Оптимизация условий для продукции шаперонов Hsp70 в клетках Saccharomyces cerevisiae
- Авторы: Матвеенко А.Г.1, Цветков А.А.1, Рогоза Т.М.1,2, Барбитов Ю.А.1, Журавлева Г.А.1
-
Учреждения:
- Санкт-Петербургский государственный университет
- Санкт-Петербургский филиал Института общей генетики им. Н.И. Вавилова РАН
- Выпуск: Том 23, № 2 (2025)
- Страницы: 191-202
- Раздел: Методология экологической генетики
- URL: https://journal-vniispk.ru/ecolgenet/article/view/317608
- DOI: https://doi.org/10.17816/ecogen676918
- EDN: https://elibrary.ru/HGNCCR
- ID: 317608
Цитировать
Аннотация
Обоснование. Молекулярные шапероны регулируют правильную укладку белков в клетке. Члены семейства Hsp70, включая белок Ssa1, — это молекулярные шапероны, которые предотвращают агрегацию белков, способствуют их правильному сворачиванию и деградации, они являются наиболее распространенными среди различных шаперонов, высококонсервативными и присутствуют в различных организмах.
Цель — оптимизация методов продукции, выделения и очистки белка Ssa1 из клеток Saccharomyces cerevisiae.
Материалы и методы. Последовательности генов SSA1-4 были клонированы в вектор под контролем промоторагена TEF1 и слиты с последовательностью, кодирующей His6-тэг. Штаммы дрожжей с различным генетическим фоном трансформировали полученными конструкциями и оценивали продукцию белков Ssa1-4 при различных условиях культивирования. Для очистки белка Ssa1 использовали методы аффинной и ионообменной хроматографии. Для подтверждения локализации рекомбинантных белков Ssa, слитых с TagRFP-T, в цитоплазме применяли флуоресцентную микроскопию.
Результаты и заключение. Оптимизированы методы продукции, выделения и очистки белка Ssa1 из дрожжевых клеток. Этот же подход может быть в дальнейшем использован для очистки других белков семейства Hsp70 и адаптирован для получения различных белков из эукариотических клеток.
Ключевые слова
Полный текст
Открыть статью на сайте журналаОб авторах
Андрей Георгиевич Матвеенко
Санкт-Петербургский государственный университет
Email: a.matveenko@spbu.ru
ORCID iD: 0000-0002-9458-0194
SPIN-код: 9877-5352
кандидат биологических наук
Россия, Санкт-ПетербургАндрей Алексеевич Цветков
Санкт-Петербургский государственный университет
Email: st096303@student.spbu.ru
ORCID iD: 0009-0007-3673-7310
Россия, Санкт-Петербург
Татьяна Михайловна Рогоза
Санкт-Петербургский государственный университет; Санкт-Петербургский филиал Института общей генетики им. Н.И. Вавилова РАН
Email: t.rogoza@spbu.ru
ORCID iD: 0000-0003-2981-0421
SPIN-код: 7582-1519
кандидат биологических наук
Россия, Санкт-Петербург; Санкт-ПетербургЮрий Александрович Барбитов
Санкт-Петербургский государственный университет
Email: barbitoff@bk.ru
ORCID iD: 0000-0002-3222-440X
SPIN-код: 1053-6164
кандидат биологических наук
Россия, Санкт-ПетербургГалина Анатольевна Журавлева
Санкт-Петербургский государственный университет
Автор, ответственный за переписку.
