Cardioprotection of cancer patients receiving cardiotoxic chemotherapy — current status
- Authors: Peresada A.K.1, Dundua D.P.1, Kedrova A.G.1, Oleynikova I.N.1, Masterkova A.V.1
-
Affiliations:
- Federal Scientific and Clinical Center for Specialized Medical Assistance and Medical Technologies of the Federal Medical Biological Agency
- Issue: Vol 14, No 4 (2023)
- Pages: 75-87
- Section: Reviews
- URL: https://journal-vniispk.ru/clinpractice/article/view/253947
- DOI: https://doi.org/10.17816/clinpract567924
- ID: 253947
Cite item
Full Text
Abstract
Certain drugs used for the treatment of cancer can have a toxic effect on various organs and tissues, including the heart. Not only high-dose monotherapy can lead to damage to the heart muscle, but also a combination of two or three chemotherapy drugs can do so. Cancer patients receiving combination of potentially cardiotoxic anticancer therapy have an increased risk of cardiovascular complications. Heart rhythm disturbances, arterial and venous thrombosis, coronary heart disease, valvular lesions, arterial hypertension and, in particular, chronic heart failure may be induced by chemotherapy. An important aspect is to identify groups of individuals with an initially high or very high risk of cardiotoxicity. Such patients should be under the supervision of a cardiologist or a multidisciplinary team for the entire duration of antitumor therapy and undergo additional examinations. Without the necessary laboratory and instrumental monitoring, it is impossible to predict in advance the development of heart failure, which often complicates life-saving chemotherapy, and in some cases even causes its cancellation. It is turned out that cardioprotection aimed at preventing myocardial dysfunction in cancer patients can prevent the development of heart failure and not to interrupt patients’ life-saving treatment even at a late stage of the disease. In the case of verified chronic heart failure, which occurred before the chemotherapy or during antitumor treatment, angiotensin-converting enzyme inhibitors or angiotensin receptor blockers and beta-blockers are used, drugs with a proven cardioprotective potential. Data is gradually accumulating on the significant effect of other groups of drugs used on the regression of chronic heart failure in cancer patients. The purpose of this review is to briefly outline the mechanisms of cardiotoxicity in various chemotherapy regimens, as well as current and future options for cardioprotection in cancer patients receiving cardiotoxic chemotherapy.
Full Text
##article.viewOnOriginalSite##About the authors
Anton K. Peresada
Federal Scientific and Clinical Center for Specialized Medical Assistance and Medical Technologies of the Federal Medical Biological Agency
Author for correspondence.
Email: tony.peresada@yandex.ru
ORCID iD: 0000-0001-7128-0183
Russian Federation, Moscow
David P. Dundua
Federal Scientific and Clinical Center for Specialized Medical Assistance and Medical Technologies of the Federal Medical Biological Agency
Email: david.doundoua@gmail.com
ORCID iD: 0000-0001-7345-0385
MD, PhD, Professor
Russian Federation, MoscowAnna G. Kedrova
Federal Scientific and Clinical Center for Specialized Medical Assistance and Medical Technologies of the Federal Medical Biological Agency
Email: kedrova.anna@gmail.com
ORCID iD: 0000-0003-1031-9376
SPIN-code: 3184-9760
MD, PhD, Professor
Russian Federation, MoscowIrina N. Oleynikova
Federal Scientific and Clinical Center for Specialized Medical Assistance and Medical Technologies of the Federal Medical Biological Agency
Email: i.n.oleynikova@yandex.ru
ORCID iD: 0000-0002-2595-1908
SPIN-code: 9272-9336
MD, PhD
Russian Federation, MoscowAnna V. Masterkova
Federal Scientific and Clinical Center for Specialized Medical Assistance and Medical Technologies of the Federal Medical Biological Agency
Email: anamasterkova@yandex.ru
ORCID iD: 0009-0008-7889-8902
Russian Federation, Moscow
References
- Ewer MS, Ewer SM. Cardiotoxicity of anticancer treatments. Nat Rev Cardiol. 2015;12(11):620. doi: 10.1038/nrcardio.2015.133
