基于聚己内酯的细胞负载植入体对兔颌骨骨缺损区再生过程影响的评估

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

论证。在现代再生医学中,开发用于骨组织缺损修复的个体化生物医学细胞产品具有重要意义。 此类产品通常由细胞成分、用于固定细胞并维持骨支撑功能的支架(scaffold)以及辅助成分构成。 in vitro实验无法评估该类构建体对骨组织再生过程及受体机体系统性反应的影响。

目的。确定基于聚己内酯、羟基磷灰石及牙髓干细胞的支架植入物在兔颌骨骨缺损区植入后的修复效果。

方法。研究选用苏联(俄罗斯)毛丝鼠兔(n=10),均在动物实验室条件下饲养,体重为3.5–4.5 kg,年龄为1–1.5岁。所有动物均拔除4颗牙齿(共40颗),并分为5组。于4个月后进行恢复结果的评估。为此,对植入区域进行了病理形态学研究,在苏木精–伊红染色切片中评估纤维化程度、炎症反应及骨组织重塑的表现,并通过普鲁士蓝染色分析经氧化铁纳米颗粒标记的植入细胞的分布特征。

结果。在植入区域内,支架(无论是否负载细胞)均可加速骨缺损的重塑及纤维化过程,且不形成粗大瘢痕。最佳的指标组合,即最低程度的炎症反应、骨组织重塑的最高阶段以及植入区结缔组织的成熟度,观察到于接受表面覆铜的聚己内酯支架并负载牙髓干细胞的实验组。

结论。所得结果证实,该方法在开发用于骨缺损修复的生物工程构建体方面具有良好的应用前景。

作者简介

Yuliya Dombrovskaya

North-Western State Medical University named after I.I. Mechnikov

编辑信件的主要联系方式.
Email: yuliya.dombrovskaya@szgmu.ru
ORCID iD: 0000-0001-7715-1008
SPIN 代码: 5551-8789

MD, Cand. Sci. (Medicine)

俄罗斯联邦, Saint Petersburg

Natella Enukashvily

North-Western State Medical University named after I.I. Mechnikov

Email: Natella.Enukashvili@szgmu.ru
ORCID iD: 0000-0002-5971-7917
SPIN 代码: 8161-3663

Cand. Sci. (Biology)

俄罗斯联邦, Saint Petersburg

Gleb Dubinenko

Tomsk Polytechnic University

Email: dubinenko@tpu.ru
ORCID iD: 0000-0001-9466-469X
SPIN 代码: 7129-6548
俄罗斯联邦, Tomsk

Sergei Tverdokhlebov

Tomsk Polytechnic University

Email: tverd@tpu.ru
ORCID iD: 0000-0002-2242-6358
SPIN 代码: 9005-9207

Cand. Sci. (Physics and Mathematics)

俄罗斯联邦, Tomsk

Elizaveta Rumyantseva

North-Western State Medical University named after I.I. Mechnikov

Email: lizarum2102@mail.ru
ORCID iD: 0009-0000-8118-0143
SPIN 代码: 3835-5803
俄罗斯联邦, Saint Petersburg

Arsalan Badaraev

Tomsk Polytechnic University

Email: adb6@tpu.ru
ORCID iD: 0000-0003-2800-7565
SPIN 代码: 7096-2340

Cand. Sci. (Engineering)

俄罗斯联邦, Tomsk

Varvara Bagaeva

North-Western State Medical University named after I.I. Mechnikov

Email: bagvar@mail.ru
ORCID iD: 0009-0008-5104-2872
SPIN 代码: 7510-6930
俄罗斯联邦, Saint Petersburg

Olga Kravets

North-Western State Medical University named after I.I. Mechnikov

Email: Olga.Kravetc@szgmu.ru
ORCID iD: 0009-0008-3252-0605
SPIN 代码: 4278-7900

MD, Cand. Sci. (Medicine)

俄罗斯联邦, Saint Petersburg

Anton Sakhanov

North-Western State Medical University named after I.I. Mechnikov

Email: anton.sakhanov@szgmu.ru
ORCID iD: 0000-0003-4217-6330
SPIN 代码: 8595-3308

MD, Cand. Sci. (Medicine)

俄罗斯联邦, Saint Petersburg

Olesya Dosaeva

North-Western State Medical University named after I.I. Mechnikov

Email: Olesya.dosaeva.99@mail.ru
ORCID iD: 0009-0000-6508-9518
俄罗斯联邦, Saint Petersburg

Sefiyat Bukarova

North-Western State Medical University named after I.I. Mechnikov

Email: Sofiya.bukarova@mail.ru
ORCID iD: 0009-0005-1016-9306
俄罗斯联邦, Saint Petersburg

