Possibilities of gene, cellular and pharmacological approaches to correct age-related changes

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Improvement of the human habitat has led to an increase in average life expectancy. Long life goes hand in hand with old age, which reduces the quality of human life and it is an acute social problem. Thus, the search for approaches that can improve the quality of life, the ability to live it without age-related diseases is an extremely urgent task. Aging of the body begins with the aging of cells, in which the activation of the aging process occurs through the induction of specific signaling pathways, which irreversibly divides the life of any cell into “before and after”. Aging cells are able to influence their microenvironment, secreting more inflammatory signaling molecules and inducing pathological changes in neighboring cells. The accumulation and long-term preservation of aged cells lead to deterioration of the condition of tissues and organs, and ultimately to a decrease in the quality of life and an increased risk of death. Among the most promising approaches to the correction of aging and age-related diseases are pharmacological, gene and cell therapy. Increasing the expression of aging suppressor genes, using certain populations of native and genetically modified cells, as well as senolytic drugs can help delay aging and associated diseases for a more distant future. This review examines currently studied approaches and achievements in the field of anti-aging therapy, in particular gene therapy using adeno-associated vectors and approaches based on cell therapy.

About the authors

Kristina V. Kitaeva

Kazan (Volga Region) Federal University

Author for correspondence.
Email: olleth@mail.ru
ORCID iD: 0000-0002-0704-8141
SPIN-code: 6937-6311

Cand. Sci. (Biol.), Senior Researcher, OpenLab Genetic and Cellular Technologies Research Laboratory, Assoc. Prof., Depart. of Genetics

Russian Federation, Kazan

Valeriya V. Solovyeva

Kazan (Volga Region) Federal University

Email: solovyovavv@gmail.com
ORCID iD: 0000-0002-8776-3662
SPIN-code: 8796-3760

Cand. Sci. (Biol.), Leading Researcher, OpenLab Genetic and Cellular Technologies Research Laboratory, Assoc. Prof, Depart. of Genetics

Russian Federation, Kazan

Ivan Yu. Filin

Kazan (Volga Region) Federal University

Email: filin.ivy@gmail.com
ORCID iD: 0000-0002-3661-0527
SPIN-code: 7595-0257

Research Fellow, OpenLab Genetic and Cellular Technologies Research Laboratory, Assistant, Depart. of Genetics

Russian Federation, Kazan

Yana O. Mukhamedshina

Kazan (Volga Region) Federal University; Kazan State Medical University

Email: YOMuhamedshina@kpfu.ru
ORCID iD: 0000-0002-9435-340X
SPIN-code: 8569-9002

MD, Dr. Sci. (Med.), Leading Researcher, OpenLab Genetic and Cellular Technologies Research Laboratory; Assoc. Prof., Depart. of Histology, Cytology and Embryology

Russian Federation, Kazan; Kazan

Albert A. Rizvanov

Kazan (Volga Region) Federal University; Academy of Sciences of the Republic of Tatarstan

Email: albert.Rizvanov@kpfu.ru
ORCID iD: 0000-0002-9427-5739
SPIN-code: 7031-5996

Dr. Sci. (Biol.), Chief Researcher, OpenLab Genetic and Cellular Technologies Research Laboratory, Prof., Depart. of Genetics

