Certain Partial Conservativeness Properties of Intuitionistic Set Theory with the Principle of Double Complement of Sets


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The Zermelo–Fraenkel set theory with the underlying intuitionistic logic (for brevity, we refer to it as the intuitionistic Zermelo–Fraenkel set theory) in a two-sorted language (where the sort 0 is assigned to numbers and the sort 1, to sets) with the collection scheme used as the replacement scheme of axioms (the ZFI2C theory) is considered. Some partial conservativeness properties of the intuitionistic Zermelo–Fraenkel set theory with the principle of double complement of sets (DCS) with respect to a certain class of arithmetic formulas (the class all so-called AEN formulas) are proved. Namely, let T be one of the theories ZFI2C and ZFI2C + DCS. Then (1) the theory T+ECT is conservative over T with respect to the class of AEN formulas; (2) the theory T+ECT+M is conservative over T+M{su−} with respect to the class of AEN formulas. Here ECT stands for the extended Church’s thesis, Mis the strong Markov principle, and M{su−} is the weak Markov principle. The following partial conservativeness properties are also proved: (3) T+ECT+M is conservative over T with respect to the class of negative arithmetic formulas; (4) the classical theory ZF2 is conservative over ZFI2C with respect to the class of negative arithmetic formulas.

About the authors

A. G. Vladimirov

Lomonosov Moscow State University

Author for correspondence.
Email: moskvich7707@mail.ru
Russian Federation, Moscow

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2018 Pleiades Publishing, Ltd.