020;8(4):94. doi: 10.3390/biomedicines8040094
- Park PW, Seo YH, Ahn JY, et al. Effect of CYP3A5*3 genotype on serum carbamazepine concentrations at steady state in Korean epileptic patients. J Clin Pharm Ther. 2009;34(5):569–574. doi: 10.1111/j.1365-2710.2009.01057.x
- Ganesapandian M, Ramasamy K, Adithan S, et al. Influence of cytochrome P450 3A5 (CYP3A5) genetic polymorphism on dose-adjusted plasma levels of carbamazepine in epileptic patients in South Indian population. Indian J Pharmacol. 2019;51(6):384–388. doi: 10.4103/ijp.IJP_122_19
- Al-Gahtany M, Karunakaran G, Munisamy M. Pharmacogenetics of CYP3A5 on Carbamazepine pharmacokinetics in epileptic patients developing toxicity. BMC Genom. 2014:2. doi: 10.1186/1471-2164-15-S2-P2
- Puranik YG, Birnbaum AK, Marino SE, et al. Association of carbamazepine major metabolism and transport pathway gene polymorphisms and pharmacokinetics in patients with epilepsy. Pharmacogenomics. 2013;14(1):35–45. doi: 10.2217/pgs.12.180
- Milovanovic DD, Radosavljevic I, Radovanovic M, et al. CYP3A5 polymorphism in Serbian paediatric epileptic patientson carbamazepine treatment. Ser J Exp Clin Res. 2015;16:93–99.
- Hong TP, Huynh Hieu TM, Vo T, et al. Effect of CYP3A5 genotypes on serum carbamazepine concentrations at steady-state in Vietnamese epileptic patients. Res J Pharm Technol. 2020;13:2802.
- Lu Q, Huang YT, Shu Y, et al. Effects of CYP3A5 and UGT2B7 variants on steady-state carbamazepine concentrations in Chinese epileptic patients. Medicine (Baltimore). 2018;97(30):e11662. doi: 10.1097/MD.0000000000011662
- Hung CC, Chang WL, Ho JL, et al. Association of polymorphisms in EPHX1, UGT2B7, ABCB1, ABCC2, SCN1A and SCN2A genes with carbamazepine therapy optimization. Pharmacogenomics. 2012;13(2):159–169. doi: 10.2217/pgs.11.141
- Ma CL, Jiao Z, Wu XY, et al. Association between PK/PD-involved gene polymorphisms and carbamazepine-individualized therapy. Pharmacogenomics. 2015;16(13):1499–1512. doi: 10.2217/pgs.15.94
- Djordjevic N, Milovanovic DD, Radovanovic M, et al. CYP1A2 genotype affects carbamazepine pharmacokinetics in children with epilepsy. Eur J Clin Pharmacol. 2016;72(4):439–445. doi: 10.1007/s00228-015-2006-9
- Tanno LK, Kerr DS, dos Santos B, et al. The absence of CYP3A5*3 is a protective factor to anticonvulsants hypersensitivity reactions: a case-control study in Brazilian subjects. PLoS One. 2015;10(8): e0136141. doi: 10.1371/journal.pone.0136141
- Laska AJ, Han MJ, Lospinoso JA, et al. CYP2C19*2 status in patients with Stevens–Johnson syndrome and toxic epidermal necrolysis. Pharmgenomics Pers Med. 2017;10:183–186. doi: 10.2147/PGPM.S129908
- Milovanovic DD, Milovanovic JR, Radovanovic M, et al. The influence of CYP2C8*3 on carbamazepine serum concentration in epileptic pediatric patients. Balkan J Med Genet. 2016;19(11):21–28. doi: 10.1515/bjmg-2016-0003
- Fricke-Galindo I, Lerena A, Jung-Cook H, et al. Carbamazepine adverse drug reactions. Expert Rev Clin Pharmacol. 2018;7:705–718. doi: 10.1080/17512433.2018.1486707
- Alfimov PV, Pavlichenko AV. Pharmacotherapy: normotimics. Psychiatry and Psychopharmacotherapy. 2021;23(6):4–9. (In Russ.)
- Ostroumova OD, Listratov AI, Kochetkov AI, et al. Drug-induced hyponatremia. 2021;(6(132)):22–34. (In Russ.) doi: 10.20333/25000136-2021-6-22-34
- Lu X, Wang X. Hyponatremia induced by antiepileptic drugs in patients with epilepsy. Expert Opin Drug Saf. 2017;16(1):77–87. doi: 10.1080/14740338.2017.1248399
- Witt JA, Helmstaedter C. Should cognition be screened in new-onset epilepsies? A study in 247 untreated patients. J Neurol. 2012;259(8):1727–1731. doi: 10.1007/s00415-012-6526-2
- Maksimova И.В. Kliniko-dinamicheskie osobennosti i terapiya kognitivnykh rasstroistv pri alkogolizme i alkogol’nykh psikhozakh s sudorozhnym sindromom [dissertation]. Tomsk; 2019.
