Преждевременная недостаточность яичников: генетические причины и тактика ведения пациенток (обзор литературы)

Обложка


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Преждевременная недостаточность яичников — синдром, характеризующийся гипергонадотропной недостаточностью яичников и снижением их функции в возрасте до 40 лет, приводящий к нарушению репродуктивной функции, метаболическим изменениям, снижению качества жизни женщин. В настоящее время также выделяют оккультную и начальную формы преждевременной недостаточности яичников, характеризуемые определенными особенностями диагностики и тактики ведения. Частота встречаемости синдрома составляет от 1,1 до 3,7 %, наблюдается тенденция к росту данной патологии. Работа представляет собой литературный обзор данных с 2005 по 2020 г., доступных в базе данных PubMed, а учтены также международные клинические рекомендации. В обзоре рассмотрены генетические причины преждевременной недостаточности яичников, аспекты клинических проявлений данной патологии, а также тактика ведения больных. Описаны нюансы программ вспомогательных репродуктивных технологий у пациенток с преждевременной недостаточностью яичников.

Об авторах

Валентина Михайловна Денисова

NGC Next Generation Clinic (Василеостровская клиника репродукции)

Автор, ответственный за переписку.
Email: valyik@mail.ru
ORCID iD: 0000-0001-6469-9111
SPIN-код: 7291-3857
Scopus Author ID: 57218170473

канд. мед. наук

Россия, Санкт-Петербург

Мария Игоревна Ярмолинская

Научно-исследовательский институт акушерства, гинекологии и репродуктологии им. Д.О. Отта; Северо-Западный государственный медицинский университет им. И.И. Мечникова

Email: m.yarmolinskaya@gmail.com
ORCID iD: 0000-0002-6551-4147
SPIN-код: 3686-3605
Scopus Author ID: 7801562649
ResearcherId: P-2183-2014

д-р мед. наук, профессор, профессор РАН

Россия, Санкт-Петербург

Карина Анзоровна Закураева

Научно-исследовательский институт акушерства, гинекологии и репродуктологии им. Д.О. Отта

