The steroid metabolism exploration for the diagnosis of Connshing syndrome
- 作者: Paltsman Z.V.1, Shustov S.B.1, Vorokhobina N.V.1, Kalugina V.V.1, Velikanova L.I.1, Kuznetsova A.V.1, Galakhova R.K.1
-
隶属关系:
- North-Western State Medical University named after I.I. Mechnikov
- 期: 卷 16, 编号 4 (2024)
- 页面: 64-73
- 栏目: Original research
- URL: https://journal-vniispk.ru/vszgmu/article/view/276652
- DOI: https://doi.org/10.17816/mechnikov636729
- ID: 276652
如何引用文章
详细
BACKGROUND: Reports of the synchronous glucocorticoid-mineralocorticoid activity in patients with Cushing’s syndrome and primary hyperaldosteronism have been found in the literature for fifty years, but there are few evidence-based studies on this issue.
AIM: To study mineralocorticoid and glucocorticoid secretion in patients with unilateral, bilateral tumours and bilateral hyperplasia of the adrenal cortex exploring urine and blood steroid metabolomes by chromatography methods.
MATERIALS AND METHODS: 114 patients with corticotrophin-independent Cushing’s syndrome, autonomous cortisol secretion and primary hyperaldosteronism were examined. The state of the pituitary-adrenal cortex system was assessed by classical methods of immunochemical analysis and functional tests. The corticosteroid metabolomics was studied in biological fluids using high-performance liquid chromatography and gas chromatography-mass spectrometry. In accordance with functional activities and type of hyperplasia, all the patients were divided into 8 subgroups: Cushing’s syndrome and corticosteroma (n = 19), Cushing’s syndrome and bilateral adenomas (n = 9), Cushing’s syndrome and bilateral macronodular hyperplasia (n = 8); autonomus cortisol secretion and unilateral adrenal adenoma (n = 19), autonomus cortisol secretion and bilateral adenomas (n = 14) and autonomus cortisol secretion with bilateral macronodular hyperplasia (n = 11); primary hyperaldosteronism with unilateral aldosteroneproducing adrenal adenoma (n = 15) and bilateral hyperplasia (n = 19). The group of healthy subjects was a control group (n = 22). Family hyperaldosteronism and adrenocortical cancer were excluded. Patients’ urinary corticosteroid excretion and blood steroid levels were compared using the nonparametric Mann–Whitney test.
RESULTS: Chromatographic methods have shown the presence of mineralocorticoid and glucocorticoid co-secretion in the patients with primary hyperaldosteronism: increased urine excretion of free cortisol 51 (27–90) ng/ml (p = 0.001) and its metabolite tetrahydrocortisol — 850 (720–994) μg/24 h (p = 0.0002) in the patients with Conn syndrome. As well as free cortisol 35 (32–72) µg/24 h (p = 0.002), tetrahydrocortisol — 1036 (490–1482) µg/24 h (p = 0.0049), 5α-tetrahydrocortisol — 1194 (411–1873) µg/24 h (p = 0.0048), 5α-tetrahydrocorticosterone — 339 (172–356) µg/24 h (p = 0.0008) in the patients with bilateral adrenal hyperplasia and hyperaldosteronism in comparison with the healthy persons. Glucocorticoid-mineralcorticoid activity was found among the patients with autonomous cortisol secretion and bilateral adrenal tumours: by increased levels of 18-hydroxycorticosterone in blood — 2.7 (1.3–3.5) ng/ml (p = 0.002). The patients with autonomous cortisol secretion and a single tumour had an increase of 18-hydroxycorticosterone in urine — 35 (33–55) µg/24 h (p = 0.0048) in comparison with the healthy subjects. The group of patients with corticotrophin-independent Cushing’s syndrome and unilateral corticosteroma was distinguished from the control group by high level of 18-hydroxycorticosterone in blood — 2.4 (1.0–4.3) ng/ml (p = 0.001) and urine — 42 (30–123) µg/24 h (p = 0.003).
CONCLUSIONS: Mixed glucocorticoid and mineralocorticoid activity of adrenal cortical tumor cells was revealed among the patients with Cushing’s syndrome, with autonomous cortisol secretion and primary hyperaldosteronism using chromatographic methods.
作者简介
Zhanna Paltsman
North-Western State Medical University named after I.I. Mechnikov
编辑信件的主要联系方式.
