Преждевременная недостаточность яичников: генетические причины и тактика ведения пациенток (обзор литературы)
- Авторы: Денисова В.М.1, Ярмолинская М.И.2,3, Закураева К.А.2
-
Учреждения:
- NGC Next Generation Clinic (Василеостровская клиника репродукции)
- Научно-исследовательский институт акушерства, гинекологии и репродуктологии им. Д.О. Отта
- Северо-Западный государственный медицинский университет им. И.И. Мечникова
- Выпуск: Том 70, № 3 (2021)
- Страницы: 75-91
- Раздел: Научные обзоры
- URL: https://journal-vniispk.ru/jowd/article/view/59987
- DOI: https://doi.org/10.17816/JOWD59987
- ID: 59987
Цитировать
Аннотация
Преждевременная недостаточность яичников — синдром, характеризующийся гипергонадотропной недостаточностью яичников и снижением их функции в возрасте до 40 лет, приводящий к нарушению репродуктивной функции, метаболическим изменениям, снижению качества жизни женщин. В настоящее время также выделяют оккультную и начальную формы преждевременной недостаточности яичников, характеризуемые определенными особенностями диагностики и тактики ведения. Частота встречаемости синдрома составляет от 1,1 до 3,7 %, наблюдается тенденция к росту данной патологии. Работа представляет собой литературный обзор данных с 2005 по 2020 г., доступных в базе данных PubMed, а учтены также международные клинические рекомендации. В обзоре рассмотрены генетические причины преждевременной недостаточности яичников, аспекты клинических проявлений данной патологии, а также тактика ведения больных. Описаны нюансы программ вспомогательных репродуктивных технологий у пациенток с преждевременной недостаточностью яичников.
Ключевые слова
Полный текст
Открыть статью на сайте журналаОб авторах
Валентина Михайловна Денисова
NGC Next Generation Clinic (Василеостровская клиника репродукции)
Автор, ответственный за переписку.
Email: valyik@mail.ru
ORCID iD: 0000-0001-6469-9111
SPIN-код: 7291-3857
Scopus Author ID: 57218170473
канд. мед. наук
Россия, Санкт-ПетербургМария Игоревна Ярмолинская
Научно-исследовательский институт акушерства, гинекологии и репродуктологии им. Д.О. Отта; Северо-Западный государственный медицинский университет им. И.И. Мечникова
Email: m.yarmolinskaya@gmail.com
ORCID iD: 0000-0002-6551-4147
SPIN-код: 3686-3605
Scopus Author ID: 7801562649
ResearcherId: P-2183-2014
д-р мед. наук, профессор, профессор РАН
Россия, Санкт-ПетербургКарина Анзоровна Закураева
Научно-исследовательский институт акушерства, гинекологии и репродуктологии им. Д.О. Отта
Email: kareen07kbr@gmail.com
ORCID iD: 0000-0002-8128-306X
SPIN-код: 5215-7869
клинический ординатор
Россия, Санкт-ПетербургСписок литературы
- European Society for Human Reproduction and Embryology (ESHRE) Guideline Group on POI, Webber L., Davies M., Anderson R. et al. ESHRE Guideline: management of women with premature ovarian insufficiency // Hum. Reprod. 2016. Vol. 31, No. 5. P. 926–937. doi: 10.1093/humrep/dew027
- Ossewaarde M.E., Bots M.L., Verbeek A.L. et al. Age at menopause, cause-specific mortality and total life expectancy // Epidemiology. 2005. Vol. 16. No. 4. P. 556–562. doi: 10.1097/01.ede.0000165392.35273.d4
- Panay N., Anderson R.A., Nappi R.E. et al. Premature ovarian insufficiency: an International Menopause Society White Paper // Climacteric. 2020. Vol. 23. No. 5. P. 426–446. doi: 10.1080/13697137.2020.1804547
