Cardioprotection of cancer patients receiving cardiotoxic chemotherapy — current status

Cover Page

Cite item

Full Text

Abstract

Certain drugs used for the treatment of cancer can have a toxic effect on various organs and tissues, including the heart. Not only high-dose monotherapy can lead to damage to the heart muscle, but also a combination of two or three chemotherapy drugs can do so. Cancer patients receiving combination of potentially cardiotoxic anticancer therapy have an increased risk of cardiovascular complications. Heart rhythm disturbances, arterial and venous thrombosis, coronary heart disease, valvular lesions, arterial hypertension and, in particular, chronic heart failure may be induced by chemotherapy. An important aspect is to identify groups of individuals with an initially high or very high risk of cardiotoxicity. Such patients should be under the supervision of a cardiologist or a multidisciplinary team for the entire duration of antitumor therapy and undergo additional examinations. Without the necessary laboratory and instrumental monitoring, it is impossible to predict in advance the development of heart failure, which often complicates life-saving chemotherapy, and in some cases even causes its cancellation. It is turned out that cardioprotection aimed at preventing myocardial dysfunction in cancer patients can prevent the development of heart failure and not to interrupt patients’ life-saving treatment even at a late stage of the disease. In the case of verified chronic heart failure, which occurred before the chemotherapy or during antitumor treatment, angiotensin-converting enzyme inhibitors or angiotensin receptor blockers and beta-blockers are used, drugs with a proven cardioprotective potential. Data is gradually accumulating on the significant effect of other groups of drugs used on the regression of chronic heart failure in cancer patients. The purpose of this review is to briefly outline the mechanisms of cardiotoxicity in various chemotherapy regimens, as well as current and future options for cardioprotection in cancer patients receiving cardiotoxic chemotherapy.

About the authors

Anton K. Peresada

Federal Scientific and Clinical Center for Specialized Medical Assistance and Medical Technologies of the Federal Medical Biological Agency

Author for correspondence.
Email: tony.peresada@yandex.ru
ORCID iD: 0000-0001-7128-0183
Russian Federation, Moscow

David P. Dundua

Federal Scientific and Clinical Center for Specialized Medical Assistance and Medical Technologies of the Federal Medical Biological Agency

Email: david.doundoua@gmail.com
ORCID iD: 0000-0001-7345-0385

MD, PhD, Professor

Russian Federation, Moscow

Anna G. Kedrova

Federal Scientific and Clinical Center for Specialized Medical Assistance and Medical Technologies of the Federal Medical Biological Agency

Email: kedrova.anna@gmail.com
ORCID iD: 0000-0003-1031-9376
SPIN-code: 3184-9760

MD, PhD, Professor

Russian Federation, Moscow

Irina N. Oleynikova

Federal Scientific and Clinical Center for Specialized Medical Assistance and Medical Technologies of the Federal Medical Biological Agency

Email: i.n.oleynikova@yandex.ru
ORCID iD: 0000-0002-2595-1908
SPIN-code: 9272-9336

MD, PhD

Russian Federation, Moscow

Anna V. Masterkova

Federal Scientific and Clinical Center for Specialized Medical Assistance and Medical Technologies of the Federal Medical Biological Agency

Email: anamasterkova@yandex.ru
ORCID iD: 0009-0008-7889-8902
Russian Federation, Moscow

