分娩期颈椎损伤在特发性脊柱侧弯发病机制中的作用:神经学与生物力学因素的整合文献综述

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

特发性脊柱侧弯仍是儿童和青少年中最常见且最为复杂的骨科疾病之一。尽管遗传、激素及环境因素在其发生发展中的作用已得到广泛认可,但在生命早期启动脊柱畸形形成的初始触发机制仍存在争议。本文分析了国际文献中关于分娩期颈椎损伤作为遗传易感个体发生特发性脊柱侧弯潜在诱发因素的研究数据。通过对PubMed、Google Scholar、eLibrary及CyberLeninka数据库中2010–2024年发表的相关文献进行系统检索与分析,重点关注探讨复杂分娩过程、颈椎生物力学特征及其与后续脊柱畸形发生发展之间关系的研究。本综述整合并分析了当前关于分娩期颅椎交界区损伤在特发性脊柱侧弯发病机制中潜在作用的研究证据,综合了神经学、生物力学及遗传学等多方面因素。研究结果表明,分娩过程中作用于颈椎的机械因素(如臀位分娩、产程过快或过长、使用产科助产器械)可能导致硬膜结构微损伤、脑干缺血以及网状脊髓束功能障碍。这些改变可引起肌张力的不对称,在青春期快速生长及遗传易感背景下,最终发展为稳定的三平面脊柱畸形。作者提出了一种整合性的发病机制级联模型,用于解释特发性脊柱侧弯的潜伏期及其后续进展过程。分娩期颈椎损伤被认为是特发性脊柱侧弯发生的重要但并非唯一的触发因素。综合分析围产期病史、 开展早期遗传筛查,并对高风险儿童进行颅椎交界区的超声监测,可能为制定特发性脊柱侧弯的一级预防策略提供理论依据。

作者简介

Marina Vinderlikh

Mari State University

编辑信件的主要联系方式.
Email: vinderlikh@yandex.ru
ORCID iD: 0000-0002-9855-548X
SPIN 代码: 9943-2150

MD, Cand. Sci. (Medicine)

