骨骼的神经支配:感觉神经支配(第一部分,文献综述)
- 作者: Khodorovskaya A.M.1, Agranovich O.E.1, Savina M.V.1, Garkavenko Y.E.2,3, Melchenko E.V.2, Filin Y.A.4, Gorelik K.E.5
-
隶属关系:
- H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery
- H. Turner National Medical Research Center for Children’s Orthopedics and Trauma Surgery
- North-Western State Medical University named after I.I. Mechnikov
- Almazov National Medical Research Center
- Sertolovo City Hospital
- 期: 卷 12, 编号 4 (2024)
- 页面: 511-522
- 栏目: Scientific reviews
- URL: https://journal-vniispk.ru/turner/article/view/282521
- DOI: https://doi.org/10.17816/PTORS642092
- ID: 282521
如何引用文章
详细
背景。骨组织的重建调控是一个复杂的多因素过程,受到内分泌、旁分泌和机械因素的共同控制。 近二十年前的研究首次表明,除了传统机制外,骨代谢还受到神经系统的调控。然而,国内文献中关于骨组织神经支配特点的研究几乎为空白。
研究目的。分析文献中关于感觉神经支配在骨代谢调控中的作用,以及其在骨痛病理生理机制中的角色。
材料与方法。通过 PubMed、Google Scholar、Cochrane Library、Crossref 和 eLibrary 等数据库检索俄文和英文文献,使用关键词“骨骼神经支配”、“感觉神经支配”、“骨代谢”、“骨痛”进行分析和综合研究。本文综述的大部分研究成果发表于过去20年。
结果。感觉神经纤维的分布:伤害性感知的感觉神经纤维广泛分布于骨的所有结构区域;骨痛类型取决于病变位置和病理过程性质。痛觉信号的传递:A-δ纤维和C型纤维是将骨痛信号传递至中枢神经系统的主要通路;这些纤维具有不同的传导速度、神经递质、受体特性和功能。神经递质在骨稳态中的作用:感觉神经通过释放降钙素基因相关肽(CGRP)和P物质等神经递质来调节骨的稳态;这些递质在调控骨吸收和骨形成过程中起到重要作用。在骨化中心的作用:感觉神经在内软骨成骨和膜内成骨过程中,特别是初级和次级骨化中心的形成中发挥关键作用。软骨中的神经纤维:某些研究证实,在特定发育阶段,关节软骨中存在神经纤维。
结论。感觉神经纤维是骨骼和软骨组织代谢神经调节的重要环节。紊乱的感觉神经支配:感觉神经支配的紊乱会导致骨重建的恶化以及内软骨成骨过程的延缓,从而影响骨的生长和发育,尤其在幼年期患者中表现更为明显。骨痛的病理生理机制:理解感觉神经在骨痛中的作用对制定针对性的治疗策略至关重要。
作者简介
Alina M. Khodorovskaya
H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery
编辑信件的主要联系方式.
Email: alinamyh@gmail.com
ORCID iD: 0000-0002-2772-6747
SPIN 代码: 3348-8038
俄罗斯联邦, Saint Petersburg
Olga E. Agranovich
H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery
Email: olga_agranovich@yahoo.com
ORCID iD: 0000-0002-6655-4108
SPIN 代码: 4393-3694
MD, PhD, Dr. Sci. (Medicine)
俄罗斯联邦, Saint PetersburgMargarita V. Savina
H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery
Email: drevma@yandex.ru
ORCID iD: 0000-0001-8225-3885
SPIN 代码: 5710-4790
MD, PhD, Cand. Sci. (Medicine)
俄罗斯联邦, Saint PetersburgYuri E. Garkavenko
H. Turner National Medical Research Center for Children’s Orthopedics and Trauma Surgery; North-Western State Medical University named after I.I. Mechnikov
Email: yurijgarkavenko@mail.ru
ORCID iD: 0000-0001-9661-8718
SPIN 代码: 7546-3080
MD, PhD, Dr. Sci. (Medicine)
俄罗斯联邦, Saint Petersburg; Saint PetersburgEvgeny V. Melchenko
H. Turner National Medical Research Center for Children’s Orthopedics and Trauma Surgery
Email: emelchenko@gmail.com
ORCID iD: 0000-0003-1139-5573
SPIN 代码: 1552-8550
MD, PhD, Cand. Sci. (Medicine)
俄罗斯联邦, Saint PetersburgYana A. Filin
Almazov National Medical Research Center
Email: filin_yana@mail.ru
ORCID iD: 0009-0009-0778-6396
俄罗斯联邦, Saint Petersburg
Konstantin E. Gorelik
Sertolovo City Hospital
Email: tmsk@bk.ru
ORCID iD: 0009-0009-2151-1815
SPIN 代码: 3454-5743
MD, PhD, Cand. Sci. (Medicine)
