Design of equi-strength rotating disk
- 作者: Lyamina E.A.1, Novozhilova O.V.2
-
隶属关系:
- Ishlinsky Institute for Problems in Mechanics RAS
- Bauman Moscow State Technical University
- 期: 卷 9, 编号 1 (2023)
- 页面: 122-134
- 栏目: Original studies
- URL: https://journal-vniispk.ru/transj/article/view/126664
- DOI: https://doi.org/10.17816/transsyst202391122-134
- ID: 126664
如何引用文章
全文:
详细
Background: Rotating disks, such as flywheels, are an important machine part of engines, which requires the development of the theoretical methods of their analysis and design.
Aim: Determination of the profile of equi-strength rotating disks.
Materials and Methods: Methods of the mathematical theory of elasticity and plasticity
Results: Methodology for determining the profile of equi-strength rotating disks obeying the von Mises yield criterion and its application
Conclusion: The methodology developed can be used to design equi-strength rotating disks subject to various combinations of internal and external pressures. It can be extended to more general yield criteria.
作者简介
Elena Lyamina
Ishlinsky Institute for Problems in Mechanics RAS
Email: lyamina@inbox.ru
ORCID iD: 0000-0002-7319-8703
SPIN 代码: 6801-0244
PhD, associated professor
俄罗斯联邦, MoscowOlga Novozhilova
Bauman Moscow State Technical University
编辑信件的主要联系方式.
Email: helgam@bk.ru
ORCID iD: 0000-0002-9361-0478
SPIN 代码: 8995-7637
PhD
俄罗斯联邦, Moscow参考
- Genta G, Bassani D. Use of Genetic Algorithms For the Design of Rotors. Meccanica. 1995;30:707–717. doi: 10.1007/BF00986575
- Parmaksizogˇlu C, Güven U. Plastic Stress Distribution in a Rotating Disk with Rigid Inclusion Under a Radial Temperature Gradient. Mechanics of Structures and Machines: An International Journal. 1998;26:19-20. doi: 10.1080/08905459808945417
- Orcan Y, Eraslan AN. Elastic–Plastic Stresses in Linearly Hardening Rotating Solid Disks of Variable Thickness. Mechanics Research Communications. 2002;29(4):269-281. doi: 10.1016/S0093-6413(02)00261-6.
- Eraslan AN. Stress Distributions In Elastic-Plastic Rotating Disks with Elliptical Thickness Profiles Using Tresca and Von Mises Criteria. Journal of Applied Mathematics and Mechanics. 2005;85:252-266. doi: 10.1002/zamm.200210177
- Jalali MH, Jalali MR. Stress Analysis of Rotating Functionally Graded Polar Orthotropic Disk Under Thermomechanical Loading. Journal of Vibroengineering. 2020;22(3):640–656. doi: 10.21595/jve.2019.20575
- Сёмка Э.В. Качественный и количественный анализ упругопластического состояния вращающегося тонкого диска // Вестник Инженерной школы ДВФУ. – 2022. – №4(53). – С. 3–12. [Syomka EV. Qualitative and quantitative analysis of the elastoplastic state of a rotating thin disk. Far Eastern Federal Univercity: School of Engineering Bulletin. 2022;4(4(53):3-12. (In Russ).] Ссылка активна на: 18.03.2023. Доступно по: https://journals.dvfu.ru/vis/article/view/388
- Alexandrov S. Elastic/plastic discs under plane stress conditions. Springer, 2015. doi: 10.1007/978-3-319-14580-8
- Paul SK, Sahni M. Stress Analysis of Functionally Graded Disk with Exponentially Varying Thickness Using Iterative Method. WSEAS Transactions on Applied and Theoretical Mechanics. 2021;16:232-244. doi: 10.37394/232011.2021.16.26
- Sharma D, Kaur R, Sharma H. Investigation of Thermo-Elastic Characteristics in Functionally Graded Rotating Disk Using Finite Element Method. Nonlinear Engineering. 2021;10:312-322. doi: 10.1515/nleng-2021-0025
- Madan R, Bhowmick S. Limit Elastic Analysis of Functionally Graded Rotating Disks Under Thermo-Mechanical Loading. Int J Appl Mech. 2021;13:Article 2150033. doi: 10.1142/S1758825121500332
- Seireg A, Surana KS. Optimum Design of Rotating Disks. Journal of Engineering Materials and Technology, Transactions of the ASME. 1970;92(1):1-10. doi: 10.1115/1.3427709
- Gontarovskii VP, Chebaevskii BP. Profile design of uniform-strength disk by the Mises strength rule. Strength of Materials. 1973;5(10):1257-1259. doi: 10.1007/BF01129410
- Hein K, Heinloo M. The Design of Nonhomogeneous Equi-Strength Annular Discs of Variable Thickness Under Internal And External Pressures. Int J Solids Struct. 1990;26(5/6):617-630. doi: 10.1016/0020-7683(90)90033-R
- Gau CY, Manoochehri S. Optimal Design of a Nonhomogeneous Annular Disk Under Pressure Loadings. ASME Journal of Mechanical Design. 1994;116:989-996. doi: 10.1115/1.2919509
- Durban D, Baruch M. Analysis Of an Elasto-Plastic Thick Walled Sphere Loaded By Internal and External Pressure. Int J Nonlinear Mech. 1977;12: 9-21. doi: 10.1016/0020-7462(77)90012-9
- Alexandrov S, Pirumov A, Jeng YR. Expansion/Contraction of a Spherical Elastic/Plastic Shell Revisited. Continuum Mechanics and Thermodynamics. 2015; 27: 483-94. doi: 10.1007/s00161-014-0365-6
- Alexandrov S, Jeng YR. An Elastic/Plastic Solution for a Hollow Sphere Subject to Thermo-Mechanical Loading Considering Temperature Dependent Material Properties. Int J Solids Struct. 2020;200-201:23-33. doi: :10.1016/j.ijsolstr.2020.03.027
- Bayat M, Saleem M, Sahari BB, Hamouda AMS, Mahdi E. Mechanical and Thermal Stresses in A Functionally Graded Rotating Disk with Variable Thickness Due to Radially Symmetry Loads. Int J Pres Ves Pip. 2009;86:357-72. doi: 10.1016/j.ijpvp.2008.12.006
- Vivio F, Vullo V, Cifani P. Theoretical Stress Analysis of Rotating Hyperbolic Disk Without Singularities Subjected to Thermal Load. Journal of Thermal Stresses. 2014;37:117-36. doi: 10.1080/01495739.2013.839526