- Zamorano JL, Lancellotti P, Muñoz RD, et al. 2016 ESC Position Paper on cancer treatments and cardiovascular toxicity developed under the auspices of the ESC Committee for Practice Guidelines: The Task Force for cancer treatments and cardiovascular toxicity of the European Society of Cardiology (ESC). Eur Heart J. 2016;37(36):2768–2801. doi: 10.1093/eurheartj/ehw211
- Мареев В.Ю., Фомин И.В., Агеев Ф.Т., и др. Клинические рекомендации. Хроническая сердечная недостаточность // Сердечная недостаточность. 2017. Т. 18, № 1. С. 3–40. [Mareev Vyu, Fomin IV, Ageev FT, et al. Clinical recommendations. Chronic heart failure. Russian Heart Failure J. 2017;18(1):3–40. (In Russ).] doi: 10.18087/RHFJ.2017.1.2346
- Ponikowski P, Voors AA, Anker SD, et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur J Heart Fail. 2016;18(8):891–975. doi: 10.1002/ejhf.592
- Plana J, Galderisi M, Barac A, et al. Expert consensus for multimodality imaging evaluation of adult patients during and after cancer therapy: A report from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging. 2014;15(10):1063–1093. doi: 10.1093/ehjci/jeu192
- Sawyer D, Lenihan D. Managing heart failure in cancer patients. In: D. Mann, G. Felker. Heart failure: A Companion to Braunwald’s Heart Disease, 3rd ed. Philadelphia: Elsevier; 2016. P. 689–696.
- Chen MH, Colan SD, Diller L. Cardiovascular disease: Cause of morbidity and mortality in adult survivors of childhood cancers. Circ Res. 2011;108(5):619–628. doi: 10.1161/CIRCRESAHA.110.224519
- Cardinale D, Sandri MT, Colombo A, et al. Prognostic value of troponin I in cardiac risk stratification of cancer patients undergoing highdose chemotherapy. Circulation. 2004;109(22):2749–2754. doi: 10.1161/01.CIR.0000130926.51766.CC
- Von Hoff DD, Layard MW, Basa P, et al. Risk factors for doxorubicin-induced congestive heart failure. Ann Intern Med. 1979;91(5):710–717. doi: 10.7326/0003-4819-91-5-710
- Cardinale D, Colombo A, Bacchiani G, et al. Early detection of anthracycline cardiotoxicity and improvement with heart failure therapy. Circulation. 2015;131(22):1981–1988. doi: 10.1161/CIRCULATIONAHA.114.013777
- Kamineni P, Prakasa K, Hasan SP, et al. Cardiotoxicities of paclitaxel in African Americans. J Natl Med Assoc. 2003;95(10):977–981.
- Kurauchi K, Nishikawa T, Miyahara E, et al. Role of metabolites of cyclophosphamide in cardiotoxiti. BMC Res Notes. 2017;(10): 406. doi: 10.1186/s13104-017-2726-2
- Ma H, Jones KR, Guo R, et al. Cisplatin compromise’s myocardial contractile function and mitochondrial ultrastructure: Role of endoplasmic reticulum stress. Clin Exp Pharmacol Physiol. 2010;37(4):460–465. doi: 10.1111/j.1440-1681.2009.05323
- Kerkela R, Grazette I, Yacolti R, et al. Cardiotoxicity of the cancer therapeutic agent imatinibmesylate. Nat Med. 2006; 12(8):908–916. doi: 10.1038/nm1446
- Asawaeer M., Riaz I., Carli S., Singh P. Пероральный прием ингибиторов тирозинкиназы и ингибиторов мишени рапамицина млекопитающих связан с кардиотоксическими эффектами // Международный журнал сердца и сосудистых заболеваний. 2014. Т. 2, № 4. C. 12–25. [Asawaeer M, Riaz I, Carli S, Singh P. Oral administration of tyrosine kinase inhibitors and rapamycin target inhibitors by mammals is associated with cardiotoxic effects. Int J Heart Vascular Dis. 2014;2(4):12–25. (In Russ).] doi: 10.24412/2311-1623-2014-4-12-25
- Ammar UM, Abdel-Maksoud MS, Oh CH. Recent advances of RAF (rapidly accelerated fibrosarcoma) inhibitors as anti-cancer agents. Eur J Med Chem. 2018;(158):144–166. doi: 10.1016/j.ejmech.2018.09.005
- Франк Г.А., Завалишина Л.Э., Кекеева Т.В., и др. Первое Всероссийское молекулярно-эпидемиологическое исследование меланомы: результаты анализа мутаций в гене BRAF // Архив патологии. 2014. Т. 76, № 3. С. 65–73. [Frank GA, Zavalishina LE, Kekeeva TV, et al. The first All-Russian molecular epidemiological study of melanoma: results of the analysis of mutations in the BRAF gene. Arch Pathology. 2014;76(3):65–73. (In Russ).]
