Выбор тягового электродвигателя для арктического электротранспорта

Обложка

Цитировать

Полный текст

Аннотация

Цель: выбор тягового электродвигателя для грузового электротранспорта, работающего в условиях Арктики.

Методы: Для решения поставленной цели были рассмотрены основные характеристики существующих видов электродвигателей постоянного и переменного тока, а также приведены данные об использовании того или иного типа двигателей в современном электротранспорте.

Результаты: Сравнительный анализ наиболее распространенных двигателей привел к 2 основным лидерам – синхронному двигателю с постоянными магнитами (СДПМ) и асинхронному двигателю (АД). Оба типа двигателей в полной мере подходят для решения поставленной цели. Однако, как выяснилось в последствии СДПМ чаще применяется для легкового транспорта, в то время как АД в большинстве случаев используется для более тяжелого транспорта.

Заключение: В результате анализа было решено, что для электротранспорта, работающего в условиях Арктики, наиболее оптимальным вариантом в качестве тягового электродвигателя стоит использовать асинхронный двигатель.

Об авторах

Андрей Анатольевич Лисов

Южно-Уральский государственный университет (НИУ)

Автор, ответственный за переписку.
Email: lisov.andrey2013@yandex.ru
ORCID iD: 0000-0001-7282-8470
SPIN-код: 1956-3662

аспирант

Россия, Челябинск

Александр Григорьевич Возмилов

Южно-Уральский государственный университет (НИУ)

Email: vozmiag@rambler.ru
ORCID iD: 0000-0002-1292-3975
SPIN-код: 2893-8730

профессор, д.т.н

Россия, Челябинск

Надежда Юрьевна Кулева

Южно-Уральский государственный университет (НИУ)

Email: kulevani@susu.ru
ORCID iD: 0000-0002-6609-1115
SPIN-код: 2385-8383

научный сотрудник

Россия, Челябинск

Андрей Игоревич Согрин

Южно-Уральский государственный университет (НИУ)

Email: sogrinai@susu.ru
ORCID iD: 0000-0001-7042-3664
SPIN-код: 8424-0573

доцент, к.т.н

Россия, Челябинск

Рамиль Агзамович Закиров

Южно-Уральский государственный университет (НИУ)

Email: zakirovra@susu.ru
ORCID iD: 0009-0002-8330-1062
SPIN-код: 6877-0902

доцент, к.т.н

Россия, Челябинск

Рафаэль Юрикович Илимбетов

Южно-Уральский государственный университет (НИУ)