Russian Federation, Kazan; Kazan

References

  1. Ros M, Carrascosa JM. Current nutritional and pharmacological anti-aging interventions. Biochim Biophys Acta Mol Basis Dis. 2020;1866:165612. doi: 10.1016/j.bbadis.2019.165612
  2. Austad SN, Hoffman JM. Is antagonistic pleiotropy ubiquitous in aging biology? Evol Med Public Health. 2018;2018:287–294. doi: 10.1093/emph/eoy033
  3. Hernandez-Segura A, Nehme J, Demaria M. Hallmarks of cellular senescence. Trends Cell Biol. 2018;28:436–453. doi: 10.1016/j.tcb.2018.02.001
  4. Ocampo A, Reddy P, Belmonte JCI. Anti-aging strategies based on cellular reprogramming. Trends Mol Med. 2016;22:725–738. doi: 10.1016/j.molmed.2016.06.005
  5. Burton DG, Krizhanovsky V. Physiological and pathological consequences of cellular senescence. Cell Mol Life Sci. 2014;71:4373–4386. doi: 10.1007/s00018-014-1691-3
  6. Missiaen R, Anderson NM, Kim LC, Nance B, Burrows M, Skuli N, Carens M, Riscal R, Steensels A, Li F, Simon MC. GCN2 inhibition sensitizes arginine-deprived hepatocellular carcinoma cells to senolytic treatment. Cell Metab. 2022;34:1151–1167. doi: 10.1016/j.cmet.2022.06.010
  7. Zhu Y, Tchkonia T, Pirtskhalava T, Gower AC, Ding H, Giorgadze N, Palmer AK, Ikeno Y, Hubbard GB, Lenburg M, O'Hara SP, LaRusso NF, Miller JD, Roos CM, Verzosa GC, LeBrasseur NK, Wren JD, Farr JN, Khosla S, Stout MB, McGowan SJ, Fuhrmann-Stroissnigg H, Gurkar AU, Zhao J, Colangelo D, Dorronsoro A, Ling YY, Barghouthy AS, Navarro DC, Sano T, Robbins PD, Niedernhofer LJ, Kirkland JL. The Achilles' heel of senescent cells: From transcriptome to senolytic drugs. Aging Cell. 2015;14:644–658. doi: 10.1111/acel.12344
  8. Aguayo-Mazzucato C, Andle J, Lee TB Jr, Midha A, Talemal L, Chipashvili V, Hollister-Lock J, van Deursen J, Weir G, Bonner-Weir S. Acceleration of beta cell aging determines diabetes and senolysis improves disease outcomes. Cell Metab. 2019;30:129–142. doi: 10.1016/j.cmet.2019.05.006
  9. Wang L, Wang B, Gasek NS, Zhou Y, Cohn RL, Martin DE, Zuo W, Flynn WF, Guo C, Jellison ER, Kim T, Prata LGPL, Palmer AK, Li M, Inman CL, Barber LS, Al-Naggar IMA, Zhou Y, Du W, Kshitiz, Kuchel GA, Meves A, Tchkonia T, Kirkland JL, Robson P, Xu M. Targeting p21 (Cip1) highly expressing cells in adipose tissue alleviates insulin resistance in obesity. Cell Metab. 2022;34:75–89. doi: 10.1016/j.cmet.2021.11.002
  10. Blagosklonny MV. Selective anti-cancer agents as anti-aging drugs. Cancer Biol Ther. 2013;14:1092–1097. doi: 10.4161/cbt.27350
  11. Zoncu R, Efeyan A, Sabatini DM. mTOR: From growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol. 2011;12:21–35. doi: 10.1038/nrm3025
  12. Bourgeois B, Madl T. Regulation of cellular senescence via the FOXO4-p53 axis. FEBS Lett. 2018;592:2083–2097. doi: 10.1002/1873-3468.13057
  13. Park HK, Yoon NG, Lee JE, Hu S, Yoon S, Kim SY, Hong JH, Nam D, Chae YC, Park JB, Kang BH. Unleashing the full potential of Hsp90 inhibitors as cancer therapeutics through simultaneous inactivation of Hsp90, Grp94, and TRAP1. Exp Mol Med. 2020;52:79–91. doi: 10.1038/s12276-019-0360-x
  14. Chen DD, Peng X, Wang Y, Jiang M, Xue M, Shang G, Liu X, Jia X, Liu B, Lu Y, Mu H, Zhang F, Hu Y. HSP-90 acts as a senomorphic target in senescent retinal pigmental epithelial cells. Aging (Albany NY). 2021;13:21547–21570. doi: 10.18632/aging.203496