- Torrealday S., Kodaman P., Pal L. Premature Ovarian Insufficiency — an update on recent advances in understanding and management // F1000Res. 2017. Vol. 6. P. 2069. doi: 10.12688/f1000research.11948.1
- Tucker E.J., Grover S.R., Bachelot A. et al. Premature Ovarian Insufficiency: New perspectives on genetic cause and phenotypic spectrum // Endocr. Rev. 2016. Vol. 37. No. 6. P. 609–635. doi: 10.1210/er.2016-1047
- Voican A., Bachelot A., Bouligand J. et al. NR5A1 (SF-1) mutations are not a major cause of primary ovarian insufficiency // J. Clin. Endocrinol. Metab. 2013. Vol. 98. No. 5. P. E1017–E1021. doi: 10.1210/jc.2012-4111
- Janse F., de With L.M., Duran K.J. et al. Limited contribution of NR5A1 (SF-1) mutations in women with primary ovarian insufficiency (POI) // Fertil. Steril. 2012. Vol. 97. No. 1. P. 141–6.e2. doi: 10.1016/j.fertnstert.2011.10.032
- Lourenço D., Brauner R., Lin L. et al. Mutations in NR5A1 associated with ovarian insufficiency // N. Engl. J. Med. 2009. Vol. 360. No. 12. P. 1200–1210. doi: 10.1056/NEJMoa0806228
- Jaillard S., Sreenivasan R., Beaumont M. et al. Analysis of NR5A1 in 142 patients with premature ovarian insufficiency, diminished ovarian reserve, or unexplained infertility // Maturitas. 2020. Vol. 131. P. 78–86. doi: 10.1016/j.maturitas.2019.10.011
- Crisponi L., Deiana M., Loi A. et al. The putative forkhead transcription factor FOXL2 is mutated in blepharophimosis/ptosis/epicanthus inversus syndrome // Nat. Genet. 2001. Vol. 27. No. 2. P. 159–166. doi: 10.1038/84781
- Fraser I.S., Shearman R.P., Smith A., Russell P. An association among blepharophimosis, resistant ovary syndrome, and true premature menopause // Fertil. Steril. 1988. Vol. 50. No. 5. P. 747–751. doi: 10.1016/s0015-0282(16)60309-6
- Nicolino M., Bost M., David M., Chaussain J.L. Familial blepharophimosis: an uncommon marker of ovarian dysgenesis // J. Pediatr. Endocrinol. Metab. 1995. Vol. 8. No. 2. P. 127–133. doi: 10.1515/jpem.1995.8.2.127
- Uhlenhaut N.H., Jakob S., Anlag K. et al. Somatic sex reprogramming of adult ovaries to testes by FOXL2 ablation // Cell. 2009. Vol. 139. No. 6. P. 1130–1142. doi: 10.1016/j.cell.2009.11.021
- Méduri G., Bachelot A., Duflos C. et al. FOXL2 mutations lead to different ovarian phenotypes in BPES patients: Case Report // Hum. Reprod. 2010. Vol. 25. No. 1. P. 235–243. doi: 10.1093/humrep/dep355
- Caburet S., Arboleda V.A., Llano E. et al. Mutant cohesin in premature ovarian failure // N. Engl. J. Med. 2014. Vol. 370. No. 10. P. 943–949. doi: 10.1056/NEJMoa1309635
- Xiao W.J., He W.B., Zhang Y.X. et al. In-frame variants in STAG3 gene cause premature ovarian insufficiency // Front. Genet. 2019. Vol. 10. P. 1016. doi: 10.3389/fgene.2019.01016
- Lacombe A., Lee H., Zahed L. et al. Disruption of POF1B binding to nonmuscle actin filaments is associated with premature ovarian failure // Am. J. Hum. Genet. 2006. Vol. 79. No. 1. P. 113–119. doi: 10.1086/505406
- Bolcun-Filas E., Hall E., Speed R. et al. Mutation of the mouse Syce1 gene disrupts synapsis and suggests a link between synaptonemal complex structural components and DNA repair // PLoS Genet. 2009. Vol. 5. No. 2. P. e1000393. Corrected and republished from: PLoS Genet. 2009. Vol. 5. No. 4. doi: 10.1371/journal.pgen.1000393
- de Vries L., Behar D.M., Smirin-Yosef P. et al. Exome sequencing reveals SYCE1 mutation associated with autosomal recessive primary ovarian insufficiency // J. Clin. Endocrinol. Metab. 2014. Vol. 99. No. 10. P. E2129–E2132. doi: 10.1210/jc.2014-1268