Email: g.zhuravleva@spbu.ru
ORCID iD: 0000-0002-3013-4662
SPIN-код: 3132-6884
доктор биологических наук, профессор
Россия, Санкт-ПетербургСписок литературы
- Liu Q, Liang C, Zhou L. Structural and functional analysis of the Hsp70/Hsp40 chaperone system. Protein Sci. 2020;29(2):378–390.doi: 10.1002/PRO.3725
- Kampinga HH, Craig EA. The HSP70 chaperone machinery: J proteins as drivers of functional specificity. Nat Rev Mol Cell Biol. 2010;11(8):579–592. doi: 10.1038/NRM2941
- Kominek J, Marszalek J, Neuvéglise C, et al. The complex evolutionary dynamics of Hsp70s: a genomic and functional perspective. Genome Biol Evol. 2013;5(12):2460–2477. doi: 10.1093/GBE/EVT192
- Boorstein WR, Ziegelhoffer T, Craig EA. Molecular evolution of the HSP70 multigene family. J Mol Evol. 1994;38(1):1–17. doi: 10.1007/BF00175490
- Lotz SK, Knighton LE, Nitika, et al. Not quite the SSAme: unique roles for the yeast cytosolic Hsp70s. Curr Genet. 2019;65(5):1127–1134.doi: 10.1007/S00294-019-00978-8
- Werner-Washburne M, Craig EA. Expression of members of the Saccharomyces cerevisiae hsp70 multigene family. Genome. 1989;31(2):684–689. doi: 10.1139/G89-125
- Stone DE, Craig EA. Self-regulation of 70-kilodalton heat shock proteins in Saccharomyces cerevisiae. Mol Cell Biol. 1990;10(4):1622–1632. doi: 10.1128/MCB.10.4.1622-1632.1990
- Christiano R, Nagaraj N, Fröhlich F, Walther TC. Global proteome turnover analyses of the yeasts S. cerevisiae and S. pombe. Cell Rep. 2014;9(5):1959–1965. doi: 10.1016/J.CELREP.2014.10.065
- Zhouravleva GA, Bondarev SA, Trubitsina NP. How big is the yeast prion universe? Int J Mol Sci. 2023;24(14):11651. doi: 10.3390/IJMS241411651
- Barbitoff YA, Matveenko AG, Zhouravleva GA. Differential interactions of molecular chaperones and yeast prions. J Fungi. 2022;8(2):122.doi: 10.3390/JOF8020122
- Schwimmer C, Masison DC. Antagonistic interactions between yeast [PSI+] and [URE3] prions and curing of [URE3] by Hsp70 protein chaperone Ssa1p but not by Ssa2p. Mol Cell Biol. 2002;22(11):3590–3598.doi: 10.1128/MCB.22.11.3590-3598.2002
- Matveenko AG, Barbitoff YA, Jay-Garcia LM, et al. Differential effects of chaperones on yeast prions: CURrent view. Curr Genet. 2018;64(2):317–325. doi: 10.1007/S00294-017-0750-3
- Allen KD, Wegrzyn RD, Chernova TA, et al. Hsp70 chaperones as modulators of prion life cycle: Novel effects of Ssa and Ssb on the Saccharomyces cerevisiae prion [PSI+]. Genetics. 2005;169(3):1227–1242.doi: 10.1534/genetics.104.037168
- Barbitoff YA, Matveenko AG, Moskalenko SE, et al. To CURe or not to CURe? Differential effects of the chaperone sorting factor Cur1 on yeast prions are mediated by the chaperone Sis1. Mol Microbiol. 2017;105(2):242–257.doi: 10.1111/MMI.13697
- Sharma D, Masison DC. Functionally redundant isoforms of a yeast Hsp70 chaperone subfamily have different antiprion effects. Genetics 2008;179(3):1301–1311. doi: 10.1534/GENETICS.108.089458
- Sharma D, Martineau CN, Le Dall MT, et al. Function of SSA subfamily of Hsp70 within and across species varies widely in complementing Saccharomyces cerevisiae cell growth and prion propagation. PLoS One.2009;4(8):e6644. doi: 10.1371/JOURNAL.PONE.0006644
- Bush GL, Meyer DI. The refolding activity of the yeast heat shock proteins Ssa1 and Ssa2 defines their role in protein translocation. J Cell Biol. 1996;135(5):1229–1237. doi: 10.1083/JCB.135.5.1229
- Deshaies RJ, Koch BD, Werner-Washburne M, et al. A subfamily of stress proteins facilitates translocation of secretory and mitochondrial precursor polypeptides. Nature. 1988;332(6167):800–805. doi: 10.1038/332800A0
- Gilbert CS, van den Bosch M, Green CM, et al. The budding yeast Rad9 checkpoint complex: chaperone proteins are required for its function.EMBO Rep. 2003;4(10):953–958. doi: 10.1038/SJ.EMBOR.EMBOR935
- McClellan AJ, Endres JB, Vogel JP, et al. Specific molecular chaperone interactions and an ATP-dependent conformational change are required during posttranslational protein translocation into the yeast ER. Mol Biol Cell. 1998;9(12):3533–3545. doi: 10.1091/MBC.9.12.3533
- Krzewska J, Melki R. Molecular chaperones and the assembly of the prion Sup35p, an in vitro study. EMBO J. 2006;25(4):822–833.doi: 10.1038/SJ.EMBOJ.7600985
- Grant GN, Jessee J, Bloom FR, Hanahan D. Differential plasmid rescue from transgenic mouse DNAs into Escherichia coli methylation-restriction mutants. PNAS. 1990;87(12):4645–4649. doi: 10.1073/PNAS.87.12.4645
- Kaiser C, Michaelis S, Mitchell A. Methods in yeast genetics. New York: Cold Spring Harbor Laboratory Press; Cold Spring Harbor; 1994.