Mikhail Kotov

North-Western State Medical University named after I.I. Mechnikov

Email: drmikhailkotov@gmail.com
ORCID iD: 0009-0000-6655-6181
SPIN 代码: 5483-9025
俄罗斯联邦, Saint Petersburg

Natalia Semenova

Almazov National Medical Research Center; Russian Research Institute of Hematology and Transfusiology Federal Medical and Biological Agency

Email: semenova@mlc-lab.ru
ORCID iD: 0000-0003-4069-0678
SPIN 代码: 3566-4723

Cand. Sci. (Biology)

俄罗斯联邦, Saint Petersburg; Saint Petersburg

Yury Novosad

H. Turner National Medical Research Center for Children’s Orthopedics and Trauma Surgery

Email: novosad.yur@yandex.ru
ORCID iD: 0000-0002-6150-374X
SPIN 代码: 3001-1467
俄罗斯联邦, Saint Petersburg

Platon Safonov

H. Turner National Medical Research Center for Children’s Orthopedics and Trauma Surgery

Email: safo165@gmail.com
ORCID iD: 0009-0006-7554-1292
SPIN 代码: 6088-1297

MD

俄罗斯联邦, Saint Petersburg

Sergei Vissarionov

H. Turner National Medical Research Center for Children’s Orthopedics and Trauma Surgery

Email: vissarionovs@gmail.com
ORCID iD: 0000-0003-4235-5048
SPIN 代码: 7125-4930

MD, Dr. Sci. (Medicine), Professor, Corresponding Member of RAS

俄罗斯联邦, Saint Petersburg

Mikhail Semenov

North-Western State Medical University named after I.I. Mechnikov

Email: mikhail.semenov@szgmu.ru
ORCID iD: 0000-0002-1295-1554
SPIN 代码: 2603-1085

MD, Dr. Sci. (Medicine), Professor

俄罗斯联邦, Saint-Petersburg

Alexey Silin

North-Western State Medical University named after I.I. Mechnikov

Email: a.silin@szgmu.ru
ORCID iD: 0000-0002-3533-5615
SPIN 代码: 4956-6941

MD, Dr. Sci. (Medicine), Professor

俄罗斯联邦, Saint Petersburg

参考

  1. Neizberg DM, Silina ES, Pachkoria MG. Application of barrier membranes made of acellular collagen matrix for alveolar ridge reconstruction with guided tissue regeneration method. Medical Alphabet. 2019;3(23):24–29. doi: 10.33667/2078-5631-2019-3-23(398)-24-29 EDN: QCKQHK
  2. Ashammakhi N, Ahadian S, Xu C, et al. Bioinks and bioprinting technologies to make heterogeneous and biomimetic tissue constructs. Mater Today Bio. 2019;1:100008. doi: 10.1016/j.mtbio.2019.100008 EDN: ACAMKF
  3. Chamieh F, Collignon AM, Coyac BR, et al. Accelerated craniofacial bone regeneration through dense collagen gel scaffolds seeded with dental pulp stem cells. Sci Rep. 2016;6:38814. doi: 10.1038/srep38814
  4. Ebrahimi M, Botelho M. Adult stem cells of orofacial origin: current knowledge and limitation and future trend in regenerative medicine. Tissue Eng Regen Med. 2017;14(6):719–733. doi: 10.1007/s13770-017-0078-6 EDN: YDUIQH
  5. Zhang Q, Wu W, Qian C, et al. Advanced biomaterials for repairing and reconstruction of mandibular defects. Mater Sci Eng C. 2019;103:109858. doi: 10.1016/j.msec.2019.109858 EDN: RNHEUT
  6. Filippi M, Born G, Chaaban M, Scherberich A. Natural polymeric scaffolds in bone regeneration. Front Bioeng Biotechnol. 2020;8:474. doi: 10.3389/fbioe.2020.00474 EDN: ERHINQ
  7. Sadilina SV. Justification of various methods of bone grafting of the alveolar process of the upper jaw and the alveolar part of the lower jaw in preparation for dental prosthetics. [dissertation abstract]. Saint Petersburg: S.M. Kirov Military Medical Academy; 2019. 26 p. (In Russ.)
  8. Lobov A, Malashicheva A. Osteogenic differentiation: a universal cell program of heterogeneous mesenchymal cells or a similar extracellular matrix mineralizing phenotype? Biol Commun. 2022;67(1):32–48. doi: 10.21638/spbu03.2022.104 EDN: TODZPR
  9. Varshney S, Dwivedi A, Pandey V. Efficacy of autologous stem cells for bone regeneration during endosseous dental implants insertion - A systematic review of human studies. J Oral Biol Craniofacial Res. 2020;10(4):347–355. doi: 10.1016/j.jobcr.2020.06.007 EDN: TWIZCY