- de Vries F.A., de Boer E., van den Bosch M. et al. Mouse Sycp1 functions in synaptonemal complex assembly, meiotic recombination, and XY body formation // Genes. Dev. 2005. Vol. 19. No. 11. P. 1376–1389. doi: 10.1101/gad.329705
- Bolcun-Filas E., Costa Y., Speed R. et al. SYCE2 is required for synaptonemal complex assembly, double strand break repair, and homologous recombination // J. Cell. Biol. 2007. Vol. 176. No. 6. P. 741–747. doi: 10.1083/jcb.200610027
- Hamer G., Wang H., Bolcun-Filas E. et al. Progression of meiotic recombination requires structural maturation of the central element of the synaptonemal complex // J. Cell. Sci. 2008. Vol. 121. Pt. 15. P. 2445–2451. doi: 10.1242/jcs.033233
- Wang J., Zhang W., Jiang H., Wu B.L.; Primary Ovarian Insufficiency Collaboration. Mutations in HFM1 in recessive primary ovarian insufficiency // N. Engl. J. Med. 2014. Vol. 370. No. 10. P. 972–974. doi: 10.1056/NEJMc1310150
- Zangen D., Kaufman Y., Zeligson S. et al. XX ovarian dysgenesis is caused by a PSMC3IP/HOP2 mutation that abolishes coactivation of estrogen-driven transcription // Am. J. Hum. Genet. 2011. Vol. 89. No. 4. P. 572–579. doi: 10.1016/j.ajhg.2011.09.006
- Weinberg-Shukron A., Renbaum P., Kalifa R. et al. A mutation in the nucleoporin-107 gene causes XX gonadal dysgenesis // J. Clin. Invest. 2015. Vol. 125. No. 11. P. 4295–4304. doi: 10.1172/JCI83553
- Senger S., Csokmay J., Akbar T. et al. The nucleoporin Seh1 forms a complex with Mio and serves an essential tissue-specific function in Drosophila oogenesis // Development. 2011. Vol. 138. No. 10. P. 2133–2142. Corrected and republished from: Development. 2011. Vol. 138. No. 12. P. 2631. doi: 10.1242/dev.057372
- Savitsky K., Bar-Shira A., Gilad S. et al. A single ataxia telangiectasia gene with a product similar to PI-3 kinase // Science. 1995. Vol. 268. No. 5218. P. 1749–1753. doi: 10.1126/science.7792600
- Barlow C., Hirotsune S., Paylor R. et al. Atm-deficient mice: a paradigm of ataxia telangiectasia // Cell. 1996. Vol. 86. No. 1. P. 159–171. doi: 10.1016/s0092-8674(00)80086-0
- Liu H., Wei X., Sha Y. et al. Whole-exome sequencing in patients with premature ovarian insufficiency: early detection and early intervention // J. Ovarian. Res. 2020. Vol. 13. No. 1. P 114. doi: 10.1186/s13048-020-00716-6
- Lutzmann M., Grey C., Traver S. et al. MCM8- and MCM9-deficient mice reveal gametogenesis defects and genome instability due to impaired homologous recombination // Mol. Cell. 2012. Vol. 47. No. 4. P. 523–534. doi: 10.1016/j.molcel.2012.05.048
- AlAsiri S., Basit S., Wood-Trageser M.A. et al. Exome sequencing reveals MCM8 mutation underlies ovarian failure and chromosomal instability // J. Clin. Invest. 2015. Vol. 125. No. 1. P. 258–262. doi: 10.1172/JCI78473
- Wood-Trageser M.A., Gurbuz F., Yatsenko S.A. et al. MCM9 mutations are associated with ovarian failure, short stature, and chromosomal instability // Am. J. Hum. Genet. 2014. Vol. 95. No. 6. P. 754–762. doi: 10.1016/j.ajhg.2014.11.002
- Fauchereau F., Shalev S., Chervinsky E. et al. A non-sense MCM9 mutation in a familial case of primary ovarian insufficiency // Clin. Genet. 2016. Vol. 89. No. 5. P. 603–607. doi: 10.1111/cge.12736