- Davies H, Bignell GR, Cox C, et al. Mutations of the BRAF gene in human cancer. Nature. 2002;417(6892):949–954. doi: 10.1038/nature00766
- Sullivan R, LoRusso P, Boerner S, et al. Achievements and challenges of molecular targeted therapy in melanoma. Am Soc Clin Oncol Educ Book. 2015;177–186. doi: 10.14694/EdBook_AM.2015.35.177
- Czarnecka AM, Bartnik E, Fiedorowicz M, et al. Targeted therapy in melanoma and mechanisms of resistance. Int J Mol Sci. 2020;21(13):4576. doi: 10.3390/ijms21134576
- Mincu RI, Mahabadi AA, Michel L, et al. Cardiovascular adverse events associated with BRAF and MEK inhibitors: A systematic review and meta-analysis. JAMA Netw Open. 2019;2(8):e198890. doi: 10.1001/jamanetworkopen.2019.8890
- Lyon AR, Dent S, Stanway S, et al. Baseline cardiovascular risk assessment in cancer patients scheduled to receive cardiotoxic cancer therapies: A position statement and new risk assessment tools from the Cardio-Oncology Study Group of the Heart Failure Association of the European Society. Eur J Heart Fail. 2020;22(11):1945–1960. doi: 10.1002/ejhf.1920
- Banks M, Crowell K, Proctor A, et al. Cardiovascular effects of the MEK inhibitor, trametinib: A case report, literature review, and consideration of mechanism. Cardiovasc Toxicol. 2017;17(4): 487–493. doi: 10.1007/s12012-017-9425-z
- Маль Г.С., Артюшкова Е.Б., Быканова А.М., и др. Проблема бевацизумаб-индуцированной артериальной гипертензии как явление кардиотоксичности у пациентов с колоректальным раком // Современные проблемы науки и образования. 2022. № 4. С. 114. [Mal GS, Artyushkova EB, Bykanova AM, et al. The problem of bevacizumab-induced arterial hypertension as a phenomenon of cardiotoxicity in patients with colorectal cancer. Modern Problems Sci Educat. 2022;(4):114. (In Russ).] doi: 10.17513/spno.31949
- Nazer B, Hamphreys BD, Moslehi J. Effects of novel angiogenesis inhibitors for the treatment of cancer on the cardiovascular system. Circulation. 2011;124(15):1687–1691. doi: 10.1161/CIRCULATIONAHA.110.992230
- Hayman SR, Leung N, Grande JP, et al. VEGF inhibition, hypertension and renal toxicity. Curr Oncol Rep. 2012;14(4): 285–294. doi: 10.1007/s11912-012-0242-z
- Feihl F, Liaudet L, Waeber B, Levy BI. Hypertension: A disease of the microcirculation? Hypertension. 2006;48(6):1012–1017. doi: 10.1161/01.HYP.0000249510.20326.72
- Steeghs N, Gelderblom H, Roodt JO, et al. Arterial hypertension and depression during treatment with telatinib, a small molecule angiogenesis inhibitor. Clin Cancer Res. 2008;14(11):3470–3476. doi: 10.1158/1078-0432.CCR-07-5050
- Mourad JJ, des Guetz G, Debbabi H, et al. Blood pressure rise following angiogenesis inhibition by bevacizumab. A crucial role for microcirculation. Ann Oncol. 2008;19(5):927–934. doi: 10.1093/annonc/mdm550
- Touyz RM, Lang NN, Herrmann J, et al. Recent advances in hypertension and cardiovascular toxicities with vascular endothelial growth factor inhibition. Hypertension. 2017;70(2): 220226. doi: 10.1161/HYPERTENSIONAHA.117.08856