References

  1. Ewer MS, Ewer SM. Cardiotoxicity of anticancer treatments. Nat Rev Cardiol. 2015;12(11):620. doi: 10.1038/nrcardio.2015.133
  2. Zamorano JL, Lancellotti P, Muñoz RD, et al. 2016 ESC Position Paper on cancer treatments and cardiovascular toxicity developed under the auspices of the ESC Committee for Practice Guidelines: The Task Force for cancer treatments and cardiovascular toxicity of the European Society of Cardiology (ESC). Eur Heart J. 2016;37(36):2768–2801. doi: 10.1093/eurheartj/ehw211
  3. Мареев В.Ю., Фомин И.В., Агеев Ф.Т., и др. Клинические рекомендации. Хроническая сердечная недостаточность // Сердечная недостаточность. 2017. Т. 18, № 1. С. 3–40. [Mareev Vyu, Fomin IV, Ageev FT, et al. Clinical recommendations. Chronic heart failure. Russian Heart Failure J. 2017;18(1):3–40. (In Russ).] doi: 10.18087/RHFJ.2017.1.2346
  4. Ponikowski P, Voors AA, Anker SD, et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur J Heart Fail. 2016;18(8):891–975. doi: 10.1002/ejhf.592
  5. Plana J, Galderisi M, Barac A, et al. Expert consensus for multimodality imaging evaluation of adult patients during and after cancer therapy: A report from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging. 2014;15(10):1063–1093. doi: 10.1093/ehjci/jeu192
  6. Sawyer D, Lenihan D. Managing heart failure in cancer patients. In: D. Mann, G. Felker. Heart failure: A Companion to Braunwald’s Heart Disease, 3rd ed. Philadelphia: Elsevier; 2016. P. 689–696.
  7. Chen MH, Colan SD, Diller L. Cardiovascular disease: Cause of morbidity and mortality in adult survivors of childhood cancers. Circ Res. 2011;108(5):619–628. doi: 10.1161/CIRCRESAHA.110.224519
  8. Cardinale D, Sandri MT, Colombo A, et al. Prognostic value of troponin I in cardiac risk stratification of cancer patients undergoing highdose chemotherapy. Circulation. 2004;109(22):2749–2754. doi: 10.1161/01.CIR.0000130926.51766.CC
  9. Von Hoff DD, Layard MW, Basa P, et al. Risk factors for doxorubicin-induced congestive heart failure. Ann Intern Med. 1979;91(5):710–717. doi: 10.7326/0003-4819-91-5-710
  10. Cardinale D, Colombo A, Bacchiani G, et al. Early detection of anthracycline cardiotoxicity and improvement with heart failure therapy. Circulation. 2015;131(22):1981–1988. doi: 10.1161/CIRCULATIONAHA.114.013777
  11. Kamineni P, Prakasa K, Hasan SP, et al. Cardiotoxicities of paclitaxel in African Americans. J Natl Med Assoc. 2003;95(10):977–981.
  12. Kurauchi K, Nishikawa T, Miyahara E, et al. Role of metabolites of cyclophosphamide in cardiotoxiti. BMC Res Notes. 2017;(10): 406. doi: 10.1186/s13104-017-2726-2
  13. Ma H, Jones KR, Guo R, et al. Cisplatin compromise’s myocardial contractile function and mitochondrial ultrastructure: Role of endoplasmic reticulum stress. Clin Exp Pharmacol Physiol. 2010;37(4):460–465. doi: 10.1111/j.1440-1681.2009.05323
  14. Kerkela R, Grazette I, Yacolti R, et al. Cardiotoxicity of the cancer therapeutic agent imatinibmesylate. Nat Med. 2006; 12(8):908–916. doi: 10.1038/nm1446
  15. Asawaeer M., Riaz I., Carli S., Singh P. Пероральный прием ингибиторов тирозинкиназы и ингибиторов мишени рапамицина млекопитающих связан с кардиотоксическими эффектами // Международный журнал сердца и сосудистых заболеваний. 2014. Т. 2, № 4. C. 12–25. [Asawaeer M, Riaz I, Carli S, Singh P. Oral administration of tyrosine kinase inhibitors and rapamycin target inhibitors by mammals is associated with cardiotoxic effects. Int J Heart Vascular Dis. 2014;2(4):12–25. (In Russ).] doi: 10.24412/2311-1623-2014-4-12-25