  15. Tao ZF, Hasvold L, Wang L, Wang X, Petros AM, Park CH, Boghaert ER, Catron ND, Chen J, Colman PM, Czabotar PE, Deshayes K, Fairbrother WJ, Flygare JA, Hymowitz SG, Jin S, Judge RA, Koehler MF, Kovar PJ, Lessene G, Mitten MJ, Ndubaku CO, Nimmer P, Purkey HE, Oleksijew A, Phillips DC, Sleebs BE, Smith BJ, Smith ML, Tahir SK, Watson KG, Xiao Y, Xue J, Zhang H, Zobel K, Rosenberg SH, Tse C, Leverson JD, Elmore SW, Souers AJ. Discovery of a potent and selective BCL-XL inhibitor with in vivo activity. ACS Med Chem Lett. 2014;5:1088–1093. doi: 10.1021/ml5001867
  16. Wei Y, Zhang L, Wang C, Li Z, Luo M, Xie G, Yang X, Li M, Ren S, Zhao D, Gao R, Gong JN. Anti-apoptotic protein BCL-XL as a therapeutic vulnerability in gastric cancer. Animal Model Exp Med. 2023;6:245–254. doi: 10.1002/ame2.12330
  17. Moujalled D, Southon AG, Saleh E, Brinkmann K, Ke F, Iliopoulos M, Cross RS, Jenkins MR, Nhu D, Wang Z, Shi MX, Kluck RM, Lessene G, Grabow S, Bush AI, Strasser A. BH3 mimetic drugs cooperate with Temozolomide, JQ1 and inducers of ferroptosis in killing glioblastoma multiforme cells. Cell Death Differ. 2022;29:1335–1348. doi: 10.1038/s41418-022-00977-2
  18. Triana-Martínez F, Picallos-Rabina P, Da Silva-Álvarez S, Pietrocola F, Llanos S, Rodilla V, Soprano E, Pedrosa P, Ferreirós A, Barradas M, Hernández-González F, Lalinde M, Prats N, Bernadó C, González P, Gómez M, Ikonomopoulou MP, Fernández-Marcos PJ, García-Caballero T, Del Pino P, Arribas J, Vidal A, González-Barcia M, Serrano M, Loza MI, Domínguez E, Collado M. Identification and characterization of cardiac glycosides as senolytic compounds. Nat Commun. 2019;10:4731. doi: 10.1038/s41467-019-12888-x
  19. Seo EJ, Efferth T, Panossian A. Curcumin downregulates expression of opioid-related nociceptin receptor gene (OPRL1) in isolated neuroglia cells. Phytomedicine. 2018;50:285–299. doi: 10.1016/j.phymed.2018.09.202
  20. Lee DY, Lee SJ, Chandrasekaran P, Lamichhane G, O'Connell JF, Egan JM, Kim Y. Dietary curcumin attenuates hepatic cellular senescence by suppressing the MAPK/NF-kappa B signaling pathway in aged mice. Antioxidants (Basel). 2023;12:1–14. doi: 10.3390/antiox12061165
  21. Nam S, Kim D, Cheng JQ, Zhang S, Lee JH, Buettner R, Mirosevich J, Lee FY, Jove R. Action of the Src family kinase inhibitor, dasatinib (BMS-354825), on human prostate cancer cells. Cancer Res. 2005;65:9185–9189. doi: 10.1158/0008-5472.CAN-05-1731
  22. Yousefzadeh MJ, Zhu Y, McGowan SJ, Angelini L, Fuhrmann-Stroissnigg H, Xu M, Ling YY, Melos KI, Pirtskhalava T, Inman CL, McGuckian C, Wade EA, Kato JI, Grassi D, Wentworth M, Burd CE, Arriaga EA, Ladiges WL, Tchkonia T, Kirkland JL, Robbins PD, Niedernhofer LJ. Fisetin is a senotherapeutic that extends health and lifespan. EBioMedicine. 2018;36:18–28. doi: 10.1016/j.ebiom.2018.09.015
  23. Huang Y, He Y, Makarcyzk MJ, Lin H. Senolytic peptide FOXO4-DRI selectively removes senescent cells from in vitro expanded human chondrocytes. Front Bioeng Biotechnol. 2021;9:677576. doi: 10.3389/fbioe.2021.677576