- Takahashi D, Nagahama K, Tsuura Y, et al. Sunitinib-induced nephrotic syndrome and irreversible renal dysfunction. Clin Exp Nephrol. 2012;16(2):310–315. doi: 10.1007/s10157-011-0543-9
- Zang J, Wu S, Tang L, et al. Incidence and risk of QTc interval prolongation among cancer patients treated with vandetanib: a systematic review and meta-analysis. PloS One. 2012;7(2):e30353. doi: 10.1371/journal.pone.0030353
- Alexandre J, Salem JE, Moslehi J, et al. Identification of anticancer drugs associated with atrial fibrillation: Analysis of the WHO pharmacovigilance database. Eur Heart J Cardiovasc Pharmacother. 2021;7(4):312–320. doi: 10.1093/ehjcvp/pvaa037
- Pandey AK, Singhi EK, Arroyo JP, et al. Mechanisms of VEGF (Vascular Endothelial Growth Factor) inhibitor-associated hypertension and vascular disease. Hypertension. 2018;71(2): e1–e8. doi: 10.1161/HYPERTENSIONAHA.117.10271
- Uraizee I, Cheng S, Moslehi J. Reversible cardiomyopathy associated with sunitinib and sorafenib. N Engl J Med. 2011; 365(17):1649–1650. doi: 10.1056/NEJMc1108849
- Pudil R, Mueller C, Čelutkienė J, et al. Role of serum biomarkers in cancer patients receiving cardiotoxic cancer therapies: A position statement from the Cardio-Oncology Study Group of the Heart Failure Association and the Cardio-Oncology Council of the European Society of Cardiology. Eur J Heart Fail. 2020;22(11):1966–1983. doi: 10.1002/ejhf.2017
- Кулиева А., Емелина Е.И., Гендлин Г.Е., и др. Сердечно-сосудистые осложнения при применении ингибиторов иммунных контрольных точек // Качественная клиническая практика. 2019. № 4. С. 55–65. [Kulieva AA, Emelina EI, Gendlin GE, et al. Cardiovascular complications of immune checkpoint inhibitors. Good Clinical Practice. 2019;(4):55–65. (In Russ).] doi: 10.1016/2588-0519-2019-4-55-65
- Zhang L, Reynolds KL, Lyon AR, et al. The evolving immunotherapy landscape and the epidemiology, diagnosis, and management of cardiotoxicity: JACC: CardioOncology primer. JACC CardioOncol. 2021;3(1):35–47. doi: 10.1016/j.jaccao.2020.11.012
- Chen DY, Huang WK, Chien-Chia Wu V, et al. Cardiovascular toxicity of immune checkpoint inhibitors in cancer patients: A review when cardiology meets acka-oncology. J Formos Med Assoc. 2020;119(10):1461–1475. doi: 10.1016/j.jfma.2019.07.025
- Passalia C, Minetto P, Arboscello E, et al. Cardiovascular adverse events complicating the administration of rituximab: Report of two cases. Tumori. 2013;99(6):288e–292e. doi: 10.1700/1390.15471
- El-Zarrad MK, Mukhopadhyay P, Mohan N, et al. Trastuzumab alters the expression of genes essential for cardiac function and induces ultrastructural changes of cardiomyocytes in mice. PloS ONE. 2013;8(11):e79543. doi: 10.1371/journal.pone.0079543
- Boyd A, Stoodley P, Richards D, et al. Anthracyclines induce early changes in left ventricular systolic and diastolic function: A single centre study. PloS One. 2017;12(4):e0175544. doi: 10.1371/journal.pone.0175544
- Plana J, Galderisi M, Barac A, et al. Expert consensus for multimodality imaging evaluation of adult patients during and after cancer therapy: A report from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging. 2014; 15(10):1063–1093. doi: 10.1093/ehjci/jeu192