  16. Ammar UM, Abdel-Maksoud MS, Oh CH. Recent advances of RAF (rapidly accelerated fibrosarcoma) inhibitors as anti-cancer agents. Eur J Med Chem. 2018;(158):144–166. doi: 10.1016/j.ejmech.2018.09.005
  17. Франк Г.А., Завалишина Л.Э., Кекеева Т.В., и др. Первое Всероссийское молекулярно-эпидемиологическое исследование меланомы: результаты анализа мутаций в гене BRAF // Архив патологии. 2014. Т. 76, № 3. С. 65–73. [Frank GA, Zavalishina LE, Kekeeva TV, et al. The first All-Russian molecular epidemiological study of melanoma: results of the analysis of mutations in the BRAF gene. Arch Pathology. 2014;76(3):65–73. (In Russ).]
  18. Davies H, Bignell GR, Cox C, et al. Mutations of the BRAF gene in human cancer. Nature. 2002;417(6892):949–954. doi: 10.1038/nature00766
  19. Sullivan R, LoRusso P, Boerner S, et al. Achievements and challenges of molecular targeted therapy in melanoma. Am Soc Clin Oncol Educ Book. 2015;177–186. doi: 10.14694/EdBook_AM.2015.35.177
  20. Czarnecka AM, Bartnik E, Fiedorowicz M, et al. Targeted therapy in melanoma and mechanisms of resistance. Int J Mol Sci. 2020;21(13):4576. doi: 10.3390/ijms21134576
  21. Mincu RI, Mahabadi AA, Michel L, et al. Cardiovascular adverse events associated with BRAF and MEK inhibitors: A systematic review and meta-analysis. JAMA Netw Open. 2019;2(8):e198890. doi: 10.1001/jamanetworkopen.2019.8890
  22. Lyon AR, Dent S, Stanway S, et al. Baseline cardiovascular risk assessment in cancer patients scheduled to receive cardiotoxic cancer therapies: A position statement and new risk assessment tools from the Cardio-Oncology Study Group of the Heart Failure Association of the European Society. Eur J Heart Fail. 2020;22(11):1945–1960. doi: 10.1002/ejhf.1920
  23. Banks M, Crowell K, Proctor A, et al. Cardiovascular effects of the MEK inhibitor, trametinib: A case report, literature review, and consideration of mechanism. Cardiovasc Toxicol. 2017;17(4): 487–493. doi: 10.1007/s12012-017-9425-z
  24. Маль Г.С., Артюшкова Е.Б., Быканова А.М., и др. Проблема бевацизумаб-индуцированной артериальной гипертензии как явление кардиотоксичности у пациентов с колоректальным раком // Современные проблемы науки и образования. 2022. № 4. С. 114. [Mal GS, Artyushkova EB, Bykanova AM, et al. The problem of bevacizumab-induced arterial hypertension as a phenomenon of cardiotoxicity in patients with colorectal cancer. Modern Problems Sci Educat. 2022;(4):114. (In Russ).] doi: 10.17513/spno.31949
  25. Nazer B, Hamphreys BD, Moslehi J. Effects of novel angiogenesis inhibitors for the treatment of cancer on the cardiovascular system. Circulation. 2011;124(15):1687–1691. doi: 10.1161/CIRCULATIONAHA.110.992230
  26. Hayman SR, Leung N, Grande JP, et al. VEGF inhibition, hypertension and renal toxicity. Curr Oncol Rep. 2012;14(4): 285–294. doi: 10.1007/s11912-012-0242-z
  27. Feihl F, Liaudet L, Waeber B, Levy BI. Hypertension: A disease of the microcirculation? Hypertension. 2006;48(6):1012–1017. doi: 10.1161/01.HYP.0000249510.20326.72