  24. Iida K, Naiki T, Naiki-Ito A, Suzuki S, Kato H, Nozaki S, Nagai T, Etani T, Nagayasu Y, Ando R, Kawai N, Yasui T, Takahashi S. Luteolin suppresses bladder cancer growth via regulation of mechanistic target of rapamycin pathway. Cancer Sci. 2020;111:1165–1179. doi: 10.1111/cas.14334
  25. Takaya K, Ishii T, Asou T, Kishi K. Navitoclax (ABT-263) rejuvenates human skin by eliminating senescent dermal fibroblasts in a mouse/human chimeric model. Rejuvenation Res. 2023;26:9–20. doi: 10.1089/rej.2022.0048
  26. Chung H, Kim C. Nutlin-3a for age-related macular degeneration. Aging (Albany NY). 2022;14:5614–5616. doi: 10.18632/aging.204187
  27. Wang Y, Chang J, Liu X, Zhang X, Zhang S, Zhang X, Zhou D, Zheng G. Discovery of piperlongumine as a potential novel lead for the development of senolytic agents. Aging (Albany NY). 2016;8:2915–2926. doi: 10.18632/aging.101100
  28. Wang R, Yu Z, Sunchu B, Shoaf J, Dang I, Zhao S, Caples K, Bradley L, Beaver LM, Ho E, Löhr CV, Perez VI. Rapamycin inhibits the secretory phenotype of senescent cells by a Nrf2-independent mechanism. Aging Cell. 2017;16:564–574. doi: 10.1111/acel.12587
  29. Powers MV, Valenti M, Miranda S, Maloney A, Eccles SA, Thomas G, Clarke PA, Workman P. Mode of cell death induced by the HSP-90 inhibitor 17-AAG (tanespimycin) is dependent on the expression of pro-apoptotic BAX. Oncotarget. 2013;4:1963–1975. doi: 10.18632/oncotarget.1419
  30. Harris DT, Hilgaertner J, Simonson C, Ablin RJ, Badowski M. Cell-based therapy for epithelial wounds. Cytotherapy. 2012;14:802–810. doi: 10.3109/14653249.2012.671520
  31. Pippias M, Jager KJ, Åsberg A, Berger SP, Finne P, Heaf JG, Kerschbaum J, Lempinen M, Magaz Á, Massy ZA, Stel VS. Young deceased donor kidneys show a survival benefit over older donor kidneys in transplant recipients aged 20–50 years: A study by the ERA-EDTA Registry. Nephrol Dial Transplant. 2020;35:534–543. doi: 10.1093/ndt/gfy268
  32. Iske J, Matsunaga T, Zhou H, Tullius SG. Donor and recipient age-mismatches: The potential of transferring senescence. Front Immunol. 2021;12:671479. doi: 10.3389/fimmu.2021.671479
  33. Keren A, Bertolini M, Keren Y, Ullmann Y, Paus R, Gilhar A. Human organ rejuvenation by VEGF-A: Lessons from the skin. Sci Adv. 2022;8:eabm6756. doi: 10.1126/sciadv.abm6756
  34. Wang L, Wei J, Da Fonseca Ferreira A, Wang H, Zhang L, Zhang Q, Bellio MA, Chu XM, Khan A, Jayaweera D, Hare JM, Dong C. Rejuvenation of senescent endothelial progenitor cells by extracellular vesicles derived from mesenchymal stromal cells. JACC Basic Transl Sci. 2020;5:1127–1141. doi: 10.1016/j.jacbts.2020.08.005
  35. Grigorian-Shamagian L, Liu W, Fereydooni S, Middleton RC, Valle J, Cho JH, Marban E. Cardiac and systemic rejuvenation after cardiosphere-derived cell therapy in senescent rats. Eur Heart J. 2017;38:2957–2967. doi: 10.1093/eurheartj/ehx454
  36. Brunet A, Goodell MA, Rando TA. Ageing and rejuvenation of tissue stem cells and their niches. Nat Rev Mol Cell Biol. 2023;24:45–62. doi: 10.1038/s41580-022-00510-w
  37. Chulpanova DS, Kitaeva KV, Tazetdinova LG, James V, Rizvanov AA, Solovyeva VV. Application of mesenchymal stem cells for therapeutic agent delivery in anti-tumor treatment. Front Pharmacol. 2018;9:1–10. doi: 10.3389/fphar.2018.00259