Email: ilimbay@yandex.ru
ORCID iD: 0000-0003-1634-9242
SPIN-код: 8465-5500

доцент, к.т.н

Россия, Челябинск

Список литературы

  1. Chan CC, Bouscayrol A, Chen K. Electric, hybrid, and fuel-cell vehicles: Architectures and modeling. IEEE transactions on vehicular technology. 2009;2;59(2):589-98. doi: 10.1109/TVT.2009.2033605
  2. Ehsani M, Rahman KM, Toliyat HA. Propulsion system design of electric and hybrid vehicles. IEEE Transactions on industrial electronics. 1997 Feb;44(1):19-27. doi: 10.1109/41.557495
  3. Boldea I, Tutelea LN, Parsa L, Dorrell D. Automotive electric propulsion systems with reduced or no permanent magnets: An overview. IEEE Transactions on Industrial Electronics. 2014 Jan 21;61(10):5696-711. doi: 10.1109/TIE.2014.2301754
  4. Hashemnia N, Asaei B. Comparative study of using different electric motors in the electric vehicles. In2008 18th International Conference on Electrical Machines 2008 Sep 6 (pp. 1-5). IEEE. doi: 10.1109/ICELMACH.2008.4800157
  5. Zeraoulia M, Benbouzid ME, Diallo D. Electric motor drive selection issues for HEV propulsion systems: A comparative study. IEEE Transactions on Vehicular technology. 2006 Nov 13;55(6):1756-64. doi: 10.1109/TVT.2006.878719
  6. Yildirim M, Polat M, Kürüm H. A survey on comparison of electric motor types and drives used for electric vehicles. In2014 16th International Power Electronics and Motion Control Conference and Exposition 2014 Sep 21 (pp. 218-223). IEEE. doi: 10.1109/EPEPEMC.2014.6980715
  7. Finch JW, Giaouris D. Controlled AC electrical drives. IEEE Transactions on Industrial Electronics. 2008 Jan 31;55(2):481-91. doi: 10.1109/TIE.2007.911209
  8. Ehsani M, Gao Y, Emadi A. Modern electric, hybrid electric, and fuel cell vehicles: fundamentals, theory, and design. CRC press; 2003.
  9. Vas P. Sensorless vector and direct torque control. Oxford,[Eng.]; New York: Oxford University Press; 1998.
  10. Abu-Rub H, Iqbal A, Guzinski J. High performance control of AC drives with Matlab/Simulink. John Wiley & Sons; 2021 Apr 6.
  11. Leonhard W. Controlled AC drives, a successful transition from ideas to industrial practice. Control Engineering Practice. 1996 Jul 1;4(7):897-908. doi: 10.1016/0967-0661(96)00087-1
  12. Gupta V. Working and analysis of the H-bridge motor driver circuit designed for wheeled mobile robots. In 2nd International Conference on Advanced Computer Control 2010 Mar 27. 2010;3:441-444. IEEE. doi: 10.1109/ICACC.2010.5486818
  13. Chang L. Comparison of AC drives for electric vehicles-a report on experts' opinion survey. IEEE Aerospace and Electronic Systems Magazine. 1994;9(8):7-11. doi: 10.1109/62.311235
  14. Zeraoulia M, Benbouzid ME, Diallo D. Electric motor drive selection issues for HEV propulsion systems: A comparative study. IEEE Transactions on Vehicular technology. 2006;13;55(6):1756-64. doi: 10.1109/62.311235
  15. Chan CC. An overview of electric vehicle technology. Proceedings of the IEEE. 1993;81(9):1202-13. doi: 10.1109/5.237530
  16. De Santiago J, Bernhoff H, Ekergård B, Eriksson S, Ferhatovic S, Waters R, Leijon M. Electrical motor drivelines in commercial all-electric vehicles: A review. IEEE Transactions on vehicular technology. 2011;61(2):475-84. doi: 10.1109/TVT.2011.2177873
  17. Lungoci CM, Georgescu M, Calin MD. Electrical motor types for vehicle propulsion. In 13th International Conference on Optimization of Electrical and Electronic Equipment (OPTIM) 2012 May 24. 2012:635-640. IEEE. doi: 10.1109/OPTIM.2012.6231985
  18. Chan CC. The state of the art of electric and hybrid vehicles. Proceedings of the IEEE. 2002;90(2):247-75. doi: 10.1109/5.989873
  19. Pellegrino G, Vagati A, Boazzo B, Guglielmi P. Comparison of induction and PM synchronous motor drives for EV application including design examples. IEEE Transactions on industry applications. 2012 Nov 15. 2012;48(6):2322-32. doi: 10.1109/TIA.2012.2227092
  20. Bilgin B, Emadi A. Electric motors in electrified transportation: A step toward achieving a sustainable and highly efficient transportation system. IEEE Power Electronics Magazine. 2014 Jun 23. 2014;1(2):10-7. doi: 10.1109/MPEL.2014.2312275
  21. Miller TJ, Rabinovici R. Back-EMF waveforms and core losses in brushless DC motors. IEE Proceedings-Electric Power Applications. 1994 May 1. 1994;141(3):144-54. doi: 10.1049/ip-epa:19941080