- Popat S, Smith IE. Therapy insight: Anthracyclines and trastuzumab: The optimal managemtnt of cardiotoxic side effects. Nat Clin Prac Oncol. 2008;5(6):324–335. doi: 10.1038/ncponc1090
- Cardinale D, Caruso V, Cipolla CM. The breast cancer patient in the cardiooncology unit. J Thorac Dis. 2018;10(Suppl. 35): S4306–S4322. doi: 10.21037/jtd.2018.10.06
- Ky B, Putt M, Sawaya H, et al. Early increases in multiple biomarkers predict subsequent cardiotoxicity in patients with breast cancer treated with doxorubicin, taxanes, and trastuzumab. J Am Coll Cardiol. 2014;63(8):809. doi: 10.1016/j.jacc.2013.10.061
- Seisean S, Seisean A, Alan N, et al. Cardioprotective effects of β-adrenoreceptor blockade inpatients with breast cancer undergoing chemotherapy: Follow-up study of heart failure. Circ Heart Fail. 2013;6(3):420–426. doi: 10.1161/CIRCHEARTFAILURE.112.000055
- Slamon D, Eiermann W, Robert N, et al.; Breast Cancer International Research Group. Adjuvant trastuzumab in HER2-positive breast cancer. N Engl J Med. 2011;365(14):1273–1283. doi: 10.1056/NEJMoa0910383
- Oliva S, Cioffi G, Frattini S, et al. Italian Cardio-Oncological Network. Administration of angiotensin-converting enzyme inhibitors and β-blockers during adjuvant trastuzumab chemotherapy for nonmetastatic breast cancer: Marker of risk or cardioprotection in the real world? Oncologist. 2012;17(7): 917–924. doi: 10.1634/theoncologist.2011-0445
- Raimondi S, Botteri E, Munzone E, et al. Use of beta-blockers, angiotensin-converting enzyme inhibitors and angiotensin receptor blockers and breast cancer survival: Systematic review and meta-analysis. Int J Cancer. 2016;139(1):212–219. doi: 10.1002/ijc.30062
- Livi L, Barletta G, Martella F, et al. Cardioprotective strategy for patients with nonmetastatic breast cancer who are receiving an anthracycline-based chemotherapy: A randomized clinical trial. JAMA Oncol. 2021;7(10):1544–1549. doi: 10.1001/jamaoncol.2021.3395
- Elghazawy H, Prasad VH, Verma V, et al. The role of cardio-protective agents in cardio-preservation in breast cancer patients receiving Anthracyclines ± Trastuzumab: A meta-analysis of clinical studies. Crit Rev Oncol Hematol. 2020;(153):103006. doi: 10.1016/j.critrevonc.2020.103006
- Akpek M, Ozdogru I, Sahin O, et al. Protective effects of spironolactone against ackacycline-induced cardiomyopathy. Eur J Heart Fail. 2015;17(1):81–89. doi: 10.1002/ejhf.196
- Mir A, Badi Y, Bugazia S, et al. Efficacy and safety of cardioprotective drugs in chemotherapy-induced cardiotoxicity: An updated systematic review & network meta-analysis. Cardiooncology. 2023;9(1):10. doi: 10.1186/s40959-023-00159-0
- Sacks FM, Pfeffer MA, Moye LA, et al. Cholesterol and Recurrent Events Trial Investigators. The effect of pravastatin on coronary events after myocardial infarction in patients with average cholesterol levels. N Engl J Med. 1996;335(14): 1001–1009. doi: 10.1056/NEJM199610033351401