  28. Steeghs N, Gelderblom H, Roodt JO, et al. Arterial hypertension and depression during treatment with telatinib, a small molecule angiogenesis inhibitor. Clin Cancer Res. 2008;14(11):3470–3476. doi: 10.1158/1078-0432.CCR-07-5050
  29. Mourad JJ, des Guetz G, Debbabi H, et al. Blood pressure rise following angiogenesis inhibition by bevacizumab. A crucial role for microcirculation. Ann Oncol. 2008;19(5):927–934. doi: 10.1093/annonc/mdm550
  30. Touyz RM, Lang NN, Herrmann J, et al. Recent advances in hypertension and cardiovascular toxicities with vascular endothelial growth factor inhibition. Hypertension. 2017;70(2): 220226. doi: 10.1161/HYPERTENSIONAHA.117.08856
  31. Takahashi D, Nagahama K, Tsuura Y, et al. Sunitinib-induced nephrotic syndrome and irreversible renal dysfunction. Clin Exp Nephrol. 2012;16(2):310–315. doi: 10.1007/s10157-011-0543-9
  32. Zang J, Wu S, Tang L, et al. Incidence and risk of QTc interval prolongation among cancer patients treated with vandetanib: a systematic review and meta-analysis. PloS One. 2012;7(2):e30353. doi: 10.1371/journal.pone.0030353
  33. Alexandre J, Salem JE, Moslehi J, et al. Identification of anticancer drugs associated with atrial fibrillation: Analysis of the WHO pharmacovigilance database. Eur Heart J Cardiovasc Pharmacother. 2021;7(4):312–320. doi: 10.1093/ehjcvp/pvaa037
  34. Pandey AK, Singhi EK, Arroyo JP, et al. Mechanisms of VEGF (Vascular Endothelial Growth Factor) inhibitor-associated hypertension and vascular disease. Hypertension. 2018;71(2): e1–e8. doi: 10.1161/HYPERTENSIONAHA.117.10271
  35. Uraizee I, Cheng S, Moslehi J. Reversible cardiomyopathy associated with sunitinib and sorafenib. N Engl J Med. 2011; 365(17):1649–1650. doi: 10.1056/NEJMc1108849
  36. Pudil R, Mueller C, Čelutkienė J, et al. Role of serum biomarkers in cancer patients receiving cardiotoxic cancer therapies: A position statement from the Cardio-Oncology Study Group of the Heart Failure Association and the Cardio-Oncology Council of the European Society of Cardiology. Eur J Heart Fail. 2020;22(11):1966–1983. doi: 10.1002/ejhf.2017
  37. Кулиева А., Емелина Е.И., Гендлин Г.Е., и др. Сердечно-сосудистые осложнения при применении ингибиторов иммунных контрольных точек // Качественная клиническая практика. 2019. № 4. С. 55–65. [Kulieva AA, Emelina EI, Gendlin GE, et al. Cardiovascular complications of immune checkpoint inhibitors. Good Clinical Practice. 2019;(4):55–65. (In Russ).] doi: 10.1016/2588-0519-2019-4-55-65
  38. Zhang L, Reynolds KL, Lyon AR, et al. The evolving immunotherapy landscape and the epidemiology, diagnosis, and management of cardiotoxicity: JACC: CardioOncology primer. JACC CardioOncol. 2021;3(1):35–47. doi: 10.1016/j.jaccao.2020.11.012
  39. Chen DY, Huang WK, Chien-Chia Wu V, et al. Cardiovascular toxicity of immune checkpoint inhibitors in cancer patients: A review when cardiology meets acka-oncology. J Formos Med Assoc. 2020;119(10):1461–1475. doi: 10.1016/j.jfma.2019.07.025
  40. Passalia C, Minetto P, Arboscello E, et al. Cardiovascular adverse events complicating the administration of rituximab: Report of two cases. Tumori. 2013;99(6):288e–292e. doi: 10.1700/1390.15471