Email: kareen07kbr@gmail.com
ORCID iD: 0000-0002-8128-306X
SPIN-код: 5215-7869

клинический ординатор

Россия, Санкт-Петербург

Список литературы

  1. European Society for Human Reproduction and Embryology (ESHRE) Guideline Group on POI, Webber L., Davies M., Anderson R. et al. ESHRE Guideline: management of women with premature ovarian insufficiency // Hum. Reprod. 2016. Vol. 31, No. 5. P. 926–937. doi: 10.1093/humrep/dew027
  2. Ossewaarde M.E., Bots M.L., Verbeek A.L. et al. Age at menopause, cause-specific mortality and total life expectancy // Epidemiology. 2005. Vol. 16. No. 4. P. 556–562. doi: 10.1097/01.ede.0000165392.35273.d4
  3. Panay N., Anderson R.A., Nappi R.E. et al. Premature ovarian insufficiency: an International Menopause Society White Paper // Climacteric. 2020. Vol. 23. No. 5. P. 426–446. doi: 10.1080/13697137.2020.1804547
  4. Torrealday S., Kodaman P., Pal L. Premature Ovarian Insufficiency — an update on recent advances in understanding and management // F1000Res. 2017. Vol. 6. P. 2069. doi: 10.12688/f1000research.11948.1
  5. Tucker E.J., Grover S.R., Bachelot A. et al. Premature Ovarian Insufficiency: New perspectives on genetic cause and phenotypic spectrum // Endocr. Rev. 2016. Vol. 37. No. 6. P. 609–635. doi: 10.1210/er.2016-1047
  6. Voican A., Bachelot A., Bouligand J. et al. NR5A1 (SF-1) mutations are not a major cause of primary ovarian insufficiency // J. Clin. Endocrinol. Metab. 2013. Vol. 98. No. 5. P. E1017–E1021. doi: 10.1210/jc.2012-4111
  7. Janse F., de With L.M., Duran K.J. et al. Limited contribution of NR5A1 (SF-1) mutations in women with primary ovarian insufficiency (POI) // Fertil. Steril. 2012. Vol. 97. No. 1. P. 141–6.e2. doi: 10.1016/j.fertnstert.2011.10.032
  8. Lourenço D., Brauner R., Lin L. et al. Mutations in NR5A1 associated with ovarian insufficiency // N. Engl. J. Med. 2009. Vol. 360. No. 12. P. 1200–1210. doi: 10.1056/NEJMoa0806228
  9. Jaillard S., Sreenivasan R., Beaumont M. et al. Analysis of NR5A1 in 142 patients with premature ovarian insufficiency, diminished ovarian reserve, or unexplained infertility // Maturitas. 2020. Vol. 131. P. 78–86. doi: 10.1016/j.maturitas.2019.10.011
  10. Crisponi L., Deiana M., Loi A. et al. The putative forkhead transcription factor FOXL2 is mutated in blepharophimosis/ptosis/epicanthus inversus syndrome // Nat. Genet. 2001. Vol. 27. No. 2. P. 159–166. doi: 10.1038/84781
  11. Fraser I.S., Shearman R.P., Smith A., Russell P. An association among blepharophimosis, resistant ovary syndrome, and true premature menopause // Fertil. Steril. 1988. Vol. 50. No. 5. P. 747–751. doi: 10.1016/s0015-0282(16)60309-6
  12. Nicolino M., Bost M., David M., Chaussain J.L. Familial blepharophimosis: an uncommon marker of ovarian dysgenesis // J. Pediatr. Endocrinol. Metab. 1995. Vol. 8. No. 2. P. 127–133. doi: 10.1515/jpem.1995.8.2.127
  13. Uhlenhaut N.H., Jakob S., Anlag K. et al. Somatic sex reprogramming of adult ovaries to testes by FOXL2 ablation // Cell. 2009. Vol. 139. No. 6. P. 1130–1142. doi: 10.1016/j.cell.2009.11.021
  14. Méduri G., Bachelot A., Duflos C. et al. FOXL2 mutations lead to different ovarian phenotypes in BPES patients: Case Report // Hum. Reprod. 2010. Vol. 25. No. 1. P. 235–243. doi: 10.1093/humrep/dep355
  15. Caburet S., Arboleda V.A., Llano E. et al. Mutant cohesin in premature ovarian failure // N. Engl. J. Med. 2014. Vol. 370. No. 10. P. 943–949. doi: 10.1056/NEJMoa1309635
  16. Xiao W.J., He W.B., Zhang Y.X. et al. In-frame variants in STAG3 gene cause premature ovarian insufficiency // Front. Genet. 2019. Vol. 10. P. 1016. doi: 10.3389/fgene.2019.01016