  22. Emadi A, editor. Handbook of automotive power electronics and motor drives. CRC press; 2017 Dec 19.
  23. Nian X, Peng F, Zhang H. Regenerative braking system of electric vehicle driven by brushless DC motor. IEEE Transactions on Industrial Electronics. 2014 Jan 14. 2014;61(10):5798-808. doi: 10.1109/TIE.2014.2300059
  24. Jahns TM. Motion control with permanent-magnet AC machines. Proceedings of the IEEE. 1994 Aug. 1994;82(8):1241-52. doi: 10.1109/5.301686
  25. Kiyota K, Sugimoto H, Chiba A. Comparing electric motors: An analysis using four standard driving schedules. IEEE Industry Applications Magazine. 2014 Apr 23. 2014;20(4):12-20. doi: 10.1109/MIAS.2013.2288380
  26. Rahman KM, Fahimi B, Suresh G, Rajarathnam AV, Ehsani M. Advantages of switched reluctance motor applications to EV and HEV: design and control issues. IEEE transactions on industry applications. 2000 Jan. 2000;36(1):111-21. doi: 10.1109/28.821805
  27. Zhu ZQ, Howe D. Electrical machines and drives for electric, hybrid, and fuel cell vehicles. Proceedings of the IEEE. 2007 Apr 30. 2007;95(4):746-65. doi: 10.1109/JPROC.2006.892482
  28. Miller TJ, editor. Electronic control of switched reluctance machines. Elsevier; 2001 May 18.
  29. Miller TJ. Switched reluctance motors and their control. 1993 Jan.
  30. Cameron DE, Lang JH, Umans SD. The origin and reduction of acoustic noise in doubly salient variable-reluctance motors. IEEE Transactions on Industry Applications. 1992 Nov. 1992;28(6):1250-5. doi: 10.1109/28.175275
  31. Rajashekara K. Present status and future trends in electric vehicle propulsion technologies. IEEE Journal of emerging and selected topics in power electronics. 2013 Apr 23. 2013;1(1):3-10.
  32. Hesla E. Electric propulsion [history]. IEEE Industry applications magazine. 2009 Jun 12. 2009;15(4):10-3.
  33. Kumar L, Jain S. Electric propulsion system for electric vehicular technology: A review. Renewable and Sustainable Energy Reviews. 2014 Jan 1. 2014;29:924-40. doi: 10.1016/j.rser.2013.09.014
  34. Возмилов А.Г., Урманов В.Г., Лисов А.А., Илимбетов Р. Ю. Разработка и моделирование пропорционально-интегрального регулятора для электронного дифференциала электротрактора сельскохозяйственного назначения // Вестник Башкирского Государственного Аграрного Университета. – 2022. – №. 2(62). – С. 119–124. [Vozmilov AG, Urmanov VG, Lisov AA, Ilimbetov RYu. Development and simulation of the proportional and integral regulator for the electronic differential of an electric farm tractor. Bulletin of the Bashkir State Agrarian University. 2022;2(62):119-124 (Russ., Engl.)]. doi: 10.31563/1684-7628-2022-62-2-119-124
  35. Gozálvez J, Sepulcre M, Bauza R. IEEE 802.11 p vehicle to infrastructure communications in urban environments. IEEE Communications Magazine. 2012 May 7. 2017;50(5):176-83. doi: 10.1109/MCOM.2012.6194400
  36. Kenney JB. Dedicated short-range communications (DSRC) standards in the United States. Proceedings of the IEEE. 2011 Jun 16. 2011;99(7):1162-82. doi: 10.1109/JPROC.2011.2132790
  37. Maddox J, Sweatman P, Sayer J. Intelligent vehicles+ infrastructure to address transportation problems–a strategic approach. In 24th international technical conference on the enhanced safety of vehicles (ESV) 2015 Jun.
  38. Конев В.В., Карнаухов Н.Н., Мерданов Ш.М., Половников Е.В. Электрический привод строительно-дорожных машин // Архитектура, строительство, транспорт. – 2022. – № 3(101). – С. 65–73. [Konev VV, Karnaukhov NN, Merdanov ShM, Polovnikov EV. Electric drive of road construction machines. Architecture, Construction, Transport. 2022;3(101):65-73. (In Russ.)]. doi: 10.31660/2782-232Х-2022-3-65-73

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Тяговые двигатели постоянного и переменного тока для ТС. Источник: составлено авторами

Скачать (51KB)
3. Рис. 2. Механическая характеристика асинхронного двигателя с короткозамкнутым ротором. Источник: составлено авторами

Скачать (25KB)
4. Рис. 3. Механическая характеристика BLDC-двигателя с постоянными магнитами (Ud1 > Ud2 > Ud3 > Ud4). Источник: [21]

Скачать (14KB)

© Лисов А.А., Возмилов А.Г., Кулева Н.Ю., Согрин А.И., Закиров Р.А., Илимбетов Р.Ю., 2023

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».