A Photometric Method for Measuring Ankle Dorsiflexion Reproducibility in Young Athletes

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

论证。足背屈是反映足部潜在功能能力的重要生物力学指标之一。对其进行定量评估在临床检查、判断儿童参与体育活动的适宜性及评估运动损伤风险方面具有重要意义。

目的:评估光度测量法在测量运动儿童足背屈角度方面的重现性,并与传统的量角器法进行比较。

材料与方法。纳入30名运动儿童(年龄为6–12岁),均无已知骨科疾病。由两名独立专家基于解剖定位点,分别采用量角器法与光度测量法测量足背屈角度。通过组内相关系数(intraclass correlation coefficient, ICC)评估两位专家测量结果的一致性。采用Bland–Altman图分析两种方法之间的一致性。

结果。量角器法测得的平均角度为17.15°,光度测量法为18.1°(统计学差异,t检验,p = 0.04)。光度测量法显示出更高的专家间一致性(ICC = 0.91),而量角器法为(ICC = 0.78)。

结论。光度测量法是一种可靠且重现性良好的足背屈角度测量工具,适用于运动儿童的临床评估与动态监测。

作者简介

Leonid V. Gorobets

H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery; Medical Home

Email: gorobetsleonid@gmail.com
ORCID iD: 0000-0001-9424-3713
俄罗斯联邦, Saint Petersburg; Rostov-on-Don

Andrey V. Sapogovskiy

H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery

Email: sapogovskiy@gmail.com
ORCID iD: 0000-0002-5762-4477
SPIN 代码: 2068-2102

MD, PhD, Cand. Sci. (Medicine)

俄罗斯联邦, Saint Petersburg

Evgenii V. Melchenko

H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery

Email: emelchenko@gmail.com
ORCID iD: 0000-0003-1139-5573
SPIN 代码: 1552-8550

MD, PhD, Cand. Sci. (Medicine)

俄罗斯联邦, Saint Petersburg

Aleksandr N. Kasev

H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery; Arkhangelsk Regional Children’s Clinical Hospital named after P.G. Vyzhletsov

Email: an.kasev@aodkb29.ru
ORCID iD: 0009-0006-0802-4949
SPIN 代码: 6193-3610
俄罗斯联邦, Saint Petersburg; Arkhangelsk

Vladimir M. Kenis

H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery

编辑信件的主要联系方式.
Email: kenis@mail.ru
ORCID iD: 0000-0002-7651-8485
SPIN 代码: 5597-8832