- Goldberg Y., Halpern N., Hubert A. et al. Mutated MCM9 is associated with predisposition to hereditary mixed polyposis and colorectal cancer in addition to primary ovarian failure // Cancer Genet. 2015. Vol. 208. No. 12. P. 621–624. doi: 10.1016/j.cancergen.2015.10.001
- Guo T., Zheng Y., Li G. et al. Novel pathogenic mutations in minichromosome maintenance complex component 9 (MCM9) responsible for premature ovarian insufficiency // Fertil. Steril. 2020. Vol. 113. No. 4. P. 845–852. doi: 10.1016/j.fertnstert.2019.11.015
- Qin Y., Guo T., Li G. et al. CSB-PGBD3 mutations cause premature ovarian failure // PLoS Genet. 2015. Vol. 11. No. 7. P. e1005419. doi: 10.1371/journal.pgen.1005419
- Santos M.G., Machado A.Z., Martins C.N. et al. Homozygous inactivating mutation in NANOS3 in two sisters with primary ovarian insufficiency // Biomed. Res. Int. 2014. Vol. 2014. P. 787465. doi: 10.1155/2014/787465
- Wu X., Wang B., Dong Z. et al. A NANOS3 mutation linked to protein degradation causes premature ovarian insufficiency // Cell. Death. Dis. 2013. Vol. 4. No. 10. P. e825. doi: 10.1038/cddis.2013.368
- Mansouri M.R., Schuster J., Badhai J. et al. Alterations in the expression, structure and function of progesterone receptor membrane component-1 (PGRMC1) in premature ovarian failure // Hum. Mol. Genet. 2008. Vol. 17. No. 23. P. 3776–3783. doi: 10.1093/hmg/ddn274
- Ratts V.S., Flaws J.A., Kolp R. et al. Ablation of bcl-2 gene expression decreases the numbers of oocytes and primordial follicles established in the post-natal female mouse gonad // Endocrinology. 1995. Vol. 136. No. 8. P. 3665–3668. doi: 10.1210/endo.136.8.7628407
- França M.M., Mendonca BB. Genetics of primary ovarian insufficiency in the next-generation sequencing era // J. Endocr. Soc. 2019. Vol. 4. No. 2. P. bvz037. doi: 10.1210/jendso/bvz037
- Kasippillai T., MacArthur D.G., Kirby A. et al. Mutations in eIF4ENIF1 are associated with primary ovarian insufficiency // J. Clin. Endocrinol. Metab. 2013. Vol. 98. No. 9. P. E1534–E1539. doi: 10.1210/jc.2013-1102
- Peng J., Li Q., Wigglesworth K. et al. Growth differentiation factor 9: bone morphogenetic protein 15 heterodimers are potent regulators of ovarian functions // Proc. Natl. Acad. Sci. USA. 2013. Vol. 110. No. 8. P. E776–E785. doi: 10.1073/pnas.1218020110
- Di Pasquale E., Beck-Peccoz P., Persani L. Hypergonadotropic ovarian failure associated with an inherited mutation of human bone morphogenetic protein-15 (BMP15) gene // Am. J. Hum. Genet. 2004. Vol. 75. No. 1. P 106–111. doi: 10.1086/422103
- Santos M., Cordts E.B., Peluso C. et al. Association of BMP15 and GDF9 variants to premature ovarian insufficiency // J. Assist. Reprod. Genet. 2019. Vol. 36. No. 10. P. 2163–2169. doi: 10.1007/s10815-019-01548-0
- Dixit H., Rao L.K., Padmalatha V. et al. Mutational screening of the coding region of growth differentiation factor 9 gene in Indian women with ovarian failure // Menopause. 2005. Vol. 12. No. 6. P. 749–754. doi: 10.1097/01.gme.0000184424.96437.7a
- Laissue P., Christin-Maitre S., Touraine P. et al. Mutations and sequence variants in GDF9 and BMP15 in patients with premature ovarian failure // Eur. J. Endocrinol. 2006. Vol. 154. No. 5. P. 739–744. doi: 10.1530/eje.1.02135
- Kovanci E., Rohozinski J., Simpson J.L. et al. Growth differentiating factor-9 mutations may be associated with premature ovarian failure // Fertil. Steril. 2007. Vol. 87. No. 1. P. 143–146. doi: 10.1016/j.fertnstert.2006.05.079