俄罗斯联邦, Yoshkar-Ola

Sergei Валентинович Vissarionov

H. Turner National Medical Research Center for Children’s Orthopedics and Trauma Surgery

Email: vissarionovs@gmail.com
ORCID iD: 0000-0003-4235-5048
SPIN 代码: 7125-4930

MD, Dr. Sci. (Medicine), Professor, Corresponding Member of RAS

俄罗斯联邦, Saint Petersburg

参考

  1. Burwell RG, Clark EM, Dangerfield PH, et al. Adolescent idiopathic scoliosis (AIS): a multifactorial cascade concept for pathogenesis and embryonic origin. Scoliosis Spinal Disord. 2016;11:8. doi: 10.1186/s13013-016-0063-1 EDN: ASGDBJ
  2. Takahashi Y, Kou I, Takahashi A, et al. A genome-wide association study identifies common variants near LBX1 associated with adolescent idiopathic scoliosis. Nat Genet. 2011;43(12):1237–1240. doi: 10.1038/ng.974
  3. Ogura Y, Kou I, Miura S, et al. A functional SNP in BNC2 is associated with adolescent idiopathic scoliosis. Am J Hum Genet. 2015;97(2):337–342. doi: 10.1016/j.ajhg.2015.06.012
  4. Grauers A, Einarsdottir E, Gerdhem P. Genetics and pathogenesis of idiopathic scoliosis. Scoliosis Spinal Disord. 2016;11:45. doi: 10.1186/s13013-016-0105-8 EDN: YHWBRJ
  5. Gutmann G. Birth injury of the cervical spine as the cause for the development of scoliosis. Manuelle Medizin. 1987;25:5–9.
  6. Glagolev NV. Scoliotic spine deformity in children and adolescents associated with the craniovertebral junction pathology. Burdenko’s Journal of Neurosurgery. 2014;78(6):80–84. doi: 10.17116/neiro201478680-84 EDN: TLNXDP
  7. Chu WC, Man GC, Lam WW, et al. A detailed morphologic and functional magnetic resonance imaging study of the craniocervical junction in adolescent idiopathic scoliosis. Spine (Phila Pa 1976). 2007;32(15):1667–1674. doi: 10.1097/BRS.0b013e318074d539
  8. Royo-Salvador MB, Fiallos-Rivera MV, Villavicencio P. Neuro-cranio-vertebral syndrome related to coccygeal dislocation: a preliminary study. World Neurosurg X. 2023;21:100252. doi: 10.1016/j.wnsx.2023.100252
  9. Mao G, Kopparapu S, Jin Y, et al. Craniocervical instability in patients with Ehlers-Danlos syndrome: controversies in diagnosis and management. Spine J. 2022;22(12):1944–1952. doi: 10.1016/j.spinee.2022.08.008 EDN: KRFQWV
  10. Vorotyntceva NS, Nikulshina-Zhikina LG, Kurtceva ES. Radiodiagnostics of perinatal neck injuries in newborns and preschool children. Humans and Their Health. 2015;(4):13–19. EDN: VJKGBH
  11. Lin CC, Lu TW, Wang TM, et al. In vivo three-dimensional intervertebral kinematics of the subaxial cervical spine during seated axial rotation and lateral bending via a fluoroscopy-to-CT registration approach. J Biomech. 2014;47(13):3310–3317. doi: 10.1016/j.jbiomech.2014.08.014
  12. Michel C, Dijanic C, Abdelmalek G, et al. Upper cervical spine instability systematic review: a bibliometric analysis of the 100 most influential publications. J Spine Surg. 2022;8(2):266–275. doi: 10.21037/jss-21-132 EDN: YXWYWY
  13. Chu WC, Lam WW, Chan YL, et al. Relative shortening and functional tethering of spinal cord in adolescent idiopathic scoliosis?: study with multiplanar reformat magnetic resonance imaging and somatosensory evoked potential. Spine (Phila Pa 1976). 2006;31(1):E19–E25. doi: 10.1097/01.brs.0000193892.20764.51
  14. Boere-Boonekamp MM, van der Linden-Kuiper LT. Positional preference: prevalence in infants and follow-up after two years. Pediatrics. 2001;107(2):339–343. doi: 10.1542/peds.107.2.339 EDN: DLMPTJ
  15. Hausmann ON, Böni T, Pfirrmann CW, et al. Preoperative radiological and electrophysiological evaluation in 100 adolescent idiopathic scoliosis patients. Eur Spine J. 2003;12(5):501–506. doi: 10.1007/s00586-003-0568-1 EDN: ESSCAF