  38. Awad ME, Hussein KA, Helwa I, Abdelsamid MF, Aguilar-Perez A, Mohsen I, Hunter M, Hamrick MW, Isales CM, Elsalanty M, Hill WD, Fulzele S. Meta-analysis and evidence base for the efficacy of autologous bone marrow mesenchymal stem cells in knee cartilage repair: Methodological guidelines and quality assessment. Stem Cells Int. 2019;2019:3826054. doi: 10.1155/2019/3826054
  39. Gasanova SYu. Cell therapy for destructive pancreatitis. Pirogov Russian Journal of Surgery. 2022;(9):50–55. (In Russ.) doi: 10.17116/hirurgia202209150
  40. Gjerde C, Mustafa K, Hellem S, Rojewski M, Gjengedal H, Yassin MA, Feng X, Skaale S, Berge T, Rosen A, Shi XQ, Ahmed AB, Gjertsen BT, Schrezenmeier H, Layrolle P. Cell therapy induced regeneration of severely atrophied mandibular bone in a clinical trial. Stem Cell Res Ther. 2018;9:213. doi: 10.1186/s13287-018-0951-9
  41. Zarei F, Abbaszadeh A. Application of cell therapy for anti-aging facial skin. Curr Stem Cell Res Ther. 2019;14:244–248. doi: 10.2174/1574888X13666181113113415
  42. Zhang DY, Gao T, Xu RJ, Sun L, Zhang CF, Bai L, Chen W, Liu KY, Zhou Y, Jiao X, Zhang GH, Guo RL, Li JX, Gao Y, Jiao WJ, Tian H. SIRT3 transfection of aged human bone marrow-derived mesenchymal stem cells improves cell therapy-mediated myocardial repair. Rejuvenation Res. 2020;23:453–464. doi: 10.1038/s41598-023-40543-5
  43. Primorac D, Molnar V, Rod E, Jelec Z, Cukelj F, Matisic V, Vrdoljak T, Hudetz D, Hajsok H, Boric I. Knee osteoarthritis: A review of pathogenesis and state-of-the-art non-operative therapeutic considerations. Genes (Basel). 2020;11:854. doi: 10.3390/genes11080854
  44. Yang JM, Chung S, Yun K, Kim B, So S, Kang S, Kang E, Lee JY. Long-term effects of human induced pluripotent stem cell-derived retinal cell transplantation in Pde6b knockout rats. Exp Mol Med. 2021;53:631–642. doi: 10.1038/s12276-021-00588-w
  45. Martin-Lopez M, Gonzalez-Munoz E, Gomez-Gonzalez E, Sanchez-Pernaute R, Marquez-Rivas J, Fernandez-Munoz B. Modeling chronic cervical spinal cord injury in aged rats for cell therapy studies. J Clin Neurosci. 2021;94:76–85. doi: 10.1016/j.jocn.2021.09.042
  46. Liu D, Zhu M, Zhang Y, Diao Y. Crossing the blood-brain barrier with AAV vectors. Metab Brain Dis. 2021;36:45–52. doi: 10.1007/s11011-020-00630-2
  47. Epstein BE, Schaffer DV. Combining engineered nucleases with adeno-associated viral vectors for therapeutic gene editing. Adv Exp Med Biol. 2017;1016:29–42. doi: 10.1007/978-3-319-63904-8_2
  48. Jaijyan DK, Selariu A, Cruz-Cosme R, Tong M, Yang S, Stefa A, Kekich D, Sadoshima J, Herbig U, Tang Q, Church G, Parrish EL, Zhu H. New intranasal and injectable gene therapy for healthy life extension. Proc Natl Acad Sci USA. 2022;119:e2121499119. doi: 10.1073/pnas.2121499119
  49. Li Z, Zhang Y, Sui S, Hua Y, Zhao A, Tian X, Wang R, Guo W, Yu W, Zou K, Deng W, He L, Zou L. Targeting HMGB3/hTERT axis for radioresistance in cervical cancer. J Exp Clin Cancer Res. 2020;39:243. doi: 10.1186/s13046-020-01737-1
  50. Yamazaki Y, Imura A, Urakawa I, Shimada T, Murakami J, Aono Y, Hasegawa H, Yamashita T, Nakatani K, Saito Y, Okamoto N, Kurumatani N, Namba N, Kitaoka T, Ozono K, Sakai T, Hataya H, Ichikawa S, Imel EA, Econs MJ, Nabeshima Y. Establishment of sandwich ELISA for soluble alpha-Klotho measurement: Age-dependent change of soluble alpha-Klotho levels in healthy subjects. Biochem Biophys Res Commun. 2010;398:513–518. doi: 10.1016/j.bbrc.2010.06.110
