长期牵伸腓肠三头肌计划对儿童高可动性平足及跟腱缩短患者腓肠三头肌纤维羽状角的影响

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

背景。腓肠三头肌的收缩在儿童平足的发病机制中具有重要意义。作为一组羽状肌,其肌纤维相对于腱膜的倾斜角度可以被测量,此角度称为羽状角或纤维羽状角。

研究目的。评估长期腓肠三头肌牵伸计划对高可动性平足伴跟腱缩短儿童腓肠三头肌纤维羽状角的影响。

材料与方法。研究包括82名患有高可动性平足及跟腱缩短的儿童。通过超声诊断测量腓肠三头肌纤维的羽状角。主要干预措施为持续6个月的腓肠三头肌牵伸训练。统计分析使用 SPSS v. 26.0 完成。

结果。实验组包括63名参与牵伸计划的儿童,对照组包括19名未按规定强度参与牵伸训练的儿童。 足部形态与位置评估量表(FPI-6):实验组显示显著改善,对照组无变化。足背屈角的变化: 初始值:实验组为4.84 ± 0.10°,对照组为4.81 ± 0.17°;6个月后:实验组为11.34 ± 0.24°, 对照组为4.85 ± 0.19°(p < 0.01)。纤维羽状角的变化:腓肠肌内侧头和比目鱼肌的纤维羽状角均显著增加。

结论。在平足儿童中实施长期牵伸计划可显著提高足背屈角。这些变化伴随着肌肉的形态和功能重塑,表现为腓肠肌内侧头和比目鱼肌纤维羽状角的显著增加。进一步研究将有助于揭示肌肉解剖和功能重塑的机制及其对平足解剖参数的影响。

作者简介

Leonid V. Gorobets

H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery; Medical Home

Email: gorobetsleonid@gmail.com
ORCID iD: 0000-0001-9424-3713

MD, PhD Student

俄罗斯联邦, Saint Petersburg; Rostov-on-Don

Vladimir M. Kenis

H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery; North-Western State Medical University named after I.I. Mechnikov

编辑信件的主要联系方式.
Email: kenis@mail.ru
ORCID iD: 0000-0002-7651-8485
SPIN 代码: 5597-8832