- Witt JA, Helmstaedter C. Monitoring the cognitive effects of antiepileptic pharmacotherapy — approaching the individual patient. Epilepsy Behav. 2013;26(3):450–456. doi: 10.1016/j.yebeh.2012.09.015
- Shehata GA, Bateh AEM, Hamed SA, et al. Neuropsychological effects of antiepileptic drugs (carbamazepine versus valproate) in adult males with epilepsy. Neuropsychiatr Dis Treat. 2009;5:527–533. doi: 10.2147/ndt.s5903
- Eddy CM, Rickards HE, Cavanna AE. The cognitive impact of antiepileptic drugs. Ther Adv Neurol Disord. 2011;4(6):385–407. doi: 10.1177/1756285611417920
- Meador KJ, Loring DW, Ray PG, et al. Differential cognitive and behavioral effects of carbamazepine and lamotrigine. Neurology. 2001;56(9):1177–1182. doi: 10.1212/wnl.56.9.1177
- Äikiä M, Jutila L, Salmenperä T, et al. Long-term effects of tiagabine monotherapy on cognition and mood in adult patients with chronic partial epilepsy. Epilepsy Behav. 2006;8(4):750–755. doi: 10.1016/j.yebeh.2006.03.007
- Shorvon SD, Trinka E, Steinhoff BJ, et al. Eslicarbazepine acetate: its effectiveness as adjunctive therapy in clinical trials and open studies. J Neurol. 2017;264(3):421–431. doi: 10.1007/s00415-016-8338-2
- Park SP, Kwon SH. Cognitive effects of antiepileptic drugs. J Clin Neurol. 2008;4(3):99–106. doi: 10.3988/jcn.2008.4.3.99
- Khor AH, Lim KS, Tan CT, et al. HLA-B*15:02 association with carbamazepine-induced Stevens–Johnson syndrome and toxic epidermal necrolysis in an Indian population: a pooled-data analysis and meta-analysis. Epilepsia. 2014;55(11): e120–e124. doi: 10.1111/epi.12802
- Yun J, Cai F, Lee FJ, et al. T-cell-mediated drug hypersensitivity: immune mechanisms and their clinical relevance. Asia Pac Allergy. 2016;6(2):77–89. doi: 10.5415/apallergy.2016.6.2.77
- Błaszczyk B, Lasoń W, Czuczwar SJ. Antiepileptic drugs and adverse skin reactions: an update. Pharmacol Rep. 2015;67(3):426–434.
- Roujeau JC, Kelly JP, Naldi L, et al. Medication use and the risk of Stevens–Johnson syndrome or toxic epidermal necrolysis. N Engl J Med. 1995;333(24):1600–1607. doi: 10.1056/NEJM199512143332404
- Kim JY, Lee J, Ko YJ, et al. Multi-indication carbamazepine and the risk of severe cutaneous adverse drug reactions in Korean elderly patients: a Korean health insurance data-based study. PLoS One. 2013;8(12): e83849. doi: 10.1371/journal.pone.0083849
- Mockenhaupt M, Viboud C, Dunant A, et al. Stevens–Johnson syndrome and toxic epidermal necrolysis: assessment of medication risks with emphasis on recently marketed drugs. The EuroSCAR-study. J Invest Dermatol. 2008;128(1):35–44. doi: 10.1038/sj.jid.5701033
- Brodie MJ, Overstall PW, Giorgi L. Multicentre, double-blind, randomised comparison between lamotrigine and carbamazepine in elderly patients with newly diagnosed epilepsy. The UK lamotrigine elderly study group. Epilepsy Res. 1999;37(1):81–87.
- Choudhary S, McLeod M, Torchia D, et al. Drug reaction with eosinophilia and systemic symptoms (DRESS) syndrome. J Clin Aesthet Dermatol. 2013;6(6):31–37.
- Chen YC, Chiu HC, Chu CY. Drug reaction with eosinophilia and systemic symptoms. Arch Dermatol. 2010;146(12):1373–1379.