  41. El-Zarrad MK, Mukhopadhyay P, Mohan N, et al. Trastuzumab alters the expression of genes essential for cardiac function and induces ultrastructural changes of cardiomyocytes in mice. PloS ONE. 2013;8(11):e79543. doi: 10.1371/journal.pone.0079543
  42. Boyd A, Stoodley P, Richards D, et al. Anthracyclines induce early changes in left ventricular systolic and diastolic function: A single centre study. PloS One. 2017;12(4):e0175544. doi: 10.1371/journal.pone.0175544
  43. Plana J, Galderisi M, Barac A, et al. Expert consensus for multimodality imaging evaluation of adult patients during and after cancer therapy: A report from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging. 2014; 15(10):1063–1093. doi: 10.1093/ehjci/jeu192
  44. Popat S, Smith IE. Therapy insight: Anthracyclines and trastuzumab: The optimal managemtnt of cardiotoxic side effects. Nat Clin Prac Oncol. 2008;5(6):324–335. doi: 10.1038/ncponc1090
  45. Cardinale D, Caruso V, Cipolla CM. The breast cancer patient in the cardiooncology unit. J Thorac Dis. 2018;10(Suppl. 35): S4306–S4322. doi: 10.21037/jtd.2018.10.06
  46. Ky B, Putt M, Sawaya H, et al. Early increases in multiple biomarkers predict subsequent cardiotoxicity in patients with breast cancer treated with doxorubicin, taxanes, and trastuzumab. J Am Coll Cardiol. 2014;63(8):809. doi: 10.1016/j.jacc.2013.10.061
  47. Seisean S, Seisean A, Alan N, et al. Cardioprotective effects of β-adrenoreceptor blockade inpatients with breast cancer undergoing chemotherapy: Follow-up study of heart failure. Circ Heart Fail. 2013;6(3):420–426. doi: 10.1161/CIRCHEARTFAILURE.112.000055
  48. Slamon D, Eiermann W, Robert N, et al.; Breast Cancer International Research Group. Adjuvant trastuzumab in HER2-positive breast cancer. N Engl J Med. 2011;365(14):1273–1283. doi: 10.1056/NEJMoa0910383
  49. Oliva S, Cioffi G, Frattini S, et al. Italian Cardio-Oncological Network. Administration of angiotensin-converting enzyme inhibitors and β-blockers during adjuvant trastuzumab chemotherapy for nonmetastatic breast cancer: Marker of risk or cardioprotection in the real world? Oncologist. 2012;17(7): 917–924. doi: 10.1634/theoncologist.2011-0445
  50. Raimondi S, Botteri E, Munzone E, et al. Use of beta-blockers, angiotensin-converting enzyme inhibitors and angiotensin receptor blockers and breast cancer survival: Systematic review and meta-analysis. Int J Cancer. 2016;139(1):212–219. doi: 10.1002/ijc.30062
  51. Livi L, Barletta G, Martella F, et al. Cardioprotective strategy for patients with nonmetastatic breast cancer who are receiving an anthracycline-based chemotherapy: A randomized clinical trial. JAMA Oncol. 2021;7(10):1544–1549. doi: 10.1001/jamaoncol.2021.3395
  52. Elghazawy H, Prasad VH, Verma V, et al. The role of cardio-protective agents in cardio-preservation in breast cancer patients receiving Anthracyclines ± Trastuzumab: A meta-analysis of clinical studies. Crit Rev Oncol Hematol. 2020;(153):103006. doi: 10.1016/j.critrevonc.2020.103006
  53. Akpek M, Ozdogru I, Sahin O, et al. Protective effects of spironolactone against ackacycline-induced cardiomyopathy. Eur J Heart Fail. 2015;17(1):81–89. doi: 10.1002/ejhf.196
  54. Mir A, Badi Y, Bugazia S, et al. Efficacy and safety of cardioprotective drugs in chemotherapy-induced cardiotoxicity: An updated systematic review & network meta-analysis. Cardiooncology. 2023;9(1):10. doi: 10.1186/s40959-023-00159-0