Email: zhannapaltsman@yandex.ru
ORCID iD: 0009-0005-6683-5494
SPIN 代码: 4552-5998
俄罗斯联邦, Saint Petersburg
Sergey Shustov
North-Western State Medical University named after I.I. Mechnikov
Email: Sergei.Shustov@szgmu.ru
ORCID iD: 0000-0002-9075-8274
SPIN 代码: 5237-2036
MD, Dr. Sci. (Medicine), Professor
俄罗斯联邦, Saint PetersburgNatalia Vorokhobina
North-Western State Medical University named after I.I. Mechnikov
Email: natvorokh@mail.ru
ORCID iD: 0000-0002-9574-105X
SPIN 代码: 4062-6409
MD, Dr. Sci. (Medicine), Professor
俄罗斯联邦, Saint PetersburgValentina Kalugina
North-Western State Medical University named after I.I. Mechnikov
Email: kaluginavav@gmail.com
ORCID iD: 0000-0002-2812-6911
SPIN 代码: 3996-7284
MD, Cand. Sci. (Medicine)
俄罗斯联邦, Saint PetersburgLyudmila Velikanova
North-Western State Medical University named after I.I. Mechnikov
Email: velikanova46@gmail.com
ORCID iD: 0000-0002-9352-4035
SPIN 代码: 5586-4851
MD, Dr. Sci. (Biology), Professor
俄罗斯联邦, Saint PetersburgAlla Kuznetsova
North-Western State Medical University named after I.I. Mechnikov
Email: all-kuznetsova@yandex.ru
ORCID iD: 0000-0003-4990-5946
MD, Cand. Sci. (Medicine), Associate Professor
俄罗斯联邦, Saint PetersburgRavilya Galakhova
North-Western State Medical University named after I.I. Mechnikov
Email: rgalakhova@gmail.com
ORCID iD: 0000-0003-3599-3199
SPIN 代码: 1865-2310
MD, Cand. Sci. (Medicine), Associate Professor
俄罗斯联邦, Saint Petersburg参考
- Arlt W, Lang K, Sitch AJ, et al. Steroid metabolome analysis reveals prevalent glucocorticoid excess in primary aldosteronism. JCI Insight. 2017;2(8):e93136. doi: 10.1172/jci.insight.93136
- Miller WL, Auchus RJ. The molecular biology, biochemistry, and physiology of human steroidogenesis and its disorders. Endocr Rev. 2011;329(1):81–151. doi: 10.1210/er.2010-0013
- Demidova TYu, Titova VV. Difficulties in diagnosing primary hyperaldosteronism. FOCUS Endocrinology. 2023;4(2):59–68. EDN: ZIIQBY doi: 10.15829/2713-0177-2023-12
- Wu VC, Chang CH, Wang CY, et al. Risk of fracture in primary aldosteronism: a population-based cohort study. J Bone Miner Res. 2017;32(4):743–752. doi: 10.1002/jbmr.3033
- Morelli V, Eller-Vainicher C, Salcuni AS, et al. Risk of new vertebral fractures in patients with adrenal incidentaloma with and without subclinical hypercortisolism: a multicenter longitudinal study. J Bone Miner Res. 2011;26(8):1816–1821. doi: 10.1002/jbmr.398
- Di Dalmazi G, Vicennati V, Rinaldi E, et al. Progressively increased patterns of subclinical cortisol hypersecretion in adrenal incidentalomas differently predict major metabolic and cardiovascular outcomes: a large cross-sectional study. Eur J Endocrinol. 2012;166(4):669–677. doi: 10.1530/EJE-11-1039
- Wu VC, Chueh SJ, Chen L, et al. Risk of newonset diabetes mellitus in primary aldosteronism: a population study over 5 years. J Hypertens. 2017;35(8):1698–1708. doi: 10.1097/HJH.0000000000001361
- Yukina MYu, Nuralieva NF, Beltsevich DG, et al. Macronodular bilateral adrenal hyperplasia: the pathogenesis and genetic aspects. Consilium Medicum. 2016;18(1):88–93. EDN: VWALAF doi: 10.26442/2075-1753_2016.1.88-93
- Fallo F, Castellano I, Gomez-Sanchez CE, et al. Histopathological and genetic characterization of aldosterone-producing adenomas with concurrent subclinical cortisol hypersecretion: a case series. Endocrine. 2017;58(3):503–512. doi: 10.1007/s12020-017-1295-4
- Mete O, Erickson LA, Juhlin CC, et al. Overview of the 2022 WHO classification of adrenal cortical tumors. Endocr Pathol. 2022;33(1):155–196. doi: 10.1007/s12022-022-09710-8
- Rusakov VF, Shcherbakov IE, Chinchuk IK, et al. Diagnostic value of CT in examination of patients with adrenal cancer. Problems of Endocrinology. 2022;68(4):13–29. EDN: IKEPHE doi: 10.14341/probl12846
- Chevais A, Selivanova LS, Kuznetzov NS, et al. Immunohistochemical study on the expression/hyperexpression of aberrant/eutopic receptors in patients with bilateral macronodular adrenal hyperplasia. Problems of Endocrinology. 2020;66(6):4–12. EDN: NHARXB doi: 10.14341/probl12516
- Kometani M, Yoneda T, Demura M, et al. Genetic and epigenetic analyses of aldosterone-producing adenoma with hypercortisolemia. Steroids. 2019;151:e108470. doi: 10.1016/j.steroids.2019.108470
- Kikuchi E, Yanaihara H, Nakashima J, et al. Urinary steroid profile in adrenocortical tumors. Biomed Pharmacother. 2000;54 Suppl 1:194s–197s. doi: 10.1016/s0753-3322(00)80043-8
- Hines JM, Bancos I, Bancos C, et al. High-resolution, accurate-mass (HRAM) mass spectrometry urine steroid profiling in the diagnosis of adrenal disorders. Clin Chem. 2017;63(12):1824–1835. doi: 10.1373/clinchem.2017.271106
- Weiss LM, Medeiros LJ, Vickery AL Jr. Pathologic features of prognostic significance in adrenocortical carcinoma. Am J Surg Pathol. 1989;13(3):202–206. doi: 10.1097/00000478-198903000-00004
- Carsote M. The entity of connshing syndrome: primary aldosteronism with autonomous cortisol secretion. Diagnostics (Basel). 2022;12(11):e2772. doi: 10.3390/diagnostics12112772
- Gao H, Li L, Tian H. Two cases of aldosterone and cortisol producing adenoma with different histopathological features: A case report. Medicine (Baltimore). 2022;101(32):e30008. doi: 10.1097/MD.0000000000030008
- Murakami M, Rhayem Y, Kunzke T, et al. In situ metabolomics of aldosterone-producing adenomas. JCI Insight. 2019;4(17):e130356. doi: 10.1172/jci.insight.130356
补充文件