俄罗斯联邦, Sertolovo参考
- Kumar A, Brockes JP. Nerve dependence in tissue, organ, and appendage regeneration. Trends Neurosci. 2012;35(11):691–699. doi: 10.1016/j.tins.2012.08.003
- Uygur A, Lee RT. Mechanisms of cardiac regeneration. Dev Cell. 2016;36(4):362–374. doi: 10.1016/j.devcel.2016.01.018
- Garcés GL, Santandreu ME. Longitudinal bone growth after sciatic denervation in rats. J Bone Joint Surg Br. 1988;70(2):315–318. doi: 10.1302/0301-620X.70B2.3346314
- Madsen JE, Hukkanen M, Aune AK, et al. Fracture healing and callus innervation after peripheral nerve resection in rats. Clin Orthop Relat Res. 1998;(351):230–240.
- Heffner MA, Anderson MJ, Yeh GC, et al. Altered bone development in a mouse model of peripheral sensory nerve inactivation. J Musculoskelet Neuronal Interact. 2014. Vol. 14, N 1. P. 1–9.
- Santavirta S, Konttinen YT, Nordstrom D, et al. Immunologic studies of nonunited fractures. Acta Orthop Scand. 1992;63(6):579–586.
- Nagano J, Tada K, Masatomi T, et al. Arthropathy of the wrist in leprosy – what changes are caused by long-standing peripheral nerve palsy? Arch Orthop Trauma Surg. 1989;108(4):210–217. doi: 10.1007/BF00936203
- Bae DS, Ferretti M, Waters PM. Upper extremity size differences in brachial plexus birth palsy. Hand (NY). 2008;3(4):297–303. doi: 10.1007/s11552-008-9103-5
- Danisman M, Emet A, Kocyigit IA, et al. Examination of upper extremity length discrepancy in patients with obstetric brachial plexus paralysis. Children (Basel). 2023;10(5):876. doi: 10.3390/children10050876
- Frost HM. On our age-related bone loss: insights from a new paradigm. J Bone Miner Res. 1997;12(10):1539–1546. doi: 10.1359/jbmr.1997.12.10.1539
- Dimitri P, Rosen C. The central nervous system and bone metabolism: an evolving story. Calcif Tissue Int. 2017;100(5):476–485. doi: 10.1007/s00223-016-0179-6
- Ducy P, Amling M, Takeda S, et al. Leptin inhibits bone formation through a hypothalamic relay: a central control of bone mass. Cell. 2000;100(2):197–207. doi: 10.1016/s0092-8674(00)81558-5
- Zhang Y, Proenca R, Maffei M, et al. Positional cloning of the mouse obese gene and its human homologue. Nature. 1995;374(6505):425–432. doi: 10.1038/372425a0
- Takeda S, Elefteriou F, Levasseur R, et al. Leptin regulates bone formation via the sympathetic nervous system. Cell. 2002;111(3):305–317. doi: 10.1016/s0092-8674(02)01049-8
- Halaas JL, Gajiwala KS, Maffei M, et al. Weight-reducing effects of the plasma protein encoded by the obese gene. Science. 1995;269(5223):543–546. doi: 10.1126/science.7624777
- Thomas T, Gori F, Khosla S, et al. Leptin acts on human marrow stromal cells to enhance differentiation to osteoblasts and to inhibit differentiation to adipocytes. Endocrinology. 1999;1404:1630–1638. doi: 10.1210/endo.140.4.6637