MD, PhD, Dr. Sci. (Medicine), Professor

俄罗斯联邦, Saint Petersburg

参考

  1. Kirby KA. Biomechanics of the normal and abnormal foot. J Am Podiatr Med Assoc. 2000;90(1):30–34. doi: 10.7547/87507315-90-1-30
  2. Postnikova A, Potekhina Y, Kurnikova A, et al. Features of joint mobility in skiers and skaters. Human. Sport. Medicine. 2019;19(1):29–35. doi: 10.14529/hsm190104 EDN: ZEHZDN
  3. Dimitrieva AY, Kenis VM, Klychkova IY, et al. Results of the first Russian Delphi survey on the diagnosis and treatment of flatfoot in children. Pediatric Traumatology, Orthopaedics and Reconstructive Surgery. 2023;11(1):49–66. doi: 10.17816/PTORS112465 EDN: CAHOCE
  4. Belyakova AM, Sereda AP, Samoilov AS. Experience of rehabilitation the athletes after surgical intervention on the Achilles tendon. Clinical Practice. 2017;8(2):72–80. doi: 10.17816/clinpract8272-80 EDN: YLYKNV
  5. Santos LLL, Generoso TO, Angeli LRA, et al. Idiopathic toe walking: What’s new? An integrative review. J Foot Ankle. 2024;18(1):21–30. doi: 10.30795/jfootankle.2024.v18.1764 EDN: VVTIJC
  6. Cerrillo-Sanchis J, Ricart-Luna B, Rodrigo-Mallorca D, et al. Relationship between ankle dorsiflexion range of motion and sprinting and jumping ability in young athletes. J Bodyw Mov Ther. 2024;39:43–49. doi: 10.1016/j.jbmt.2024.02.013 EDN: HEPNXO
  7. Repetyuk AD, Achkasov EE, Sereda AP, et al. Evaluation of indicators of goniometry of the ankle joint in the complex rehabilitation of athletes with peroneal tendinopathy. Sports Medicine: Science and Practice. 2022;12(2):40–45. doi: 10.47529/2223-2524.2022.2.4 EDN: DTNFSX
  8. Conley KA, Geist K, Shaw JN, et al. The effect of goniometric alignment on passive ankle dorsiflexion range of motion among patients following ankle arthrodesis or arthroplasty. Foot Ankle Spec. 2012;5(3):175–179. doi: 10.1177/1938640012444731
  9. Johansen M, Haslund-Thomsen H, Kristensen J, Skou ST. Photo-based range-of-motion measurement: reliability and concurrent validity in children with cerebral palsy. Pediatr Phys Ther. 2020;32(2):151–160. doi: 10.1097/PEP.0000000000000689 EDN: JXQRPO
  10. Blonna D, Zarkadas PC, Fitzsimmons JS, O’Driscoll SW. Validation of a photography-based goniometry method for measuring joint range of motion. J Shoulder Elbow Surg. 2012;21(1):29–35. doi: 10.1016/j.jse.2011.06.018
  11. Russo RR, Burn MB, Ismaily SK, et al. Is digital photography an accurate and precise method for measuring range of motion of the shoulder and elbow? J Orthop Sci. 2018;23(2):310–315. doi: 10.1016/j.jos.2017.11.016
  12. Verhaegen F, Ganseman Y, Arnout N, et al. Are clinical photographs appropriate to determine the maximal range of motion of the knee? Acta Orthop Belg. 2010;76(6):794–798.
  13. Rome K. Ankle joint dorsiflexion measurement studies. A review of the literature. J Am Podiatr Med Assoc. 1996;86(5):205–211. doi: 10.7547/87507315-86-5-205
  14. Gatt A, Chockalingam N. Clinical assessment of ankle joint dorsiflexion: a review of measurement techniques. J Am Podiatr Med Assoc. 2011;101(1):59–69. doi: 10.7547/1010059
  15. Konor MM, Morton S, Eckerson JM, Grindstaff TL. Reliability of three measures of ankle dorsiflexion range of motion. Int J Sports Phys Ther. 2012;7(3):279–287.
  16. Rastogi A, Agarwal A. Long-term outcomes of the Ponseti method for treatment of clubfoot: a systematic review. Int Orthop. 2021;45(10):2599–2608. doi: 10.1007/s00264-021-05189-w EDN: KOUPEB
  17. Almansoof HS, Nuhmani S, Muaidi Q. Role of ankle dorsiflexion in sports performance and injury risk: A narrative review. Electron J Gen Med. 2023;20(5):em521. doi: 10.29333/ejgm/13412 EDN: XWMUNY

补充文件

附件文件
动作
1. JATS XML
2. Fig. 2. An example of photometric estimation of the angle of dorsal flexion.

下载 (105KB)
3. Fig. 1. Landmarks for goniometer and marker placement: A, head of the fifth metatarsal bone; B, lowest point on the lateral surface of the foot; C, lateral malleolus; D, horizontal surface; and E, head of the fibula. Solid black line, line connecting points C and E; dashed black line, continuation of the previous line; and red line, line connecting points A and B. Image adapted with modifications from [DOI: 10.7547/87507315-86-5-205]. © Rome K., 1996. Licensed under CC-BY-NC 4.0.

下载 (66KB)
4. Fig. 3. The Bland–Altman plot illustrating agreement between goniometry and photometry.

下载 (102KB)

版权所有 © Эко-Вектор, 2025


 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».