On optimal harvesting of a resource on a circle
- Авторы: Zelikin M.I.1,2,3, Lokutsievskiy L.V.1,2,3, Skopincev S.V.1,2,3
-
Учреждения:
- LomonosovMoscow State University
- Steklov Mathematical Institute of Russian Academy of Sciences
- Public Budget Institution for Professional Education “Vorobievy Gory,”
- Выпуск: Том 102, № 3-4 (2017)
- Страницы: 521-532
- Раздел: Article
- URL: https://journal-vniispk.ru/0001-4346/article/view/150169
- DOI: https://doi.org/10.1134/S0001434617090243
- ID: 150169
Цитировать
Аннотация
This paper studies the optimality in the problem of cyclic harvesting of a resource distributed on a circle with a certain prescribed density. The velocity ofmotion of the collecting device and the fraction of the resource harvested at a given time play the role of control. The problem is to choose a control maximizing a given quality functional. The paper presents the maximum principle for this (infinite-dimensional) problem. The maximum principle can be written as two inequalities which can be conveniently verified. The class of problems with a concave profit function is solved completely. At the end of the paper, several examples are considered to illustrate the developed technique.
Об авторах
M. Zelikin
LomonosovMoscow State University; Steklov Mathematical Institute of Russian Academy of Sciences; Public Budget Institution for Professional Education “Vorobievy Gory,”
Автор, ответственный за переписку.
Email: mzelikin@mtu-net.ru
Россия, Moscow; Moscow; Moscow
L. Lokutsievskiy
LomonosovMoscow State University; Steklov Mathematical Institute of Russian Academy of Sciences; Public Budget Institution for Professional Education “Vorobievy Gory,”
Email: mzelikin@mtu-net.ru
Россия, Moscow; Moscow; Moscow
S. Skopincev
LomonosovMoscow State University; Steklov Mathematical Institute of Russian Academy of Sciences; Public Budget Institution for Professional Education “Vorobievy Gory,”
Email: mzelikin@mtu-net.ru
Россия, Moscow; Moscow; Moscow
Дополнительные файлы