- Cornish J, Callon KE, Bava U, et al. Leptin directly regulates bone cell function in vitro and reduces bone fragility in vivo. J Endocrinol. 2002;175(2):405–415. doi: 10.1677/joe.0.1750405
- Holloway WR, Collier FM, Aitken CJ, et al. Leptin inhibits osteoclast generation. J Bone Miner Res. 2002;17(2):200–209. doi: 10.1359/jbmr.2002.17.2.200
- Brazill JM, Beeve AT, Craft CS, et al. Nerves in bone: evolving concepts in pain and anabolism. J Bone Miner Res. 2019;34(8):1393–1406. doi: 10.1002/jbmr.3822
- Tomlinson RE, Christiansen BA, Giannone AA, et al. The role of nerves in skeletal development, adaptation, and aging. Front Endocrinol (Lausanne). 2020;11:646. doi: 10.3389/fendo.2020.00646
- Sanders LJ. The Charcot foot: historical perspective 1827–2003. Diabetes Metab Res Rev. 2004;20(S1):S4–S8. doi: 10.1002/dmrr.451
- Corbin KB, Hinsey JC. Influence of the nervous system on bone and joints. Anat Rec. 1939;75(3):307–317. doi: 10.1002/ar.1090750305
- Bajaj D, Allerton BM, Kirby JT, et al. Muscle volume is related to trabecular and cortical bone architecture in typically developing children. Bone. 2015;81:217–227. doi: 10.1016/j.bone.2015.07.014
- Edmonds ME, Clarke MB, Newton S, et al. Increased uptake of bone radiopharmaceutical in diabetic neuropathy. Q J Med. 1985;57(3–4):843–855. doi: 10.1093/oxfordjournals.qjmed.a067929
- Bjurholm A, Kreicbergs A, Brodin E, et al. Substance P- and CGRP-immunoreactive nerves in bone. Peptides. 1988;9(1):165–171. doi: 10.1016/0196-9781(88)90023-x
- Tomlinson RE, Li Z, Li Z, et al. NGF-TrkA signaling in sensory nerves is required for skeletal adaptation to mechanical loads in mice. Proc Natl Acad Sci USA. 2017;114,(18):E3632–E3641. doi: 10.1073/pnas.1701054114
- Cornish J, Callon KE, Lin CQ, et al. Comparison of the effects of calcitonin gene-related peptide and amylin on osteoblasts. J Bone Miner Res. 1999;14(8):1302–1309. doi: 10.1359/jbmr.1999.14.8.1302
- Chen H, Hu B, Lv X, et al. Prostaglandin E2 mediates sensory nerve regulation of bone homeostasis. Nat Commun. 2019;10(1). doi: 10.1038/s41467-018-08097-7
- Mrak E, Guidobono F, Moro G, et al. Calcitonin gene-related peptide (CGRP) inhibits apoptosis in human osteoblasts by β-catenin stabilization. J Cell Physiol. 2010;225(3):701–708. doi: 10.1002/jcp.22266
- Elefteriou F, Ahn J, Takeda S, et al. Leptin regulation of bone resorption by the sympathetic nervous system and CART. Nature. 2005;434(7032):514–520. doi: 10.1038/nature03398
- Schinke T, Liese S, Priemel M, et al. Decreased bone formation and osteopenia in mice lacking alpha-calcitonin gene-related peptide. J Bone Miner Res. 2004;19(12):2049–2056. doi: 10.1359/JBMR.040915
- Yang Y, Zhou J, Liang C, et al. Effects of highly selective sensory/motor nerve injury on bone metabolism and bone remodeling in rats. J Musculoskelet Neuronal Interact. 2022;22(4):524–535.