- Sambrook J, Fritsch EF, Maniatis T. Molecular cloning a laboratory manual. 2nd edit. New York: Cold Spring Harbor Laboratory Press;Cold Spring Harbor; 1989.
- Inge-Vechtomov SG. Identification of some linkage groups of Peterhof breeding stocks of yeast. Genetika. 1971;7(9):113–124. (In Russ.)
- Gietz RD. Yeast Transformation by the LiAc/SS Carrier DNA/PEG Method. In: Xiao W, editor. Yeast Protocols. New York: Springer New York; 2014. P. 33–44. doi: 10.1007/978-1-4939-0799-1_4
- Chernoff YO, Lindquist SL, Ono BI, et al. Role of the chaperone protein Hsp104 in propagation of the yeast prion-like factor [PSI+]. Science. 1995;268(5212):880–884. doi: 10.1126/SCIENCE.7754373
- Newnam GP, Wegrzyn RD, Lindquist SL, Chernoff YO. Antagonistic interactions between yeast chaperones Hsp104 and Hsp70 in prion curing. Mol Cell Biol. 1999;19(2):1325–1333. doi: 10.1128/MCB.19.2.1325
- Agaphonov M, Alexandrov A. Self-excising integrative yeast plasmid vectors containing an intronated recombinase gene. FEMS Yeast Res. 2014;14(7):1048–1054. doi: 10.1111/1567-1364.12197
- Matveenko AG, Ryzhkova VE, Zaytseva NA, et al. Processing of fluorescent proteins may prevent detection of prion particles in [PSI+] cells. Biology. 2022;11(12):1688. doi: 10.3390/BIOLOGY11121688
- Okamoto A, Hosoda N, Tanaka A, et al. Proteolysis suppresses spontaneous prion generation in yeast. J Biol Chem. 2017;292(49):20113–20124. doi: 10.1074/JBC.M117.811323.
- Brachmann CB, Davies A, Cost GJ, et al. Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast. 1998;14(2):115–132. doi: 10.1002/(SICI)1097-0061(19980130)14:2
- Sikorski RS, Hieter P. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics. 1989;122(1):19–27. doi: 10.1093/GENETICS/122.1.19
- James P, Pfund C, Craig EA. Functional specificity among Hsp70 molecular chaperones. Science. 1997;275(5298):387–389. doi: 10.1126/SCIENCE.275.5298.387
- Malcova I, Farkasovsky M, Senohrabkova L, et al. New integrative modules for multicolor-protein labeling and live-cell imaging in Saccharomyces cerevisiae. FEMS Yeast Res. 2016;16(3): fow027. doi: 10.1093/FEMSYR/FOW027
- Kushnirov VV. Rapid and reliable protein extraction from yeast. Yeast. 2000;16(9):857–860. doi: 10.1002/1097-0061(20000630)16:9<857::AID-YEA561>3.0.CO;2-B
- Zhang T, Lei J, Yang H, et al. An improved method for whole protein extraction from yeast Saccharomyces cerevisiae. Yeast. 2011;28(11):795–798. doi: 10.1002/YEA.1905
- Kushnirov VV, Alexandrov IM, Mitkevich OV, et al. Purification and analysis of prion and amyloid aggregates. Methods. 2006;39(1):50–55. doi: 10.1016/J.YMETH.2006.04.007
- Drozdova PB, Barbitoff YA, Belousov MV, et al. Estimation of amyloid aggregate sizes with semi-denaturing detergent agarose gel electrophoresis and its limitations. Prion. 2020;14(1):118–128.doi: 10.1080/19336896.2020.1751574
- Hines JK, Higurashi T, Srinivasan M, Craig EA. Influence of prion variant and yeast strain variation on prion-molecular chaperone requirements. Prion. 2011;5(4):238–244. doi: 10.4161/PRI.17818
Дополнительные файлы