  17. Lacombe A., Lee H., Zahed L. et al. Disruption of POF1B binding to nonmuscle actin filaments is associated with premature ovarian failure // Am. J. Hum. Genet. 2006. Vol. 79. No. 1. P. 113–119. doi: 10.1086/505406
  18. Bolcun-Filas E., Hall E., Speed R. et al. Mutation of the mouse Syce1 gene disrupts synapsis and suggests a link between synaptonemal complex structural components and DNA repair // PLoS Genet. 2009. Vol. 5. No. 2. P. e1000393. Corrected and republished from: PLoS Genet. 2009. Vol. 5. No. 4. doi: 10.1371/journal.pgen.1000393
  19. de Vries L., Behar D.M., Smirin-Yosef P. et al. Exome sequencing reveals SYCE1 mutation associated with autosomal recessive primary ovarian insufficiency // J. Clin. Endocrinol. Metab. 2014. Vol. 99. No. 10. P. E2129–E2132. doi: 10.1210/jc.2014-1268
  20. de Vries F.A., de Boer E., van den Bosch M. et al. Mouse Sycp1 functions in synaptonemal complex assembly, meiotic recombination, and XY body formation // Genes. Dev. 2005. Vol. 19. No. 11. P. 1376–1389. doi: 10.1101/gad.329705
  21. Bolcun-Filas E., Costa Y., Speed R. et al. SYCE2 is required for synaptonemal complex assembly, double strand break repair, and homologous recombination // J. Cell. Biol. 2007. Vol. 176. No. 6. P. 741–747. doi: 10.1083/jcb.200610027
  22. Hamer G., Wang H., Bolcun-Filas E. et al. Progression of meiotic recombination requires structural maturation of the central element of the synaptonemal complex // J. Cell. Sci. 2008. Vol. 121. Pt. 15. P. 2445–2451. doi: 10.1242/jcs.033233
  23. Wang J., Zhang W., Jiang H., Wu B.L.; Primary Ovarian Insufficiency Collaboration. Mutations in HFM1 in recessive primary ovarian insufficiency // N. Engl. J. Med. 2014. Vol. 370. No. 10. P. 972–974. doi: 10.1056/NEJMc1310150
  24. Zangen D., Kaufman Y., Zeligson S. et al. XX ovarian dysgenesis is caused by a PSMC3IP/HOP2 mutation that abolishes coactivation of estrogen-driven transcription // Am. J. Hum. Genet. 2011. Vol. 89. No. 4. P. 572–579. doi: 10.1016/j.ajhg.2011.09.006
  25. Weinberg-Shukron A., Renbaum P., Kalifa R. et al. A mutation in the nucleoporin-107 gene causes XX gonadal dysgenesis // J. Clin. Invest. 2015. Vol. 125. No. 11. P. 4295–4304. doi: 10.1172/JCI83553
  26. Senger S., Csokmay J., Akbar T. et al. The nucleoporin Seh1 forms a complex with Mio and serves an essential tissue-specific function in Drosophila oogenesis // Development. 2011. Vol. 138. No. 10. P. 2133–2142. Corrected and republished from: Development. 2011. Vol. 138. No. 12. P. 2631. doi: 10.1242/dev.057372
  27. Savitsky K., Bar-Shira A., Gilad S. et al. A single ataxia telangiectasia gene with a product similar to PI-3 kinase // Science. 1995. Vol. 268. No. 5218. P. 1749–1753. doi: 10.1126/science.7792600
  28. Barlow C., Hirotsune S., Paylor R. et al. Atm-deficient mice: a paradigm of ataxia telangiectasia // Cell. 1996. Vol. 86. No. 1. P. 159–171. doi: 10.1016/s0092-8674(00)80086-0
  29. Liu H., Wei X., Sha Y. et al. Whole-exome sequencing in patients with premature ovarian insufficiency: early detection and early intervention // J. Ovarian. Res. 2020. Vol. 13. No. 1. P 114. doi: 10.1186/s13048-020-00716-6
  30. Lutzmann M., Grey C., Traver S. et al. MCM8- and MCM9-deficient mice reveal gametogenesis defects and genome instability due to impaired homologous recombination // Mol. Cell. 2012. Vol. 47. No. 4. P. 523–534. doi: 10.1016/j.molcel.2012.05.048
  31. AlAsiri S., Basit S., Wood-Trageser M.A. et al. Exome sequencing reveals MCM8 mutation underlies ovarian failure and chromosomal instability // J. Clin. Invest. 2015. Vol. 125. No. 1. P. 258–262. doi: 10.1172/JCI78473