- Opolka A, Straub RH, Pasoldt A, et al. Substance P and norepinephrine modulate murine chondrocyte proliferation and apoptosis. Arthritis Rheum. 2012;64(3):729–739. doi: 10.1002/art.33449
- Hedberg A, Messner K, Persliden J, et al. Transient local presence of nerve fibers at onset of secondary ossification in the rat knee joint. Anat Embryol (Berl). 1995;192(3):247–255. doi: 10.1007/BF00184749
- Schwab W, Funk RH. Innervation pattern of different cartilaginous tissues in the rat. Acta Anat. 1998;163(4):184–190. doi: 10.1159/000046497
- Strange-Vognsen HH, Laursen H. Nerves in human epiphyseal uncalcified cartilage. J Pediatr Orthop B. 1997;6(1):56–58. doi: 10.1097/01202412-199701000-00012
- Szadek KM, Hoogland PV, Zuurmond WW, et al. Possible nociceptive structures in the sacroiliac joint cartilage: an immunohistochemical study. Clin Anat. 2010;23(2):192–198. doi: 10.1002/ca.20908
- Schwab W, Bilgiçyildirim A, Funk RH. Microtopography of the autonomic nerves in the rat knee: a fluorescence microscopic study. Anat Rec. 1997;247(1):109–118. doi: 10.1002/(SICI)1097-0185(199701)247:1<109::AID-AR13>3.0.CO;2-T
- Wang Z, Liu B, Lin K, et al. The presence and degradation of nerve fibers in articular cartilage of neonatal rats. J Orthop Surg Res. 2022;17(1):331. doi: 10.1186/s13018-022-03221-2
- Sisask G, Bjurholm A, Ahmed M, et al. Ontogeny of sensory nerves in the developing skeleton. Anat Rec. 1995;243(2):234–240. doi: 10.1002/ar.1092430210
- Calvo W, Haas RJ. Die histogenese des knochenmarks der ratte: nervale versorgung, knochenmarkstroma und ihre beziehung zur blutzellbildung. Z Zellforsch. 1969;95:377–395. doi: 10.1007/BF00995211
- Nencini S, Ringuet M, Kim DH, et al. Mechanisms of nerve growth factor signaling in bone nociceptors and in an animal model of inflammatory bone pain. Mol Pain. 2017;13:1744806917697011. doi: 10.1177/1744806917697011
- Testa G, Cattaneo A, Capsoni S. Understanding pain perception through genetic painlessness diseases: the role of NGF and proNGF. Pharmacol Res. 2021;169:105662. doi: 10.1016/j.phrs.2021.105662
- Reichardt LF. Neurotrophin-regulated signalling pathways. Philos Trans R Soc Lond B Biol Sci. 2006;361(1473):1545–1564. doi: 10.1098/rstb.2006.1894
- Mukouyama YS, Shin D, Britsch S, et al. Sensory nerves determine the pattern of arterial differentiation and blood vessel branching in the skin. Cell. 2002;109(6):693–705. doi: 10.1016/s0092-8674(02)00757-2
- Tower RJ, Li Z, Cheng YH, et al. Spatial transcriptomics reveals a role for sensory nerves in preserving cranial suture patency through modulation of BMP/TGF-β signaling. Proc Natl Acad Sci USA. 2021;118(42):e2103087118. doi: 10.1073/pnas.2103087118
- Bonkowsky JL, Johnson J, Carey JC, et al. An infant with primary tooth loss and palmar hyperkeratosis: a novel mutation in the NTRK1 gene causing congenital insensitivity to pain with anhidrosis. Pediatrics. 2003;112(3):e237–e241. doi: 10.1542/peds.112.3.e237
- Frost CØ, Hansen RR, Heegaard AM. Bone pain: current and future treatments. Curr Opin Pharmacol. 2016;28:31–37. doi: 10.1016/j.coph.2016.02.007
- Oostinga D, Steverink JG, van Wijck AJM, et al. An understanding of bone pain: a narrative review. Bone. 2020;134:115272 doi: 10.1016/j.bone.2020.115272
- Mach DB, Rogers SD, Sabino MC, et al. Origins of skeletal pain: sensory and sympathetic innervation of the mouse femur. Neuroscience. 2002;113(1):155–166. doi: 10.1016/s0306-4522(02)00165-3
- Ivanusic JJ. Size, neurochemistry, and segmental distribution of sensory neurons innervating the rat tibia. J Comp Neurol. 2009;517(3):276–283. doi: 10.1002/cne.22160