  10. Grimm WD, Dannan A, Giesenhagen B, et al. Translational research: palatal-derived ecto-mesenchymal stem cells from human palate: a new hope for alveolar bone and cranio-facial bone reconstruction. Int J Stem Cells. 2014;7(1):23–29. doi: 10.15283/ijsc.2014.7.1.23 EDN: SGLDFV
  11. Kotova AV, Lobov AA, Dombrovskaya JA, et al. Comparative analysis of dental pulp and periodontal stem cells: Differences in morphology, functionality, osteogenic differentiation and proteome. Biomedicines. 2021;9(11):1606. doi: 10.3390/biomedicines9111606 EDN: OEKIRF
  12. Lobov A, Kuchur P, Khizhina A, et al. Mesenchymal cells retain the specificity of embryonal origin during osteogenic differentiation. Stem Cells. 2023;42(1):76–89. doi: 10.1093/stmcls/sxad081 EDN: WEHYQU
  13. Baldión PA, Velandia-Romero ML, Castellanos JE. Odontoblast-like cells differentiated from dental pulp stem cells retain their phenotype after subcultivation. Int J Cell Biol. 2018;2018(1):6853189. doi: 10.1155/2018/6853189
  14. Dombrovskaya YA, Enukashvily NI, Kotova AV, et al. Fibrin scaffolds containing dental pulp stem cells for the repair of periodontal bone defects. Transl Med. 2020;7(1):59–69. doi: 10.18705/2311-4495-2020-7-1-59-69 EDN: UKQGFU
  15. Sharpe PT. Dental mesenchymal stem cells. Development. 2016;143(13):2273–2280. doi: 10.1242/dev.134189 EDN: WQEXLX
  16. Abdolahinia ED, Khatibi SMH, Sharifi S, Dizaj SM. Dental tissue engineering by neural differentiation of dental stem cells and nano-systems: A review. Open Dent J. 2023;17(1). doi: 10.2174/0118742106252539230920071742 EDN: LXKZCJ
  17. Enukashvily NI, Dombrovskaya JA, Kotova AV, et al. Fibrin glue implants seeded with dental pulp and periodontal ligament stem cells for the repair of periodontal bone defects: A preclinical study. Bioengineering. 2021;8(6):75. doi: 10.3390/bioengineering8060075 EDN: OBNQIG
  18. Ramezanifard R, Seyedjafari E, Ardeshirylajimi A, Soleimani M. Biomimetic scaffolds containing nanofibers coated with willemite nanoparticles for improvement of stem cell osteogenesis. Mater Sci Eng C. 2016;62:398–406. doi: 10.1016/j.msec.2016.01.089 EDN: YEIZJL
  19. Mishanin AI, Panina AN, Bolbasov EN, et al. Biocompatibility of electrospinning polycaprolactone, polylactic acid, their blends and copolymers scaffolds in in vitro tests if mesenchyme stem cells. Transl Med. 2021;8(5):38–49. doi: 10.18705/2311-4495-2021-8-5-38-49 EDN: EYGHLM
  20. Yaseri R, Fadaie M, Mirzaei E, et al. Surface modification of polycaprolactone nanofibers through hydrolysis and aminolysis: a comparative study on structural characteristics, mechanical properties, and cellular performance. Sci Rep. 2023;13(1):9434. doi: 10.1038/s41598-023-36563-w EDN: VYASTF
  21. Paim A, Braghirolli DI, Cardozo NSM, et al. Human dental pulp stem cell adhesion and detachment in polycaprolactone electrospun scaffolds under direct perfusion. Brazilian J Med Biol Res. 2018;51(5):e6754. doi: 10.1590/1414-431x20186754
  22. Yudintseva NM, Nashchekina YA, Shevtsov MA, et al. Small-diameter vessels reconstruction using cell tissue-engineering graft based on the polycaprolactone. Cell and Tissue Biology. 2021;63(3):281–291. doi: 10.31857/S0041377121030111 EDN: PMGNLY
  23. Yan Q, Dong H, Su J, et al. A review of 3d printing technology for medical applications. Engineering. 2018;4(5):729–742. doi: 10.1016/j.eng.2018.07.021
  24. Oktavia Ningrum E, Safari Azhar I, Ciptonugroho W, et al. A polycaprolactone-hydroxyapatite (PCL/HAp) scaffold, prepared from blue crab shell (Portunus Pelagicus) waste, for bone substitution applications. ChemistrySelect. 2024;9(24):e202303971. doi: 10.1002/slct.202303971 EDN: BAIVOG
  25. Wang FZ, Liu S, Gao M, et al. 3D-printed polycaprolactone/hydroxyapatite bionic scaffold for bone regeneration. Polymers (Basel). 2025;17(7):858. doi: 10.3390/polym17070858 EDN: RXBNWL