- Qin Y., Choi Y., Zhao H. et al. NOBOX homeobox mutation causes premature ovarian failure // Am. J. Hum. Genet. 2007. Vol. 81. No. 3. P. 576–581. doi: 10.1086/519496
- Bouilly J., Bachelot A., Broutin I. et al. Novel NOBOX loss-of-function mutations account for 6.2% of cases in a large primary ovarian insufficiency cohort // Hum. Mutat. 2011. Vol. 32. No. 10. P. 1108–1113. doi: 10.1002/humu.21543
- Bayram Y., Gulsuner S., Guran T. et al. Homozygous loss-of-function mutations in SOHLH1 in patients with nonsyndromic hypergonadotropic hypogonadism // J. Clin. Endocrinol. Metab. 2015. Vol. 100. No. 5. P. E808–E814. doi: 10.1210/jc.2015-1150
- Pangas S.A., Choi Y., Ballow D.J. et al. Oogenesis requires germ cell-specific transcriptional regulators Sohlh1 and Lhx8 // Proc. Natl. Acad. Sci. USA. 2006. Vol. 103. No. 21. P. 8090–8095. doi: 10.1073/pnas.0601083103
- Aittomäki K., Lucena J.L., Pakarinen P. et al. Mutation in the follicle-stimulating hormone receptor gene causes hereditary hypergonadotropic ovarian failure // Cell. 1995. Vol. 82. No. 6. P. 959–968. doi: 10.1016/0092-8674(95)90275-9
- Vaskivuo T.E., Aittomäki K., Anttonen M. et al. Effects of follicle-stimulating hormone (FSH) and human chorionic gonadotropin in individuals with an inactivating mutation of the FSH receptor // Fertil. Steril. 2002. Vol. 78. No. 1. P. 108–113. doi: 10.1016/s0015-0282(02)03148-5
- Meduri G., Touraine P., Beau I. et al. Delayed puberty and primary amenorrhea associated with a novel mutation of the human follicle-stimulating hormone receptor: clinical, histological, and molecular studies // J. Clin. Endocrinol. Metab. 2003. Vol. 88. No. 8. P 3491–3498. doi: 10.1210/jc.2003-030217
- Huang W., Cao Y., Shi L. Effects of FSHR polymorphisms on premature ovarian insufficiency in human beings: a meta-analysis // Reprod. Biol. Endocrinol. 2019. Vol. 17. No. 1. P. 80. doi: 10.1186/s12958-019-0528-1
- GeneCards. [Internet]. FIGLA gene (Protein Coding) folliculogenesis specific BHLH transcription factor. [дата обращения 25.04.2021]. Доступ по ссылке: https://www.genecards.org/cgi-bin/carddisp.pl?gene=FIGLA
- Hu W., Gauthier L., Baibakov B., Jimenez-Movilla M., Dean J. FIGLA, a basic helix-loop-helix transcription factor, balances sexually dimorphic gene expression in postnatal oocytes // Mol. Cell. Biol. 2010. Vol. 30. No. 14. P. 3661–3671. doi: 10.1128/MCB.00201-10
- Bayne R.A., Martins da Silva S.J., Anderson R.A. Increased expression of the FIGLA transcription factor is associated with primordial follicle formation in the human fetal ovary // Mol. Hum. Reprod. 2004. Vol. 10. No. 6. P. 373–381. doi: 10.1093/molehr/gah056
- Tosh D., Rani H.S., Murty U.S. et al. Mutational analysis of the FIGLA gene in women with idiopathic premature ovarian failure // Menopause. 2015. Vol. 22. No. 5. P. 520–526. doi: 10.1097/GME.0000000000000340
- Pangas S.A., Rajkovic A. Transcriptional regulation of early oogenesis: in search of masters // Hum. Reprod. Update. 2006. Vol. 12. No. 1. P. 65–76. doi: 10.1093/humupd/dmi033
- Choi Y., Rajkovic A. Genetics of early mammalian folliculogenesis // Cell. Mol. Life Sci. 2006. Vol. 63. No. 5. P. 579–590. doi: 10.1007/s00018-005-5394-7
- Chen B., Li L., Wang J. et al. Consanguineous familial study revealed biallelic FIGLA mutation associated with premature ovarian insufficiency // J. Ovarian. Res. 2018. Vol. 11. No. 1. 48. doi: 10.1186/s13048-018-0413-0