  16. Lu Y, Chen C, Kallakuri S, et al. Neurophysiological and biomechanical characterization of goat cervical facet joint capsules. J Orthop Res. 2005;23(4):779–787. doi: 10.1016/j.orthres.2005.01.002
  17. Cronin DS. Finite element modeling of potential cervical spine pain sources in neutral position low speed rear impact. J Mech Behav Biomed Mater. 2014;33:55–66. doi: 10.1016/j.jmbbm.2013.01.006
  18. Biedermann H. Manual therapy in children: proposals for an etiologic model. J Manipulative Physiol Ther. 2005;28(3):e1–e15. doi: 10.1016/j.jmpt.2005.02.011
  19. Kudryavtseva NA, Lobanova LV. Specific features of cerebral hemodynamics in children under school age with natal injury consequences depending on the presence and level of cervical spine involvement. Genius of Orthopedics. 2010;(3):48–53. EDN: MTYNOR
  20. Frymann V. Relation of disturbances of craniosacral mechanisms to symptomatology of the newborn: study of 1,250 infants. J Am Osteopath Assoc. 1966;65(10):1059–1075.
  21. Biedermann H. Kinematic imbalances due to suboccipital strain in newborns. J Manual Med. 1992;6(5):151–156.
  22. Fotter R, Sorantin E, Schneider U, et al. Ultrasound diagnosis of birth-related spinal cord trauma: neonatal diagnosis and follow-up and correlation with MRI. Pediatr Radiol. 1994;24(4):241–244. doi: 10.1007/BF02015444 EDN: HHSTSN
  23. Janusz P, Tokłowicz M, Andrusiewicz M, et al. Association of LBX1 gene methylation level with disease severity in patients with idiopathic scoliosis: study on deep paravertebral muscles. Genes. 2022;13(9):1556. doi: 10.3390/genes13091556 EDN: EXSPAQ
  24. Henderson FC, Austin C, Benzel E, et al. Neurological and spinal manifestations of the Ehlers-Danlos syndromes. Am J Med Genet C Semin Med Genet. 2017;175(1):195–211. doi: 10.1002/ajmg.c.31549
  25. Mamonova EY. Clinical and hemodynamic disorders in adolescents with vertebrogenic syndrome of the vertebral artery. Spine Surgery. 2006;(3):68–70. (In Russ.)
  26. Koura G, Elshiwi AMF, Reddy RS, et al. Proprioceptive deficits and postural instability in adolescent idiopathic scoliosis: a comparative study of balance control and key predictors. Front Pediatr. 2025;13:1595125. doi: 10.3389/fped.2025.1595125
  27. Ng PTT, Claus A, Izatt MT, et al. Is spinal neuromuscular function asymmetrical in adolescents with idiopathic scoliosis compared to those without scoliosis?: a narrative review of surface EMG studies. J Electromyogr Kinesiol. 2022;63:102640. doi: 10.1016/j.jelekin.2022.102640 EDN: YYMHQE
  28. Stokes IA. Mechanical modulation of spinal growth and progression of adolescent scoliosis. Stud Health Technol Inform. 2008;135:75–83.
  29. Liu C, Li P, Ao X, et al. Clusterin negatively modulates mechanical stress-mediated ligamentum flavum hypertrophy through TGF-β1 signaling. Exp Mol Med. 2022;54(9):1549–1562. doi: 10.1038/s12276-022-00849-2 EDN: VUBFRX
  30. Bundscherer F, Freundl K, Lindner R, Richter K. Ultrasound diagnosis of birth trauma lesion of the cervical spine. Monatsschr Kinderheilkd. 1993;141(7):581–583. (In German.)
  31. Wang MY, Hoh DJ, Leary SP, et al. High rates of neurological improvement following severe traumatic pediatric spinal cord injury. Spine. 2004;29(13):1493–1497. doi: 10.1097/01.brs.0000129026.03194.0f
  32. Cheng JC, Au AW. Infantile torticollis: a review of 624 cases. J Pediatr Orthop. 1994;14(6):802–808.
  33. Zharova EY, Winderlich ME. Neurological status in children with scoliotic spinal deformity. Modern Science: Current Problems of Theory and Practice. Series: Natural and Technical Sciences. 2018;(5):149–153. EDN: XWASUP