  26. Nimiritsky PP, Sagaradze GD, Efimenko AY, et al. The stem cell niche. Cell and Tissue Biology. 2018;60(8):575–586. doi: 10.31116/tsitol.2018.08.01 EDN: XZJBED
  27. Sych LS, Reade PC. Heterochrony of tooth root initiation in rabbits. J Evol Biochem Physiol. 1990;3(3-4):283–293. doi: 10.1046/j.1420-9101.1990.3030283.x EDN: BBVQAN
  28. Capello V. Rabbit and Rodent Dentistry. 2005. 276 p.
  29. Bocharov VS, Dubinenko GE, Popkov DA, et al. Solvent/non-solvent treatment as a method for surface coating of poly(ε-caprolactone) 3D-printed scaffolds with hydroxyapatite. Genij Ortop. 2023;29(6):585–590. doi: 10.18019/1028-4427-2023-29-6-585-590 EDN: NGDFNX
  30. Alksne M, Kalvaityte M, Simoliunas E, et al. In vitro comparison of 3D printed polylactic acid/hydroxyapatite and polylactic acid/bioglass composite scaffolds: Insights into materials for bone regeneration. J Mech Behav Biomed Mater. 2020;104:103641. doi: 10.1016/j.jmbbm.2020.103641 EDN: DZWAZP
  31. Prikhodko EM, Supilnikova OV, Maslennikova IV, et al. Creation of a cell culture bank: experience of the Pokrovsky Cell Technology Center. Cardiovasc Ther Prev. 2024;23(11):97–107. doi: 10.15829/1728-8800-2024-4173 EDN: KVZRMX
  32. Koung Ngeun S, Shimizu M, Kaneda M. Characterization of rabbit mesenchymal stem/stromal cells after cryopreservation. Biology (Basel). 2023;12(10):1312. doi: 10.3390/biology12101312 EDN: DJVVHM
  33. Enukashvily NI, Kotkas IE, Bogolyubov DS, et al. Detection of cells containing internalized multidomain magnetic iron (II, III) oxide nanoparticles using the magnetic resonance imaging method. Tech Phys. 2020;65(9):1360–1369. doi: 10.1134/S1063784220090145 EDN: OCCGVS
  34. Dias JR, Sousa A, Augusto A, et al. Electrospun Polycaprolactone (PCL) degradation: an in vitro and in vivo study. Polymers (Basel). 2022;14(16):1–15. doi: 10.3390/polym14163397 EDN: ULKOXY
  35. Kim JH, Park CH, Perez RA, et al. Advanced biomatrix designs for regenerative therapy of periodontal tissues. J Dent Res. 2014;93(12):1203–1211. doi: 10.1177/0022034514540682 EDN: UOOLOL
  36. Ramona MD, Diana H, Monica V, Minodora D. Influence of scaffold structure and biomimetic properties on adipose stem cell homing in personalized reconstructive medicine. Biomimetics. 2025:10(7):438. doi: 10.3390/biomimetics10070438
  37. Dombrovskaya YA, Enukashvily NI, Silin AV. Regenerative bioengineering methods and additive technologies in dentistry. Politekh-Press; 2024. 101 p. EDN: KSIHDG
  38. Zeng WY, Ning Y, Huang X. Advanced technologies in periodontal tissue regeneration based on stem cells: Current status and future perspectives. J Dent Sci. 2021;16(1):501–507. doi: 10.1016/j.jds.2020.07.008 EDN: BSUSDP
  39. Díaz E, Sandonis I, Valle MB. In vitro degradation of poly(caprolactone)/nHA composites. J Nanomater. 2014;2014(1):802435. doi: 10.1155/2014/802435
  40. Hannink G, Arts JJC. Bioresorbability, porosity and mechanical strength of bone substitutes: What is optimal for bone regeneration? Injury. 2011;42(S2):S22–S25. doi: 10.1016/j.injury.2011.06.008
  41. Li S, Meng L, Zhu Y, et al. Copper ion-loaded surface charge-convertible coatings on implant: Antibacterial and tunable cell adhesion properties. Chem Eng J. 2023;478:147439. doi: 10.1016/j.cej.2023.147439 EDN: OUBDYL
  42. Le Blanc K, Tammik C, Rosendahl K, et al. HLA expression and immunologic properties of differentiated and undifferentiated mesenchymal stem cells. Exp Hematol. 2003;31(10):890–896. doi: 10.1016/s0301-472x(03)00110-3
  43. Rawat S, Srivastava P, Mohanty S, et al. A comparative study on immunomodulatory potential of tissue specific hMSCs: Role of HLA-G. IOSR J Dent Med Sci. 2018;17(6):32–40. doi: 10.9790/0853-1706143240

补充文件

附件文件
动作
1. JATS XML

版权所有 © Эко-Вектор, 2025


 


Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).