  32. Wood-Trageser M.A., Gurbuz F., Yatsenko S.A. et al. MCM9 mutations are associated with ovarian failure, short stature, and chromosomal instability // Am. J. Hum. Genet. 2014. Vol. 95. No. 6. P. 754–762. doi: 10.1016/j.ajhg.2014.11.002
  33. Fauchereau F., Shalev S., Chervinsky E. et al. A non-sense MCM9 mutation in a familial case of primary ovarian insufficiency // Clin. Genet. 2016. Vol. 89. No. 5. P. 603–607. doi: 10.1111/cge.12736
  34. Goldberg Y., Halpern N., Hubert A. et al. Mutated MCM9 is associated with predisposition to hereditary mixed polyposis and colorectal cancer in addition to primary ovarian failure // Cancer Genet. 2015. Vol. 208. No. 12. P. 621–624. doi: 10.1016/j.cancergen.2015.10.001
  35. Guo T., Zheng Y., Li G. et al. Novel pathogenic mutations in minichromosome maintenance complex component 9 (MCM9) responsible for premature ovarian insufficiency // Fertil. Steril. 2020. Vol. 113. No. 4. P. 845–852. doi: 10.1016/j.fertnstert.2019.11.015
  36. Qin Y., Guo T., Li G. et al. CSB-PGBD3 mutations cause premature ovarian failure // PLoS Genet. 2015. Vol. 11. No. 7. P. e1005419. doi: 10.1371/journal.pgen.1005419
  37. Santos M.G., Machado A.Z., Martins C.N. et al. Homozygous inactivating mutation in NANOS3 in two sisters with primary ovarian insufficiency // Biomed. Res. Int. 2014. Vol. 2014. P. 787465. doi: 10.1155/2014/787465
  38. Wu X., Wang B., Dong Z. et al. A NANOS3 mutation linked to protein degradation causes premature ovarian insufficiency // Cell. Death. Dis. 2013. Vol. 4. No. 10. P. e825. doi: 10.1038/cddis.2013.368
  39. Mansouri M.R., Schuster J., Badhai J. et al. Alterations in the expression, structure and function of progesterone receptor membrane component-1 (PGRMC1) in premature ovarian failure // Hum. Mol. Genet. 2008. Vol. 17. No. 23. P. 3776–3783. doi: 10.1093/hmg/ddn274
  40. Ratts V.S., Flaws J.A., Kolp R. et al. Ablation of bcl-2 gene expression decreases the numbers of oocytes and primordial follicles established in the post-natal female mouse gonad // Endocrinology. 1995. Vol. 136. No. 8. P. 3665–3668. doi: 10.1210/endo.136.8.7628407
  41. França M.M., Mendonca BB. Genetics of primary ovarian insufficiency in the next-generation sequencing era // J. Endocr. Soc. 2019. Vol. 4. No. 2. P. bvz037. doi: 10.1210/jendso/bvz037
  42. Kasippillai T., MacArthur D.G., Kirby A. et al. Mutations in eIF4ENIF1 are associated with primary ovarian insufficiency // J. Clin. Endocrinol. Metab. 2013. Vol. 98. No. 9. P. E1534–E1539. doi: 10.1210/jc.2013-1102
  43. Peng J., Li Q., Wigglesworth K. et al. Growth differentiation factor 9: bone morphogenetic protein 15 heterodimers are potent regulators of ovarian functions // Proc. Natl. Acad. Sci. USA. 2013. Vol. 110. No. 8. P. E776–E785. doi: 10.1073/pnas.1218020110
  44. Di Pasquale E., Beck-Peccoz P., Persani L. Hypergonadotropic ovarian failure associated with an inherited mutation of human bone morphogenetic protein-15 (BMP15) gene // Am. J. Hum. Genet. 2004. Vol. 75. No. 1. P 106–111. doi: 10.1086/422103
  45. Santos M., Cordts E.B., Peluso C. et al. Association of BMP15 and GDF9 variants to premature ovarian insufficiency // J. Assist. Reprod. Genet. 2019. Vol. 36. No. 10. P. 2163–2169. doi: 10.1007/s10815-019-01548-0
  46. Dixit H., Rao L.K., Padmalatha V. et al. Mutational screening of the coding region of growth differentiation factor 9 gene in Indian women with ovarian failure // Menopause. 2005. Vol. 12. No. 6. P. 749–754. doi: 10.1097/01.gme.0000184424.96437.7a