  34. Horne JP, Flannery R, Usman S. Adolescent idiopathic scoliosis: diagnosis and management. Am Fam Physician. 2014;89(3):193–198.
  35. Porter RW. Idiopathic scoliosis: the relation between the vertebral canal and the vertebral bodies. Spine (Phila Pa 1976). 2000;25(11):1360–1366. doi: 10.1097/00007632-200006010-00007
  36. Zheng S, Zhou H, Gao B, et al. Estrogen promotes the onset and development of idiopathic scoliosis via disproportionate endochondral ossification of the anterior and posterior column in a bipedal rat model. Exp Mol Med. 2018;50(11):1–11. doi: 10.1038/s12276-018-0161-7
  37. Ito I, Hanyu A, Wayama M, et al. Estrogen inhibits transforming growth factor beta signaling by promoting Smad2/3 degradation. J Biol Chem. 2010;285(19):14747–14755. doi: 10.1074/jbc.M109.093039
  38. Nowak R, Kwiecien M, Tkacz M, et al. Transforming growth factor-beta (TGF-β) signaling in paravertebral muscles in juvenile and adolescent idiopathic scoliosis. Biomed Res Int. 2014;2014:594287. doi: 10.1155/2014/594287 EDN: USWHQB
  39. Gómez Cristancho DC, Jovel Trujillo G, Manrique IF, et al. Neurological mechanisms involved in idiopathic scoliosis. Systematic review of the literature. Neurocirugia. 2023;34(1):1–11. doi: 10.1016/j.neucie.2022.02.009 EDN: WCURPT
  40. Paramento M, Passarotto E, Maccarone MC, et al. Neurophysiological, balance and motion evidence in adolescent idiopathic scoliosis: a systematic review. PLoS One. 2024;19(5):e0303086. doi: 10.1371/journal.pone.0303086 EDN: NMNXNN
  41. Kong Y, Shi L, Hui SC, et al. Variation in anisotropy and diffusivity along the medulla oblongata and the whole spinal cord in adolescent idiopathic scoliosis: a pilot study using diffusion tensor imaging. Am J Neuroradiol. 2014;35(8):1621–1627. doi: 10.3174/ajnr.A3912
  42. Vongsirinavarat M, Kao-Ngampanich P, Sinsurin K. Electromyography of paraspinal muscles during self-corrective positions in adolescent idiopathic scoliosis. J Back Musculoskelet Rehabil. 2024;37(1):165–173. doi: 10.3233/BMR-230055 EDN: KPJSHJ
  43. Marin L, Kawczyński A, Carnevale Pellino V, et al. Displacement of centre of pressure during rehabilitation exercise in adolescent idiopathic scoliosis patients. J Clin Med. 2021;10(13):2837. doi: 10.3390/jcm10132837 EDN: RFITRT
  44. Hawasli AH, Hullar TE, Dorward IG. Idiopathic scoliosis and the vestibular system. Eur Spine J. 2015;24(2):227–233. doi: 10.1007/s00586-014-3701-4 EDN: AFLXLC
  45. Xu J, Chen M, Wang X, et al. Biomechanical changes in adolescent idiopathic scoliosis during walking: a protocol for systematic review and meta-analysis. Medicine. 2023;102(49):e36528. doi: 10.1097/MD.0000000000036528
  46. Jia S, Lin L, Yang H, et al. The influence of the rib cage on the static and dynamic stability responses of the scoliotic spine. Sci Rep. 2020;10(1):16916. doi: 10.1038/s41598-020-73881-9 EDN: WSMZEK
  47. Kouwenhoven JW, Castelein RM. The pathogenesis of adolescent idiopathic scoliosis: review of the literature. Spine. 2008;33(26):2898–2908. doi: 10.1097/BRS.0b013e3181891751
  48. Burwell RG, Dangerfield PH, Freeman BJ. Etiologic theories of idiopathic scoliosis. Somatic nervous system and the NOTOM escalator concept as one component in the pathogenesis of adolescent idiopathic scoliosis. Stud Health Technol Inform. 2008;140:208–217.
  49. Fan Y, To MK, Yeung EHK, et al. Electromyographic discrepancy in paravertebral muscle activity predicts early curve progression of untreated adolescent idiopathic scoliosis. Asian Spine J. 2023;17(5):922–932. doi: 10.31616/asj.2023.0199 EDN: HWUQZH