  55. Sacks FM, Pfeffer MA, Moye LA, et al. Cholesterol and Recurrent Events Trial Investigators. The effect of pravastatin on coronary events after myocardial infarction in patients with average cholesterol levels. N Engl J Med. 1996;335(14): 1001–1009. doi: 10.1056/NEJM199610033351401
  56. Cholesterol Treatment Trialists’ (CTT) Collaboration. Lack of effect of lowering LDL cholesterol on cancer: Meta-analysis of individual data from 175,000 people in 27 randomised trials of statin therapy. PloS One. 2012;7(1):e29849. doi: 10.1371/journal.pone.0029849
  57. Bonovas S, Filioussi K, Tsavaris N, et al. Use of statins and breast cancer: A metaanalysis of seven randomized clinical trials and nine observational studies. J Clin Oncol. 2005;23(34): 8606–8612. doi: 10.1200/JCO.2005.02.7045
  58. Undela K, Srikanth V, Bansal D. Statin use and risk of breast cancer: A meta-analysis of observational studies. Breast Cancer Res Treat. 2012;135(1):261–269. doi: 10.1007/s10549-012-2154-x
  59. Desai P, Chlebowski R, Cauley JA, et al. Prospective analysis of association between statin use and breast cancer risk in the women’s health initiative. Cancer Epidemiol Biomarkers Prev. 2013;22(10):1868–1876. doi: 10.1158/1055-9965.EPI-13-0562
  60. Abdel-Qadir H, Bobrowski D, Zhou L, et al. Statin exposure and risk of heart failure after anthracycline-or trastuzumab-based chemotherapy for early breast cancer: A propensity score-matched cohort study. J Am Heart Assoc. 2021;10(2):e018393. doi: 10.1161/JAHA.119.018393
  61. Ma Y, Yuan Q, Aizeze A, et al. Statins to prevent anthracyclines-induced cardiotoxicity. Austin Cardio. 2023;8(1):1037.
  62. Boutagy NE, Feher A, Pfau D, et al. Dual angiotensin receptor-neprilysin inhibition with sacubitril/valsartan attenuates systolic dysfunction in experimental doxorubicin-induced cardiotoxicity. J Am Coll Cardiol. 2020;2(5):774–787. doi: 10.1016/j.jaccao.2020.09.007
  63. Виценя М.В., Потехина А.В., Гаврюшина С.В., и др. Профилактика и лечение дисфункции левого желудочка и сердечной недостаточности, связанных с противоопухолевой терапией: возможности и перспективы // Эффективная фармакотерапия. 2020. Т. 16, № 18. С. 108–120. [Vitsenya MV, Potekhina AV, Gavryushina SV, et al. Prevention and treatment of left ventricular dysfunction and heart failure associated with antitumor therapy: Opportunities and prospects. Effect Pharmacother. 2020;16(18):108–120. (In Russ).] doi: 10.33978/2307-3586-2020-16-18-108-120
  64. Mecinaj A, Gulati G, Heck SL, et al. Rationale and design of the Prevention of cArdiac Dysfunction during Adjuvant breast cancer therapy (PRADA II) trial: A randomized, placebo-controlled, multicenter trial. Cardiooncology. 2021;7(1):33. doi: 10.1186/s40959-021-00115-w
  65. Zelniker TA, Braunwald E. Mechanisms of cardiorenal effects of sodium-glucose cotransporter 2 inhibitors: JACC state-of the-art review. J Am Coll Cardiol. 2020;75(4):422–434. doi: 10.1016/j.jacc.2019.11.031
  66. Verma S, Rawat S, Ho KL, et al. Empagliflozin increases cardiac energy production in diabetes: Novel translational insights into the heart failure benefits of SGLT2 inhibitors. JACC Basic Transl Sci. 2018;3(5):575–587. doi: 10.1016/j.jacbts.2018.07.006