  47. Laissue P., Christin-Maitre S., Touraine P. et al. Mutations and sequence variants in GDF9 and BMP15 in patients with premature ovarian failure // Eur. J. Endocrinol. 2006. Vol. 154. No. 5. P. 739–744. doi: 10.1530/eje.1.02135
  48. Kovanci E., Rohozinski J., Simpson J.L. et al. Growth differentiating factor-9 mutations may be associated with premature ovarian failure // Fertil. Steril. 2007. Vol. 87. No. 1. P. 143–146. doi: 10.1016/j.fertnstert.2006.05.079
  49. Qin Y., Choi Y., Zhao H. et al. NOBOX homeobox mutation causes premature ovarian failure // Am. J. Hum. Genet. 2007. Vol. 81. No. 3. P. 576–581. doi: 10.1086/519496
  50. Bouilly J., Bachelot A., Broutin I. et al. Novel NOBOX loss-of-function mutations account for 6.2% of cases in a large primary ovarian insufficiency cohort // Hum. Mutat. 2011. Vol. 32. No. 10. P. 1108–1113. doi: 10.1002/humu.21543
  51. Bayram Y., Gulsuner S., Guran T. et al. Homozygous loss-of-function mutations in SOHLH1 in patients with nonsyndromic hypergonadotropic hypogonadism // J. Clin. Endocrinol. Metab. 2015. Vol. 100. No. 5. P. E808–E814. doi: 10.1210/jc.2015-1150
  52. Pangas S.A., Choi Y., Ballow D.J. et al. Oogenesis requires germ cell-specific transcriptional regulators Sohlh1 and Lhx8 // Proc. Natl. Acad. Sci. USA. 2006. Vol. 103. No. 21. P. 8090–8095. doi: 10.1073/pnas.0601083103
  53. Aittomäki K., Lucena J.L., Pakarinen P. et al. Mutation in the follicle-stimulating hormone receptor gene causes hereditary hypergonadotropic ovarian failure // Cell. 1995. Vol. 82. No. 6. P. 959–968. doi: 10.1016/0092-8674(95)90275-9
  54. Vaskivuo T.E., Aittomäki K., Anttonen M. et al. Effects of follicle-stimulating hormone (FSH) and human chorionic gonadotropin in individuals with an inactivating mutation of the FSH receptor // Fertil. Steril. 2002. Vol. 78. No. 1. P. 108–113. doi: 10.1016/s0015-0282(02)03148-5
  55. Meduri G., Touraine P., Beau I. et al. Delayed puberty and primary amenorrhea associated with a novel mutation of the human follicle-stimulating hormone receptor: clinical, histological, and molecular studies // J. Clin. Endocrinol. Metab. 2003. Vol. 88. No. 8. P 3491–3498. doi: 10.1210/jc.2003-030217
  56. Huang W., Cao Y., Shi L. Effects of FSHR polymorphisms on premature ovarian insufficiency in human beings: a meta-analysis // Reprod. Biol. Endocrinol. 2019. Vol. 17. No. 1. P. 80. doi: 10.1186/s12958-019-0528-1
  57. GeneCards. [Internet]. FIGLA gene (Protein Coding) folliculogenesis specific BHLH transcription factor. [дата обращения 25.04.2021]. Доступ по ссылке: https://www.genecards.org/cgi-bin/carddisp.pl?gene=FIGLA
  58. Hu W., Gauthier L., Baibakov B., Jimenez-Movilla M., Dean J. FIGLA, a basic helix-loop-helix transcription factor, balances sexually dimorphic gene expression in postnatal oocytes // Mol. Cell. Biol. 2010. Vol. 30. No. 14. P. 3661–3671. doi: 10.1128/MCB.00201-10
  59. Bayne R.A., Martins da Silva S.J., Anderson R.A. Increased expression of the FIGLA transcription factor is associated with primordial follicle formation in the human fetal ovary // Mol. Hum. Reprod. 2004. Vol. 10. No. 6. P. 373–381. doi: 10.1093/molehr/gah056
  60. Tosh D., Rani H.S., Murty U.S. et al. Mutational analysis of the FIGLA gene in women with idiopathic premature ovarian failure // Menopause. 2015. Vol. 22. No. 5. P. 520–526. doi: 10.1097/GME.0000000000000340
  61. Pangas S.A., Rajkovic A. Transcriptional regulation of early oogenesis: in search of masters // Hum. Reprod. Update. 2006. Vol. 12. No. 1. P. 65–76. doi: 10.1093/humupd/dmi033