  50. Cheung J, Halbertsma JP, Veldhuizen AG, et al. A preliminary study on electromyographic analysis of the paraspinal musculature in idiopathic scoliosis. Eur Spine J. 2005;14(2):130–137. doi: 10.1007/s00586-004-0780-7 EDN: FYCWBX
  51. Zabjek KF, Leroux MA, Coillard C, et al. Evaluation of segmental postural characteristics during quiet standing in control and idiopathic scoliosis patients. Clin Biomech. 2005;20(5):483–490. doi: 10.1016/j.clinbiomech.2005.01.003
  52. Gum JL, Asher MA, Burton DC, et al. Transverse plane pelvic rotation in adolescent idiopathic scoliosis: primary or compensatory? Eur Spine J. 2007;16(10):1579–1586. doi: 10.1007/s00586-007-0400-4 EDN: UEQCEP
  53. Akalu Y, Frazer AK, Howatson G, et al. Identifying the role of the reticulospinal tract for strength and motor recovery: a scoping review of nonhuman and human studies. Physiol Rep. 2023;11(14):e15765. doi: 10.14814/phy2.15765 EDN: TKVZLC
  54. Grivas TB, Savvidou O, Binos S, et al. Morphometric characteristics of the thoracοlumbar and lumbar vertebrae in the Greek population: a computed tomography-based study on 900 vertebrae-”Hellenic Spine Society (HSS) 2017 Award Winner”. Scoliosis Spinal Disord. 2019;14:2. doi: 10.1186/s13013-019-0176 EDN: CHWMHN
  55. Gould SL, Cristofolini L, Davico G, et al. Computational modelling of the scoliotic spine: a literature review. Int J Numer Method Biomed Eng. 2021;37(10):e3503. doi: 10.1002/cnm.3503 EDN: MNJYDB
  56. Stokes IA, Burwell RG, Dangerfield PH, et al. Biomechanical spinal growth modulation and progressive adolescent scoliosis-a test of the ‘vicious cycle’ pathogenetic hypothesis: summary of an electronic focus group debate of the IBSE. Scoliosis. 2006;1:16. doi: 10.1186/1748-7161-1-16
  57. Donzelli S, Poma S, Balzarini L, et al. State of the art of current 3-D scoliosis classifications: a systematic review from a clinical perspective. J Neuroeng Rehabil. 2015;12:91. doi: 10.1186/s12984-015-0083-8 EDN: LXMCXB
  58. Du Q, Zhou X, Negrini S, et al. Scoliosis epidemiology is not similar all over the world: a study from a scoliosis school screening on Chongming Island (China). BMC Musculoskelet Disord. 2016;17:303. doi: 10.1186/s12891-016-1140-6 EDN: VJGOCX
  59. Moreau A, Wang DS, Forget S, et al. Melatonin signaling dysfunction in adolescent idiopathic scoliosis. Spine. 2004;29(16):1772–1781. doi: 10.1097/01.brs.0000134567.52303.1a
  60. Wu JZ, Wu WH, He LJ, et al. Effect of melatonin and calmodulin in an idiopathic scoliosis model. Biomed Res Int. 2016;2016:8460291. doi: 10.1155/2016/8460291
  61. Wang Q, Wang C, Hu W, et al. Disordered leptin and ghrelin bioactivity in adolescent idiopathic scoliosis (AIS): a systematic review and meta-analysis. J Orthop Surg Res. 2020;15(1):502. doi: 10.1186/s13018-020-01988-w EDN: CXAOXA
  62. Wang YJ, Yu HG, Zhou ZH, et al. Leptin receptor metabolism disorder in primary chondrocytes from adolescent idiopathic scoliosis girls. Int J Mol Sci. 2016;17(7):1160. doi: 10.3390/ijms17071160
  63. Alves ÁLL, Nozaki AM, Polido CBA, et al. Breech birth care: Number 1 – 2024. Rev Bras Ginecol Obstet. 2024;46:e-rbgofps1. doi: 10.61622/rbgo/2024FPS01
  64. Gross MK, Dottori M, Goulding M. Lbx1 specifies somatosensory association interneurons in the dorsal spinal cord. Neuron. 2002;34(4):535–549. doi: 10.1016/s0896-6273(02)00690-6
  65. Xu JF, Yang GH, Pan XH, et al. Association of GPR126 gene polymorphism with adolescent idiopathic scoliosis in Chinese populations. Genomics. 2015;105(2):101–107. doi: 10.1016/j.ygeno.2014.11.009 EDN: YBAGSH

补充文件

附件文件
动作
1. JATS XML

版权所有 © Эко-Вектор, 2025

Creative Commons License
此作品已接受知识共享署名-非商业性使用-禁止演绎 4.0国际许可协议的许可。
 


Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).