- Legros F., Malka F., Frachon P., Lombès A., Rojo M. Organization and dynamics of human mitochondrial DNA // J. Cell. Sci. 2004. Vol. 117. Pt. 13. P. 2653–2662. doi: 10.1242/jcs.01134
- Shoubridge E.A., Wai T. Mitochondrial DNA and the mammalian oocyte // Curr. Top. Dev. Biol. 2007. Vol. 77. P. 87–111. doi: 10.1016/S0070-2153(06)77004-1
- Bonomi M., Somigliana E., Cacciatore C. et al. Blood cell mitochondrial DNA content and premature ovarian aging // PLoS One. 2012. Vol. 7. No. 8. P. e42423. doi: 10.1371/journal.pone.0042423
- Pagnamenta A.T., Taanman J.W., Wilson C.J. et al. Dominant inheritance of premature ovarian failure associated with mutant mitochondrial DNA polymerase gamma // Hum. Reprod. 2006. Vol. 21. No. 10. P. 2467–2473. doi: 10.1093/humrep/del076
- Luoma P., Melberg A., Rinne J.O. et al. Parkinsonism, premature menopause, and mitochondrial DNA polymerase gamma mutations: clinical and molecular genetic study // Lancet. 2004. Vol. 364. No. 9437. P. 875–882. doi: 10.1016/S0140-6736(04)16983-3
- Morino H, Pierce SB, Matsuda Y, et al. Mutations in Twinkle primase-helicase cause Perrault syndrome with neurologic features // Neurology. 2014. Vol. 83. No. 22. P. 2054–2061. doi: 10.1212/WNL.0000000000001036
- Pierce S.B., Walsh T., Chisholm K.M. et al. Mutations in the DBP-deficiency protein HSD17B4 cause ovarian dysgenesis, hearing loss, and ataxia of Perrault syndrome // Am. J. Hum. Genet. 2010. Vol. 87. No. 2. P. 282–288. doi: 10.1016/j.ajhg.2010.07.007
- Matthijs G., Schollen E., Pardon E. et al. Mutations in PMM2, a phosphomannomutase gene on chromosome 16p13, in carbohydrate-deficient glycoprotein type I syndrome (Jaeken syndrome) // Nat. Genet. 1997. Vol. 16. No. 1. P. 88–92. Corrected and republished from: Nat. Genet. 1997. Vol. 16. No. 3. P. 316. doi: 10.1038/ng0597-88
- Peng T., Lv C., Tan H. et al. Novel PMM2 missense mutation in a Chinese family with non-syndromic premature ovarian insufficiency // J. Assist. Reprod. Genet. 2020. Vol. 37. No. 2. P. 443–450. doi: 10.1007/s10815-019-01675-8
- Silva C.A., Yamakami L.Y., Aikawa N.E. et al. Autoimmune primary ovarian insufficiency // Autoimmun. Rev. 2014. Vol. 13. No. 4–5. P. 427–430. doi: 10.1016/j.autrev.2014.01.003
- Cervato S., Mariniello B., Lazzarotto F. et al. Evaluation of the autoimmune regulator (AIRE) gene mutations in a cohort of Italian patients with autoimmune-polyendocrinopathy-candidiasis-ectodermal-dystrophy (APECED) and in their relatives // Clin. Endocrinol. (Oxf.). 2009. Vol. 70. No. 3. P. 421–428. doi: 10.1111/j.1365-2265.2008.03318.x
- MedlinePlus. [Internet]. AIRE gene autoimmune regulator. [дата обращения 25.04.2021]. Доступ по ссылке: https://medlineplus.gov/genetics/gene/aire/
- Kahaly G.J. Polyglandular autoimmune syndromes // Eur. J. Endocrinol. 2009. Vol. 161. No. 1. P. 11–20. doi: 10.1530/EJE-09-0044
- Santoro M.R., Bray S.M., Warren S.T. Molecular mechanisms of fragile X syndrome: a twenty-year perspective // Annu. Rev. Pathol. 2012. Vol. 7. P. 219–245. doi: 10.1146/annurev-pathol-011811-132457
- Allingham-Hawkins D.J., Babul-Hirji R., Chitayat D. et al. Fragile X premutation is a significant risk factor for premature ovarian failure: the International Collaborative POF in Fragile X study — preliminary data // Am. J. Med. Genet. 1999. Vol. 83. No. 4. P. 322–325.