  67. Sabatino J, De Rosa S, Tammè L, et al. Empagliozin prevents doxorubicin-induced myocardialdysfunction. Cardiovasc Diabetol. 2020;19(1):66. doi: 10.1186/s12933-020-01040-5
  68. Quagliariello V, de Laurentiis M, Rea D, et al. The SGLT-2 inhibitor empagliflozin improves myocardial strain, reduces cardiac fibrosis and pro-inflammatory cytokines in non-diabetic mice treated with doxorubicin. Cardiovasc Diabetol. 2021;20(1):150. doi: 10.1186/s12933-021-01346-y
  69. Shi H, Zeng Q, Wei Y, et al. Canagliflozin is a potential cardioprotective drug but exerts no significant effects on pirarubicin-induced cardiotoxicity in rats. Mol Med Rep. 2021;24(4):703. doi: 10.3892/mmr.2021.12342
  70. Ulusan S, Gülle K, Peynirci A, et al. Dapagliflozin may protect against doxorubicin-induced cardiotoxicity. Anatol J Cardiol. 2023;27(6):339–347. doi: 10.14744/AnatolJCardiol.2023.2825
  71. Abdel-Qadir H, Carrasco R, Austin PC, et al. The association of sodium-glucose cotransporter 2 inhibitors with cardiovascular outcomes in anthracycline-treated patients with cancer. JACC Cardio Oncology. 2023;5(3):318–328. doi: 10.1016/j.jaccao.2023.03.011
  72. Gongora CA, Drobni ZD, Silva TQ. Sodium-glucose co-transporter-2 inhibitors and cardiac outcomes among patients treated with anthracycline. JACC Heart Fail. 2022;10(8):559–567. doi: 10.1016/j.jchf.2022.03.006
  73. Березов Т.Т., Яглова Н.В., Чехонин В.П. Липосомальные формы антрациклиновых антибиотиков // Биомедицинская химия. 2004. Т. 50, № 5. С. 412–419. [Berezov TT, Yaglova NV, Chehonin VP. Liposomal forms of anthracycline antibiotics. Biomed Chemistry. 2004;50(5):412–419. (In Russ).]
  74. Yamaguchi N, Fujii T, Aoi S, et al. Comparison of cardiac events associated with liposomal doxorubicin, epirubicin and doxorubicin in breast cancer: A Bayesian network meta-analysis. Eur J Cancer. 2015;51(16):2314–2320. doi: 10.1016/j.ejca.2015.07.031
  75. Hasinoff BB, Kuschak TI, Yalowich JC, et al. A QSAR study comparing the cytotoxicity and DNA topoisomerase II inhibitory effects of bisdioxopiperazine analogs of ICRF-187 (dexrazoxane). Biochem Pharmacol. 1995;50(7):953–958. doi: 10.1016/0006-2952(95)00218-o
  76. Lyu YL, Kerrigan JE, Lin CP. Topoisomerase II beta mediated DNA double-strand breaks: Implications in doxorubicin cardiotoxicity and prevention by dexrazoxane. Cancer Res. 2007;67(18):8839–8846. doi: 10.1158/0008-5472.CAN-07-1649
  77. Lipshultz SE, Rifai N, Dalton VM, et al. The effect of dexrazoxane on myocardial injury in doxorubicin-treated children with acute lymphoblastic leukemia. N Engl J Med. 2004;351(2):145–153. doi: 10.1056/NEJMoa035153
  78. Armenian SH, Lacchetti C, Barac A. Prevention and monitoring of cardiac dysfunction in survivors of adult cancers: American Society of Clinical Oncology Clinical Practice Guideline. J Clin Oncol. 2017;35(8):893–911. doi: 10.1200/JCO.2016.70.5400
  79. Алябьева А.А., Маль Г.С. Кардиотоксические эффекты, вызванные применением антиметаболитов в химиотерапии онкологических заболеваний // CardioСоматика. 2021. Т. 12, № 3. С. 177–182. [Aliab'eva AA, Mal GS. Cardiotoxic effects induced by the use of antimetabolites in the chemotherapy of oncological diseases. Cardiosomatics. 2021;12(3):177–182. (In Russ).] doi: 10.26442/22217185.2021.3.201098

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».