- Cholesterol Treatment Trialists’ (CTT) Collaboration. Lack of effect of lowering LDL cholesterol on cancer: Meta-analysis of individual data from 175,000 people in 27 randomised trials of statin therapy. PloS One. 2012;7(1):e29849. doi: 10.1371/journal.pone.0029849
- Bonovas S, Filioussi K, Tsavaris N, et al. Use of statins and breast cancer: A metaanalysis of seven randomized clinical trials and nine observational studies. J Clin Oncol. 2005;23(34): 8606–8612. doi: 10.1200/JCO.2005.02.7045
- Undela K, Srikanth V, Bansal D. Statin use and risk of breast cancer: A meta-analysis of observational studies. Breast Cancer Res Treat. 2012;135(1):261–269. doi: 10.1007/s10549-012-2154-x
- Desai P, Chlebowski R, Cauley JA, et al. Prospective analysis of association between statin use and breast cancer risk in the women’s health initiative. Cancer Epidemiol Biomarkers Prev. 2013;22(10):1868–1876. doi: 10.1158/1055-9965.EPI-13-0562
- Abdel-Qadir H, Bobrowski D, Zhou L, et al. Statin exposure and risk of heart failure after anthracycline-or trastuzumab-based chemotherapy for early breast cancer: A propensity score-matched cohort study. J Am Heart Assoc. 2021;10(2):e018393. doi: 10.1161/JAHA.119.018393
- Ma Y, Yuan Q, Aizeze A, et al. Statins to prevent anthracyclines-induced cardiotoxicity. Austin Cardio. 2023;8(1):1037.
- Boutagy NE, Feher A, Pfau D, et al. Dual angiotensin receptor-neprilysin inhibition with sacubitril/valsartan attenuates systolic dysfunction in experimental doxorubicin-induced cardiotoxicity. J Am Coll Cardiol. 2020;2(5):774–787. doi: 10.1016/j.jaccao.2020.09.007
- Виценя М.В., Потехина А.В., Гаврюшина С.В., и др. Профилактика и лечение дисфункции левого желудочка и сердечной недостаточности, связанных с противоопухолевой терапией: возможности и перспективы // Эффективная фармакотерапия. 2020. Т. 16, № 18. С. 108–120. [Vitsenya MV, Potekhina AV, Gavryushina SV, et al. Prevention and treatment of left ventricular dysfunction and heart failure associated with antitumor therapy: Opportunities and prospects. Effect Pharmacother. 2020;16(18):108–120. (In Russ).] doi: 10.33978/2307-3586-2020-16-18-108-120
- Mecinaj A, Gulati G, Heck SL, et al. Rationale and design of the Prevention of cArdiac Dysfunction during Adjuvant breast cancer therapy (PRADA II) trial: A randomized, placebo-controlled, multicenter trial. Cardiooncology. 2021;7(1):33. doi: 10.1186/s40959-021-00115-w
- Zelniker TA, Braunwald E. Mechanisms of cardiorenal effects of sodium-glucose cotransporter 2 inhibitors: JACC state-of the-art review. J Am Coll Cardiol. 2020;75(4):422–434. doi: 10.1016/j.jacc.2019.11.031
- Verma S, Rawat S, Ho KL, et al. Empagliflozin increases cardiac energy production in diabetes: Novel translational insights into the heart failure benefits of SGLT2 inhibitors. JACC Basic Transl Sci. 2018;3(5):575–587. doi: 10.1016/j.jacbts.2018.07.006
- Sabatino J, De Rosa S, Tammè L, et al. Empagliozin prevents doxorubicin-induced myocardialdysfunction. Cardiovasc Diabetol. 2020;19(1):66. doi: 10.1186/s12933-020-01040-5