- Chen E., Joseph S. Fragile X mental retardation protein: A paradigm for translational control by RNA-binding proteins // Biochimie. 2015. Vol. 114. P. 147–154. doi: 10.1016/j.biochi.2015.02.005
- Primerano B., Tassone F., Hagerman R.J. et al. Reduced FMR1 mRNA translation efficiency in fragile X patients with premutations // RNA. 2002. Vol. 8. No. 12. P 1482–1488.
- Winship A.L., Stringer J.M., Liew S.H., Hutt K.J. The importance of DNA repair for maintaining oocyte quality in response to anti-cancer treatments, environmental toxins and maternal ageing // Hum. Reprod. Update. 2018. Vol. 24. No. 2. P. 119–134. doi: 10.1093/humupd/dmy002
- Stringer J.M., Winship A., Liew S.H., Hutt K. The capacity of oocytes for DNA repair // Cell. Mol. Life Sci. 2018. Vol. 75. No. 15. P. 2777–2792. doi: 10.1007/s00018-018-2833-9
- Oktay K., Turan V., Titus S. et al. BRCA mutations, DNA repair deficiency, and ovarian aging // Biol. Reprod. 2015. Vol. 93. No. 3. P. 67. doi: 10.1095/biolreprod.115.132290
- Titus S., Li F., Stobezki R. et al. Impairment of BRCA1-related DNA double-strand break repair leads to ovarian aging in mice and humans // Sci. Transl. Med. 2013. Vol. 5. No. 172. P. 172ra21. doi: 10.1126/scitranslmed.3004925
- Ben-Aharon I., Levi M., Margel D. et al. Premature ovarian aging in BRCA carriers: a prototype of systemic precocious aging? // Oncotarget. 2018. Vol. 9. No. 22. P. 15931–15941. doi: 10.18632/oncotarget.24638
- Rzepka-Górska I., Tarnowski B., Chudecka-Głaz A. et al. Premature menopause in patients with BRCA1 gene mutation // Breast. Cancer. Res. Treat. 2006. Vol. 100. No. 1. P. 59–63. doi: 10.1007/s10549-006-9220-1
- Finch A., Valentini A., Greenblatt E. et al. Frequency of premature menopause in women who carry a BRCA1 or BRCA2 mutation // Fertil. Steril. 2013. Vol. 99. No. 6. P. 1724–1728. doi: 10.1016/j.fertnstert.2013.01.109
- Lin W.T., Beattie M., Chen L.M. et al. Comparison of age at natural menopause in BRCA1/2 mutation carriers with a non-clinic-based sample of women in northern California // Cancer. 2013. Vol. 119. No. 9. P. 1652–1659. doi: 10.1002/cncr.27952
- Izhar R., Husain S., Tahir S., Husain S. Occult form of premature ovarian insufficiency in women with infertility and oligomenorrhea as assessed by poor ovarian response criteria // J. Reprod. Infertil. 2017. Vol. 18. No. 4. P. 361–367.
- Esteves S.C., Alviggi C., Humaidan P. et al. The POSEIDON criteria and its measure of success through the eyes of clinicians and embryologists // Front. Endocrinol. (Lausanne). 2019. Vol. 10. P. 814. doi: 10.3389/fendo.2019.00814
- Humaidan P., La Marca A., Alviggi C. et al. Future perspectives of POSEIDON stratification for clinical practice and research // Front. Endocrinol. (Lausanne). 2019. Vol. 10. P. 439. doi: 10.3389/fendo.2019.00439
- Polyzos N.P., Drakopoulos P. Management strategies for POSEIDON’s group 1 // Front. Endocrinol. (Lausanne). 2019. Vol. 10. P. 679. doi: 10.3389/fendo.2019.00679
- Sunkara S.K., Ramaraju G.A., Kamath M.S. Management strategies for POSEIDON group 2 // Front. Endocrinol. (Lausanne). 2020. Vol. 11. P. 105. doi: 10.3389/fendo.2020.00105
- Haahr T., Dosouto C., Alviggi C. et al. Management strategies for POSEIDON groups 3 and 4 // Front. Endocrinol. (Lausanne). 2019. Vol. 10. P. 614. doi: 10.3389/fendo.2019.00614
Дополнительные файлы
