On the positive definiteness of some functions related to the Schoenberg problem
- Authors: Zastavnyi V.P.1, Manov A.D.1
-
Affiliations:
- Donetsk National University
- Issue: Vol 102, No 3-4 (2017)
- Pages: 325-337
- Section: Article
- URL: https://journal-vniispk.ru/0001-4346/article/view/150104
- DOI: https://doi.org/10.1134/S0001434617090036
- ID: 150104
Cite item
Abstract
For a broad class of functions f: [0,+∞) → ℝ, we prove that the function f(ρλ(x)) is positive definite on a nontrivial real linear space E if and only if 0 ≤ λ ≤ α(E, ρ). Here ρ is a nonnegative homogeneous function on E such that ρ(x) ≢ 0 and α(E, ρ) is the Schoenberg constant.
About the authors
V. P. Zastavnyi
Donetsk National University
Author for correspondence.
Email: zastavn@rambler.ru
Ukraine, Donetsk
A. D. Manov
Donetsk National University
Email: zastavn@rambler.ru
Ukraine, Donetsk
Supplementary files