  62. Choi Y., Rajkovic A. Genetics of early mammalian folliculogenesis // Cell. Mol. Life Sci. 2006. Vol. 63. No. 5. P. 579–590. doi: 10.1007/s00018-005-5394-7
  63. Chen B., Li L., Wang J. et al. Consanguineous familial study revealed biallelic FIGLA mutation associated with premature ovarian insufficiency // J. Ovarian. Res. 2018. Vol. 11. No. 1. 48. doi: 10.1186/s13048-018-0413-0
  64. Legros F., Malka F., Frachon P., Lombès A., Rojo M. Organization and dynamics of human mitochondrial DNA // J. Cell. Sci. 2004. Vol. 117. Pt. 13. P. 2653–2662. doi: 10.1242/jcs.01134
  65. Shoubridge E.A., Wai T. Mitochondrial DNA and the mammalian oocyte // Curr. Top. Dev. Biol. 2007. Vol. 77. P. 87–111. doi: 10.1016/S0070-2153(06)77004-1
  66. Bonomi M., Somigliana E., Cacciatore C. et al. Blood cell mitochondrial DNA content and premature ovarian aging // PLoS One. 2012. Vol. 7. No. 8. P. e42423. doi: 10.1371/journal.pone.0042423
  67. Pagnamenta A.T., Taanman J.W., Wilson C.J. et al. Dominant inheritance of premature ovarian failure associated with mutant mitochondrial DNA polymerase gamma // Hum. Reprod. 2006. Vol. 21. No. 10. P. 2467–2473. doi: 10.1093/humrep/del076
  68. Luoma P., Melberg A., Rinne J.O. et al. Parkinsonism, premature menopause, and mitochondrial DNA polymerase gamma mutations: clinical and molecular genetic study // Lancet. 2004. Vol. 364. No. 9437. P. 875–882. doi: 10.1016/S0140-6736(04)16983-3
  69. Morino H, Pierce SB, Matsuda Y, et al. Mutations in Twinkle primase-helicase cause Perrault syndrome with neurologic features // Neurology. 2014. Vol. 83. No. 22. P. 2054–2061. doi: 10.1212/WNL.0000000000001036
  70. Pierce S.B., Walsh T., Chisholm K.M. et al. Mutations in the DBP-deficiency protein HSD17B4 cause ovarian dysgenesis, hearing loss, and ataxia of Perrault syndrome // Am. J. Hum. Genet. 2010. Vol. 87. No. 2. P. 282–288. doi: 10.1016/j.ajhg.2010.07.007
  71. Matthijs G., Schollen E., Pardon E. et al. Mutations in PMM2, a phosphomannomutase gene on chromosome 16p13, in carbohydrate-deficient glycoprotein type I syndrome (Jaeken syndrome) // Nat. Genet. 1997. Vol. 16. No. 1. P. 88–92. Corrected and republished from: Nat. Genet. 1997. Vol. 16. No. 3. P. 316. doi: 10.1038/ng0597-88
  72. Peng T., Lv C., Tan H. et al. Novel PMM2 missense mutation in a Chinese family with non-syndromic premature ovarian insufficiency // J. Assist. Reprod. Genet. 2020. Vol. 37. No. 2. P. 443–450. doi: 10.1007/s10815-019-01675-8
  73. Silva C.A., Yamakami L.Y., Aikawa N.E. et al. Autoimmune primary ovarian insufficiency // Autoimmun. Rev. 2014. Vol. 13. No. 4–5. P. 427–430. doi: 10.1016/j.autrev.2014.01.003
  74. Cervato S., Mariniello B., Lazzarotto F. et al. Evaluation of the autoimmune regulator (AIRE) gene mutations in a cohort of Italian patients with autoimmune-polyendocrinopathy-candidiasis-ectodermal-dystrophy (APECED) and in their relatives // Clin. Endocrinol. (Oxf.). 2009. Vol. 70. No. 3. P. 421–428. doi: 10.1111/j.1365-2265.2008.03318.x
  75. MedlinePlus. [Internet]. AIRE gene autoimmune regulator. [дата обращения 25.04.2021]. Доступ по ссылке: https://medlineplus.gov/genetics/gene/aire/
  76. Kahaly G.J. Polyglandular autoimmune syndromes // Eur. J. Endocrinol. 2009. Vol. 161. No. 1. P. 11–20. doi: 10.1530/EJE-09-0044
  77. Santoro M.R., Bray S.M., Warren S.T. Molecular mechanisms of fragile X syndrome: a twenty-year perspective // Annu. Rev. Pathol. 2012. Vol. 7. P. 219–245. doi: 10.1146/annurev-pathol-011811-132457
  78. Allingham-Hawkins D.J., Babul-Hirji R., Chitayat D. et al. Fragile X premutation is a significant risk factor for premature ovarian failure: the International Collaborative POF in Fragile X study — preliminary data // Am. J. Med. Genet. 1999. Vol. 83. No. 4. P. 322–325.