- Quagliariello V, de Laurentiis M, Rea D, et al. The SGLT-2 inhibitor empagliflozin improves myocardial strain, reduces cardiac fibrosis and pro-inflammatory cytokines in non-diabetic mice treated with doxorubicin. Cardiovasc Diabetol. 2021;20(1):150. doi: 10.1186/s12933-021-01346-y
- Shi H, Zeng Q, Wei Y, et al. Canagliflozin is a potential cardioprotective drug but exerts no significant effects on pirarubicin-induced cardiotoxicity in rats. Mol Med Rep. 2021;24(4):703. doi: 10.3892/mmr.2021.12342
- Ulusan S, Gülle K, Peynirci A, et al. Dapagliflozin may protect against doxorubicin-induced cardiotoxicity. Anatol J Cardiol. 2023;27(6):339–347. doi: 10.14744/AnatolJCardiol.2023.2825
- Abdel-Qadir H, Carrasco R, Austin PC, et al. The association of sodium-glucose cotransporter 2 inhibitors with cardiovascular outcomes in anthracycline-treated patients with cancer. JACC Cardio Oncology. 2023;5(3):318–328. doi: 10.1016/j.jaccao.2023.03.011
- Gongora CA, Drobni ZD, Silva TQ. Sodium-glucose co-transporter-2 inhibitors and cardiac outcomes among patients treated with anthracycline. JACC Heart Fail. 2022;10(8):559–567. doi: 10.1016/j.jchf.2022.03.006
- Березов Т.Т., Яглова Н.В., Чехонин В.П. Липосомальные формы антрациклиновых антибиотиков // Биомедицинская химия. 2004. Т. 50, № 5. С. 412–419. [Berezov TT, Yaglova NV, Chehonin VP. Liposomal forms of anthracycline antibiotics. Biomed Chemistry. 2004;50(5):412–419. (In Russ).]
- Yamaguchi N, Fujii T, Aoi S, et al. Comparison of cardiac events associated with liposomal doxorubicin, epirubicin and doxorubicin in breast cancer: A Bayesian network meta-analysis. Eur J Cancer. 2015;51(16):2314–2320. doi: 10.1016/j.ejca.2015.07.031
- Hasinoff BB, Kuschak TI, Yalowich JC, et al. A QSAR study comparing the cytotoxicity and DNA topoisomerase II inhibitory effects of bisdioxopiperazine analogs of ICRF-187 (dexrazoxane). Biochem Pharmacol. 1995;50(7):953–958. doi: 10.1016/0006-2952(95)00218-o
- Lyu YL, Kerrigan JE, Lin CP. Topoisomerase II beta mediated DNA double-strand breaks: Implications in doxorubicin cardiotoxicity and prevention by dexrazoxane. Cancer Res. 2007;67(18):8839–8846. doi: 10.1158/0008-5472.CAN-07-1649
- Lipshultz SE, Rifai N, Dalton VM, et al. The effect of dexrazoxane on myocardial injury in doxorubicin-treated children with acute lymphoblastic leukemia. N Engl J Med. 2004;351(2):145–153. doi: 10.1056/NEJMoa035153
- Armenian SH, Lacchetti C, Barac A. Prevention and monitoring of cardiac dysfunction in survivors of adult cancers: American Society of Clinical Oncology Clinical Practice Guideline. J Clin Oncol. 2017;35(8):893–911. doi: 10.1200/JCO.2016.70.5400
- Алябьева А.А., Маль Г.С. Кардиотоксические эффекты, вызванные применением антиметаболитов в химиотерапии онкологических заболеваний // CardioСоматика. 2021. Т. 12, № 3. С. 177–182. [Aliab'eva AA, Mal GS. Cardiotoxic effects induced by the use of antimetabolites in the chemotherapy of oncological diseases. Cardiosomatics. 2021;12(3):177–182. (In Russ).] doi: 10.26442/22217185.2021.3.201098
Supplementary files