MD, PhD, Dr. Sci. (Medicine), Professor

俄罗斯联邦, Saint Petersburg; Saint Petersburg

参考

  1. Harris RI, Beath T. Hypermobile flat-foot with short tendo achillis. J Bone Joint Surg Am. 1948;30A(1):116–140.
  2. Miskowiec RWI. The acute effects of stretching on pennation angle and force production [dissertation abstract]. 2012. 30 p. doi: 10.31390/gradschool_theses.2322
  3. Masenko VL, Kokov AN, Grigorieva II, et al. Radiology methods of the sarcopenia diagnosis. Research and Practical Medicine Journal. 2019;6(4):127–137. EDN: VIXNRI doi: 10.17709/2409-2231-2019-6-4-13
  4. Wu IT, Hyman SA, Norman MB, et al. Muscle architecture properties of the deep region of the supraspinatus: a cadaveric study. Orthop J Sports Med. 2024;12(10):23259671241275522. doi: 10.1177/23259671241275522.
  5. Zhang Y, Herbert RD, Bilston LE, et al. Three-dimensional architecture of the human subscapularis muscle in vivo. J Biomech. 2023;161:111854. doi: 10.1016/j.jbiomech.2023.111854
  6. Jiang W, Chen C, Xu Y. Muscle structure predictors of vertical jump performance in elite male volleyball players: a cross-sectional study based on ultrasonography. Front Physiol. 2024;15:1427748. doi: 10.3389/fphys.2024.1427748
  7. Wang R, Fu S, Huang R, et al. The diagnostic value of musculoskeletal ultrasound in the quantitative evaluation of skeletal muscle in chronic thyrotoxic myopathy: a single-center study in China. Int J Gen Med. 2024;17:3541–3554. doi: 10.2147/IJGM.S472442
  8. Fu H, Wang L, Zhang W, et al. Diagnostic test accuracy of ultrasound for sarcopenia diagnosis: A systematic review and meta-analysis. J Cachexia Sarcopenia Muscle. 2023;14(1):57–70. doi: 10.1002/jcsm.13149
  9. Moeskops S, Oliver JL, Radnor JM, et al. Effects of neuromuscular training on muscle architecture, isometric force production, and stretch-shortening cycle function in trained young female gymnasts. J Strength Cond Res. 2024;38(9):1640–1650. doi: 10.1519/JSC.0000000000004856
  10. Radnor JM, Oliver JL, Waugh CM, et al. Muscle architecture and maturation influence sprint and jump ability in young boys: a multistudy approach. J Strength Cond Res. 2022;36(10):2741–2751. doi: 10.1519/JSC.0000000000003941
  11. Dimitrieva AYu, Kenis VM. Medium-term results of body balance trainings in primary school-aged children with generalized joint hypermobility and symptomatic mobile flat foot: cohort study. Pediatric Pharmacology. 2021;18(5):347–358. EDN: YVHYML doi: 10.15690/pf.v18i5.2326
  12. Mosca VS. Principles and management of pediatric foot and ankle deformities and malformations. Philadelphia: Lippincott Williams & Wilkins; 2014.
  13. Dimitrieva AYu, Kenis VM, Klychkova IYu. Results of the first russian delphi survey on the diagnosis and treatment of flatfoot in children. Pediatric Traumatology, Orthopaedics and Reconstructive Surgery. 2023;11(1):49–66. EDN: CAHOCE doi: 10.17816/PTORS112465
  14. Wren TA, Cheatwood AP, Rethlefsen SA, et al. Achilles tendon length and medial gastrocnemius architecture in children with cerebral palsy and equinus gait. J Pediatr Orthop. 2010;30(5):479–484. doi: 10.1097/BPO.0b013e3181e00c80
  15. Moo EK, Leonard TR, Herzog W. The sarcomere force-length relationship in an intact muscle-tendon unit. J Exp Biol. 2020;223(Pt 6):jeb215020. doi: 10.1242/jeb.215020
  16. Nakamura M, Yoshida R, Sato S, et al. Comparison between high- and low-intensity static stretching training program on active and passive properties of plantar flexors. Front Physiol. 2021;12:796497. doi: 10.3389/fphys.2021.796497
  17. Mizuno T. Combined effects of static stretching and electrical stimulation on joint range of motion and muscle strength. J Strength Cond Res. 2019;33(10):2694–2703. doi: 10.1519/JSC.0000000000002260
  18. Panidi I, Bogdanis GC, Terzis G, et al. Muscle architectural and functional adaptations following 12-weeks of stretching in adolescent female athletes. Front Physiol. 2021;12:701338. doi: 10.3389/fphys.2021.701338
  19. Freitas SR, Mil-Homens P. Effect of 8-week high-intensity stretching training on biceps femoris architecture. J Strength Cond Res. 2015;29(6):1737–1740. doi: 10.1519/JSC.0000000000000800
  20. Dennis, Lacey G, The effects of static stretching on pennation angle and muscle power production in the triceps surae complex. Honors College Theses. 2017.
  21. Manal K, Roberts DP, Buchanan TS. Optimal pennation angle of the primary ankle plantar and dorsiflexors: variations with sex, contraction intensity, and limb. J Appl Biomech. 2006;22(4):255–263. doi: 10.1123/jab.22.4.255

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Ultrasonography of the medial head of the gastrocnemius in a patient with hypermobile flatfoot and Achilles tendon shortening: a, before the stretching program; b, after 6 months of the stretching program

下载 (239KB)

版权所有 © Эко-Вектор, 2024

Creative Commons License
此作品已接受知识共享署名-非商业性使用-禁止演绎 4.0国际许可协议的许可。
 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».