  51. Xiang T, Luo X, Zeng C, Li S, Ma M, Wu Y. Klotho ameliorated cognitive deficits in a temporal lobe epilepsy rat model by inhibiting ferroptosis. Brain Res. 2021;1772:147668. doi: 10.1016/j.brainres.2021.147668
  52. Xiang T, Luo X, Ye L, Huang H, Wu Y. Klotho alleviates NLRP3 inflammasome-mediated neuroinflammation in a temporal lobe epilepsy rat model by activating the Nrf2 signaling pathway. Epilepsy Behav. 2022;128:108509. doi: 10.1016/j.yebeh.2021.108509
  53. Wang Y, Sun Z. Klotho gene delivery prevents the progression of spontaneous hypertension and renal damage. Hypertension. 2009;54:810–817. doi: 10.1161/HYPERTENSIONAHA.109.134320
  54. Roig-Soriano J, Grinan-Ferre C, Espinosa-Parrilla JF, Abraham CR, Bosch A, Pallas M, Chillon M. AAV-mediated expression of secreted and transmembrane aKlotho isoforms rescues relevant aging hallmarks in senescent SAMP8 mice. Aging Cell. 2022;21:e13581. doi: 10.1111/acel.13581
  55. Fan J, Wang S, Chen K, Sun Z. Aging impairs arterial compliance via Klotho-mediated downregulation of B-cell population and IgG levels. Cell Mol Life Sci. 2022;79:494. doi: 10.1007/s00018-022-04512-x
  56. Sewell PE, Ediriweera D, Gomez Rios E, Guadarrama OA, Eusebio Y, Gonzalez L, Parrish EL. Safety study of AAV hTert and Klotho gene transfer therapy for dementia. J Regen Biol Med. 2021;3:1–15. doi: 10.37191/Mapsci-2582-385X-3(6)-097
  57. Jimenez V, Jambrina C, Casana E, Sacristan V, Muñoz S, Darriba S, Rodó J, Mallol C, Garcia M, León X, Marcó S, Ribera A, Elias I, Casellas A, Grass I, Elias G, Ferré T, Motas S, Franckhauser S, Mulero F, Navarro M, Haurigot V, Ruberte J, Bosch F. FGF21 gene therapy as treatment for obesity and insulin resistance. EMBO Mol Med. 2018;10:1–24. doi: 10.15252/emmm.201708791
  58. Villarroya J, Gallego-Escuredo JM, Delgado-Angles A, Cairo M, Moure R, Gracia Mateo M, Domingo JC, Domingo P, Giralt M, Villarroya F. Aging is associated with increased FGF21 levels but unaltered FGF21 responsiveness in adipose tissue. Aging Cell. 2018;17:e12822. doi: 10.1111/acel.12822
  59. Davidsohn N, Pezone M, Vernet A, Graveline A, Oliver D, Slomovic S, Punthambaker S, Sun X, Liao R, Bonventre JV, Church GM. A single combination gene therapy treats multiple age-related diseases. Proc Natl Acad Sci USA. 2019;116:23505–23511. doi: 10.1073/pnas.1910073116

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. General scheme of the cell aging pathway. The impact of a number of factors triggers the activation of the p16 and p53–p21 signaling pathways, which leads to complete aging of the cell, which can be completed by the elimination of the cell from the tissue by the immune system or by long-term preservation of the pathologically functioning cell and its pathological effect on the microenvironment in the tissue

Download (96KB)

© 2024 Eco-Vector

Creative Commons License

This work is licensed
under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.





Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».