  79. Chen E., Joseph S. Fragile X mental retardation protein: A paradigm for translational control by RNA-binding proteins // Biochimie. 2015. Vol. 114. P. 147–154. doi: 10.1016/j.biochi.2015.02.005
  80. Primerano B., Tassone F., Hagerman R.J. et al. Reduced FMR1 mRNA translation efficiency in fragile X patients with premutations // RNA. 2002. Vol. 8. No. 12. P 1482–1488.
  81. Winship A.L., Stringer J.M., Liew S.H., Hutt K.J. The importance of DNA repair for maintaining oocyte quality in response to anti-cancer treatments, environmental toxins and maternal ageing // Hum. Reprod. Update. 2018. Vol. 24. No. 2. P. 119–134. doi: 10.1093/humupd/dmy002
  82. Stringer J.M., Winship A., Liew S.H., Hutt K. The capacity of oocytes for DNA repair // Cell. Mol. Life Sci. 2018. Vol. 75. No. 15. P. 2777–2792. doi: 10.1007/s00018-018-2833-9
  83. Oktay K., Turan V., Titus S. et al. BRCA mutations, DNA repair deficiency, and ovarian aging // Biol. Reprod. 2015. Vol. 93. No. 3. P. 67. doi: 10.1095/biolreprod.115.132290
  84. Titus S., Li F., Stobezki R. et al. Impairment of BRCA1-related DNA double-strand break repair leads to ovarian aging in mice and humans // Sci. Transl. Med. 2013. Vol. 5. No. 172. P. 172ra21. doi: 10.1126/scitranslmed.3004925
  85. Ben-Aharon I., Levi M., Margel D. et al. Premature ovarian aging in BRCA carriers: a prototype of systemic precocious aging? // Oncotarget. 2018. Vol. 9. No. 22. P. 15931–15941. doi: 10.18632/oncotarget.24638
  86. Rzepka-Górska I., Tarnowski B., Chudecka-Głaz A. et al. Premature menopause in patients with BRCA1 gene mutation // Breast. Cancer. Res. Treat. 2006. Vol. 100. No. 1. P. 59–63. doi: 10.1007/s10549-006-9220-1
  87. Finch A., Valentini A., Greenblatt E. et al. Frequency of premature menopause in women who carry a BRCA1 or BRCA2 mutation // Fertil. Steril. 2013. Vol. 99. No. 6. P. 1724–1728. doi: 10.1016/j.fertnstert.2013.01.109
  88. Lin W.T., Beattie M., Chen L.M. et al. Comparison of age at natural menopause in BRCA1/2 mutation carriers with a non-clinic-based sample of women in northern California // Cancer. 2013. Vol. 119. No. 9. P. 1652–1659. doi: 10.1002/cncr.27952
  89. Izhar R., Husain S., Tahir S., Husain S. Occult form of premature ovarian insufficiency in women with infertility and oligomenorrhea as assessed by poor ovarian response criteria // J. Reprod. Infertil. 2017. Vol. 18. No. 4. P. 361–367.
  90. Esteves S.C., Alviggi C., Humaidan P. et al. The POSEIDON criteria and its measure of success through the eyes of clinicians and embryologists // Front. Endocrinol. (Lausanne). 2019. Vol. 10. P. 814. doi: 10.3389/fendo.2019.00814
  91. Humaidan P., La Marca A., Alviggi C. et al. Future perspectives of POSEIDON stratification for clinical practice and research // Front. Endocrinol. (Lausanne). 2019. Vol. 10. P. 439. doi: 10.3389/fendo.2019.00439
  92. Polyzos N.P., Drakopoulos P. Management strategies for POSEIDON’s group 1 // Front. Endocrinol. (Lausanne). 2019. Vol. 10. P. 679. doi: 10.3389/fendo.2019.00679
  93. Sunkara S.K., Ramaraju G.A., Kamath M.S. Management strategies for POSEIDON group 2 // Front. Endocrinol. (Lausanne). 2020. Vol. 11. P. 105. doi: 10.3389/fendo.2020.00105
  94. Haahr T., Dosouto C., Alviggi C. et al. Management strategies for POSEIDON groups 3 and 4 // Front. Endocrinol. (Lausanne). 2019. Vol. 10. P. 614. doi: 10.3389/fendo.2019.00614

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© ООО «Эко-Вектор», 2021



Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».