- Jimenez-Andrade JM, Mantyh WG, Bloom AP, et al. A phenotypically restricted set of primary afferent nerve fibers innervate the bone versus skin: therapeutic opportunity for treating skeletal pain. Bone. 2010;46(2):306–313. doi: 10.1016/j.bone.2009.09.013
- Jimenez-Andrade JM, Martin CD, Koewler NJ, et al. Nerve growth factor sequestering therapy attenuates non-malignant skeletal pain following fracture. Pain. 2007;133:183–196. doi: 10.1016/j.pain.2007.06.016
- Castaneda-Corral G, Jimenez-Andrade JM, Bloom AP, et al. The majority of myelinated and unmyelinated sensory nerve fibers that innervate bone express the tropomyosin receptor kinase A. Neuroscience. 2011;178:196–207. doi: 10.1016/j.neuroscience.2011.01.039
- Ivanusic JJ. Molecular mechanisms that contribute to bone marrow pain. Front Neurol. 2017;8:458. doi: 10.3389/fneur.2017.00458
- Martin CD, Jimenez-Andrade JM, Ghilardi JR, et al. Organization of a unique net-like meshwork of CGRP+ sensory fibers in the mouse periosteum: implications for the generation and maintenance of bone fracture pain. Neurosci Lett. 2007;427(3):148–152. doi: 10.1016/j.neulet.2007.08.055
- Sayilekshmy M, Hansen RB, Delaissé JM, et al. Innervation is higher above bone remodeling surfaces and in cortical pores in human bone: lessons from patients with primary hyperparathyroidism. Sci Rep. 2019;9(1):5361. doi: 10.1038/s41598-019-41779-w
- Yoneda T, Hiasa M, Okui T, et al. Cancer-nerve interplay in cancer progression and cancer-induced bone pain. J Bone Miner Metab. 2023;41(3):415–427. doi: 10.1007/s00774-023-01401-6
- Ivanusic JJ, Sahai V, Mahns DA. The cortical representation of sensory inputs arising from bone. Brain Res. 2009;1269:47–53. doi: 10.1016/j.brainres.2009.03.001
- Cook AD, Christensen AD, Tewari D, et al. Immune cytokines and their receptors in inflammatory pain. Trends Immunol. 2018;39:240–255. doi: 10.1016/j.it.2017.12.003
- Denk F, Bennett DL, McMahon SB. Nerve growth factor and pain mechanisms. Annu Rev Neurosci. 2017;40:307–325. doi: 10.1146/annurev-neuro-072116-031121
- Ringe JD, Body JJ. A review of bone pain relief with ibandronate and other bisphosphonates in disorders of increased bone turnover. Clin Exp Rheumatol. 2007;25(5):766–774.
- Hiasa M, Okui T, Allette YM, et al. Bone pain induced by multiple myeloma is reduced by targeting V-ATPase and ASIC3. Cancer Res. 2017;77(6):1283–1295. doi: 10.1158/0008-5472.CAN-15-3545
- Sevcik MA, Luger NM, Mach DB, et al. Bone cancer pain: the effects of the bisphosphonate alendronate on pain, skeletal remodeling, tumor growth and tumor necrosis. Pain. 2004;111(1):169–180. doi: 10.1016/j.pain.2004.06.015
- Jimenez-Andrade JM, Ghilardi JR, Castañeda-Corral G, et al. Preventive or late administration of anti-NGF therapy attenuates tumor-induced nerve sprouting, neuroma formation, and cancer pain. Pain. 2011;152(11):2564–2574. doi: 10.1016/j.pain.2011.07.020
- Rapp AE, Kroner J, Baur S, et al. Analgesia via blockade of NGF/TrkA signaling does not influence fracture healing in mice. J Orthop Res. 2015;33(8):1235–1241. doi: 10.1002/jor.22892
- Li Z, Meyers CA, Chang L, et al. Fracture repair requires TrkA signaling by skeletal sensory nerves. J Clin Invest. 2019;129(12):5137–5150. doi: 10.1172/JCI128428
- Grills BL, Schuijers JA, Ward AR. Topical application of nerve growth factor improves fracture healing in rats. J Orthop Res. 1997;15(2):235–242. doi: 10.1002/jor.1100150212
- Wang L, Zhou S, Liu B, et al. Locally applied nerve growth factor enhances bone consolidation in a rabbit model of mandibular distraction osteogenesis. J Orthop Res. 2006;24(12):2238–2245. doi: 10.1002/jor.20269
- Mantyh PW. The neurobiology of skeletal pain. Eur J Neurosci. 2014;39(3):508–519. doi: 10.1111/ejn.12462
补充文件