- Letko E, Papaliodis DN, Papaliodis GN, et al. Stevens–Johnson syndrome and toxic epidermal necrolysis: a review of the literature. Ann Allergy Asthma Immunol. 2005;94(4):419–436. doi: 10.1016/S1081-1206(10)61112-X
- Ostroumova OD, Shikh EV, Shikh NV, et al. Drug-induced liver injury with cholestasis in the neurologist and psychiatric practice. Neurology, Neuropsychiatry, Psychosomatics. 2022;14(1):14–21. (In Russ.) doi: 10.14412/2074-2711-2022-1-14-21
- Björnsson E. Hepatotoxicity associated with antiepileptic drugs. Acta Neurol Scand. 2008;118(5):281–290. doi: 10.1111/j.1600-0404.2008.01009.x
- Pirmohamed M, Kitteringham N, Breckenridge A, et al. Detection of an autoantibody directed against human liver microsomal protein in a patient with carbamazepine hypersensitivity. Br J Clin Pharmacol. 1992;33(2):183–186. doi: 10.1111/j.1365-2125.1992.tb04022.x
- Pandit A, Sachdeva T, Bafna P. Drug-induced hepatotoxicity: a review. J Appl Pharm Sci. 2011;2(5):233–243. doi: 10.7324/JAPS.2012.2541
- Forbes GM, Jeffrey GP, Shilkin KB, et al. Carbamazepine hepatotoxicity: another cause of the vanishing bile duct syndrome. Gastroenterology. 1992;102:1385–1388. doi: 10.1016/0016-5085(92)90780-3
- Asadi-Pooya A, Sperling M. Antiepileptic drugs in patients with hematological disorders. In: Antiepileptic drugs a Clinician’s Manual. New York: Oxford University Press; 2009. P. 165–170. doi: 10.1093/med/9780190214968.003.0018
- Mihailova EA, Fidarova ZT, Troitskaya VV, et al. Clinical recommendations for the diagnosis and treatment of aplastic anemia (2019 edition). Russian Journal of Hematology and Transfusiology. 2020;65(2):208–226. (In Russ.) doi: 10.35754/0234-5730-2020-65-2-208-226
- Young NS, Scheinberg P, Calado RT. Aplastic anemia. Curr Opin Hematol. 2008;15(3):162–168. doi: 10.1097/MOH.0b013e3282fa7470
- Handoko KB, Souverein PC, van Staa TP, et al. Risk of aplastic anemia in patients using antiepileptic drugs. Epilepsia. 2006;47(7):1232–1236. doi: 10.1111/j.1528-1167.2006.00596.x
- Koutsavlis I, Lasebai M. Dose-dependent carbamazepine-induced agranulocytosis following bariatric surgery (sleeve gastrectomy): a possible mechanism. Bariatr Surg Pract Patient Care. 2015;10(3):130–134. doi: 10.1089/bari.2015.0020
- Andress DL, Ozuna J, Tirschwell D, et al. Antiepileptic drug-induced bone loss in young male patients who have seizures. Arch Neurol. 2002;59(5):781–786. doi: 10.1001/archneur.59.5.781
- Arora E, Singh H, Gupta Y. Impact of antiepileptic drugs on bone health: need for monitoring, treatment, and prevention strategies. J Fam Med Prim Care. 2016;5(2):248. doi: 10.4103/2249-4863.192338
- Fitzpatrick LA. Pathophysiology of bone loss in patients receiving anticonvulsant therapy. Epilepsy Behav. 2004;5:3–15. doi: 10.1016/j.yebeh.2003.11.026
- Lee RH, Lyles KW, Colón-Emeric C. A review of the effect of anticonvulsant medications on bone mineral density and fracture risk. Am J Geriatr Pharmacother. 2010;8(1):34–46. doi: 10.1016/j.amjopharm.2010.02.003
- Beerhorst K, Tan IY, De Krom M, et al. Antiepileptic drugs and high prevalence of low bone mineral density in a group of inpatients with chronic epilepsy. Acta Neurol Scand. 2013;128(4):273–280. doi: 10.1111/ane.12118
- Jetté N, Lix LM, Metge CJ, et al. Association of antiepileptic drugs with nontraumatic fractures: a population-based analysis. Arch Neurol. 2011;68(1):107–112. doi: 10.1001/archneurol.2010.341
- Kashihara K, Imai K, Shiro Y, et al. Reversible pitch perception deficit due to carbamazepine. Intern Med. 1998;37(9): 774–775. doi: 10.2169/internalmedicine.37.774
- Hamed SA. The auditory and vestibular toxicities induced by antiepileptic drugs. Expert Opin Drug Saf. 2017;16(11):1281–1294. doi: 10.1080/14740338.2017.1372420
